有关数学说课稿初中模板锦集5篇
作为一名教师,时常要开展说课稿准备工作,通过说课稿可以很好地改正讲课缺点。那么应当如何写说课稿呢?下面是小编整理的数学说课稿初中5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿初中 篇1
今天我说课的内容是人教版七年级上册1.2.4绝对值内容。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位和作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标:
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:
通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法)
(一)、教学手段:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节:
1 、温故知新,激发情趣 2 、得出定义,揭示内涵
3 、手脑并用,深入理解 4 、启发诱导,初步运用
5 、反馈矫正,注重参与 6 、归纳小结,强化思想
7 、布置作业,引导预习
(二)、教学方法及其理论依据:
坚持以学生为主体,以教师为主导的原则,即以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程:
四、 教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolute value)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:定义里的数a可以表示什么样的数?
(通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如很好很规范老师相信你,你一定行等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题 1.2 3,4,5 ,10。
2、选作两道思考题:
(1)求绝对值不大于2的整数;(2)已知x是整数,且2.57, 求x.
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!
数学说课稿初中 篇2
一、地位和作用
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。
2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。
设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?
教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。
问题2:用画函数图象的方法解不等式:
-2x+3<3x-7.
分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,
再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 解法1: 原不等式化为5x-10>0,画出直线y=5x-10如图所示, 可以看出x>2时这条直线上的点在x轴上方, 即这时y=5x-10>0,所以不等式的解集为x>2. 解法2: 将原不等式的两边分别看作是两个一次函数, 画出直线l1∶y=-2x+3,y2=3x-7,如图所示, 可以看出它们的交点的横坐标为2,当x>2时, 对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2. 三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m? (5) 你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的`作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 P19 读一读 P20 习题1.6 一、说教材: 1、本节课的主要内容: 探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。 2、地位作用: 纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。 3、教学目标: 依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标: (1)知识目标: a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。 b、会动手和利用计算器计算“方差”“标准差”。 (2)过程与方法目标: a、经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。 b、通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”) c、突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。 d、在具体实例中体会样本估计总体的思想。 (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。 4、重点与难点:重点: 理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。 难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。 二、说教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法: 1、引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。 2、比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。 3、练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。 4、选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。 三、说学法: 教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是: (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。 (2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。 (3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。 (4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。 四、说教学程序: 1、创设情境,导入新课: <1>、展示情景(链接奥运会中韩运动员设计的情景)。 <3>、分析思考寻求解决方案(观察表格数据求平均数)。 2、新课: (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣) <1>、概念介绍: <3>、引进概念 <5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。 <2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力) 4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。 5、布置作业:P—199(1)(2)(3—选作题): 五、说板书设计 板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。 说教材 “正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识.本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用.作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心. 说教法目标 根据课程标准和学生认知特点,我确定如下三维教学目标: (1)知识与技能: 理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。 (2)过程与方法: 探索负数概念的形成过程,使学生建立正数与负数的数感。 (3)情感态度与价值观: 实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。 说教学重难度 根据本节课的教学内容,考虑到学生已有的认知结构和心理特征,我将确定如下教学重难点: 教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。 教学难点:了解负数的意义及0的内涵。 说教学方法 为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。 说学法 鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。 说教学过程 在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。 (一)创设情境,引入新课 首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的.同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚.这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课.这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。 (二)合作交流,探索新知 接着,我根据学生已经产生的认知冲突及时地给出4个实际例子让学生练习,帮助他们理解具有相反意义的量,进入合作交流,探索新知的环节.我会在学生练习时进行巡视.具体的例题如下: 例1:气温有零上3℃和零下3℃; 例2:高于海平面8848米和低于海平面155米; 例3:收入50元和支出32元; 例4:汽车向东行驶4千米和向西行驶3千米. 我会让学生对以上例子中出现的每一对量进行讨论.由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词.于是我在学生回答 的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量.然后让学生自己举出一些日常生活中具有相反意义的量的实例.学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子.这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路. 帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示? 一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示.通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负.如零上3℃和零下3℃可以表示成+3℃和-3℃;收入50元和支出32元可以表示成+50元和-32元. 这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界.同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度. (三)巩固练习,熟练技能 为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能.如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量.在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数.而其中一道练习:如果水位升高3m 时水位变化记作+3m,那么水位下降3m 时水位变化就可以记作-3m,水位不升不降时水位变化可以记作0m.这里也要特别强调0表示的意义.由此让学生加深对正、负数概念以及零的意义的理解.课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担. (四)总结反思,发展情意 练习之后,我将引导学生通过回顾本节课所学内容,结合教学目标,归纳总结出本节课的知识要点:(1)用正数与负数表示具有相反意义的量;(2)零既不是正数也不是负数.从而起到了对本节课巩固深化的作用.这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重. (五)布置作业 最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担. 各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识. 一、教材分析 (一)教材的地位和作用 相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。 本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。 (二)教学的目标和要求 1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。 2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。 3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。 (三)教学的重点和难点 1.重点:相似三角形和相似比约概念及判定三角形相似的预备定理。 2.难点:相似三角形约定义和判定三角形相似的预备定理。 二、教法与学法 采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。 三、教学过程的分析 看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。 1.关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再格中位线所在约直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的对应角相等,对应边成比例,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为△ABC,原三角形记为△ABC。因此,如果有: A=A,B=B,C=C, 那么△ABC与△ABC是相似的.。以此来加强两个三角形相似定义的认识。 2.关于用相似符号∽来表示两个三角形相似时,考虑与全等三角形的全等符号≌表示相类比引入。全等符号≌可看成由形状相同的符号∽和大小相等的符号=所合成,而相似形只是形状相同,所以只用符号∽表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号∽表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知: 如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,A、B、C就分别与D、E、F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。 3.关于相似比的概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比(或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。 4.在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。即如图,若DE∥BC,则△ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生: 当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。 因此我们可得(预备)定理: 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课本P224页练习1、2做为课堂练习,之后进行提问与调板,了解学生掌握知识的情况。 最后小结本节课的知识要点及注意点。小结之后布置作业和预习。 【有关数学说课稿初中模板锦集5篇】相关文章:数学说课稿初中 篇3
数学说课稿初中 篇4
数学说课稿初中 篇5