人教版五年级下册数学说课稿4篇
作为一名专为他人授业解惑的人民教师,常常要写一份优秀的说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。那么写说课稿需要注意哪些问题呢?下面是小编为大家收集的人教版五年级下册数学说课稿4篇,欢迎阅读与收藏。
人教版五年级下册数学说课稿 篇1
一、说课内容
人教版小学数学五年级下册6~66页——分数与除法。
二、教材分析
(一)教材、教学的分析与思考
对于分数,学生并不陌生。在三年级的时候,他们已经初步接触了分数,通过直观和动手操作,初步理解了分数的含义,知道了分数各部分的名称;在这节课内容之前,又进一步学习了分数的产生和分数的意义,这些都是学生学习本节内容的基础。
教材安排了两个例题。例1初步沟通除法和分数的关系;例2明确指出可以用分数表示两个数相除的商。例题后通过适当的练习,在学生应用知识,解决问题,巩固关系的同时,培养他们的探究能力。本课时内容,为学生进一步学习分数的有关知识奠定基础。
分数是一个内涵丰富的数学概念,它的意义是多层次的。在本节课之前,学生是从“行为”(平均分物体)入手认识分数的;本节学习分数与除法的关系,则是对分数的进一步的理解——分数可以表示除法运算的结果。在本课教学中,我力求从这样一个角度去突出这一点。
(二)教学目标
在具体的问题情境中,探索和理解除法与分数的关系,会用分数表示除法的商,并从中体会到用分数表示除法商的优越性。
能在几组例证的探索过程中,初步感受数学建模思想,培养观察、比较、归纳等探究的能力。
在对分数意义的理解中感受数学知识的发展变化规律,激发学习数学的积极情感。
(三)重点、难点
本课的教学重点是发现、掌握除法与分数的关系;难点是理解两个数相除商用分数表示。
三、教法、学法
在这一节课中,我以学生熟悉的平均分问题和分数的意义作为学生学习的基点,借助实验操作、数形结合的方法,让学生自主探索,在经历
(b≠0)这一知识的形成过程中,逐步构建除法和分数之间关系的模型,学会用分数这个新的数表示除法的商。
四、教学过程
开门见山,抛砖引玉。
1、把6颗糖,平均分给3人,每人分得()颗。
2、把3颗★平均分给3人,每人分得()颗。
3、把1块月饼平均分给3人,每人分得()块。
【设计意图:虽然只是简单的3道题目,但却复习了旧知识,同时又巧妙地引出新知识,抛砖引玉,为下面的研究埋下伏笔。】
承上启下,初步建模
1、承接前一个问题:把1块月饼平均分给3人,每人分得多少块?
根据整数乘法的意义,列出除法算式1÷3;根据分数的意义,每人可得这块月饼的,借助月饼图可知,1块月饼的也就是块月饼。因此1÷3的商可以用分数表示。
[设计意图:在老师的启发下,学生根据整数除法的意义列出除法算式;根据分数的意义,直接用分数表示结果;其次借助数形结合,巧妙地把除法计算与分数初步联系起来。]
2、把题目改为:把1块月饼平均分给4名、5名、6名同学,每人分得多少块?
3、追问:如果平均分给7名、8名、9名同学,每人分得多少块?如果是b名同学呢?
[设计意图:通过具体的问题情境,初步理解:如果被除数是1,不管除数是几,都可以用几分之一的分数表示1÷几的商。初步建立的数学模型,为下面的研究奠定基础。]
深入探究,理解含义
出示例2:把3块月饼,平均分给4名同学,每人分得多少块?
通过“估算——猜想——验证——汇报反馈———小结”这几个环节,明确:可以用分数表示3÷4的商。
我利用多媒体课件设计两个预案,结合学生的汇报演示。
预案1:先把1块月饼平均分成4份,每人分1份,就是块;再用同样的办法平均分另外2块同样大小的月饼。这样每人分得3个块,就是块。
预案2:把3块月饼叠在一起平均分成4份,每人取其中的1份,就是3块饼的。1份有3个块,拼起来就是1块饼的,即块。
归纳类比,发现规律
1、把3块月饼,平均分给10名同学,每人分得多少块?
2、把7块月饼,平均分给10名同学,每人分得多少块?
3、把x块月饼,平均分给15名同学,每人分得多少块?
列出算式,观察比较,发现规律:
检测反馈,拓展提高
1.用分数表示下面各题的商
7÷8=9÷13=9÷8=11÷10=
2.想一想,填一填
完成书本课后做一做第2题,并添加这一道题目
通过=()÷(),说明除法和分数之间的互逆关系;通过
提问,“()可以是任何数吗?”引导学生思考并得出:因为除数和分母都不能为0,所以。
3.计算下面各题的商
4÷7=1÷2=5÷3=45÷5=
9÷3=4÷5=2÷3=1÷6=
4.解决问题
(1)一位火炬手跑1千米要15分钟,平均每分钟跑几分之几千米?1÷15=(千米)
(2)如果要重新铺设一块15平方米的主席台,需要41块砖,平均每块砖占地多少平方米?15÷41=(平方米)
5.思考提高题:0.7÷2的商也能用分数表示吗?
五、教学预评及板书设计
本节课通过营造宽松的学习氛围,通过“抛——承——探——引”这几个环节,使学生经历了(b≠0)这一知识的形成过程,较好地构建了除法与分数关系这一新的数学模型,明确可以用分数表示两个数相除的商。而且板书简明扼要,重点突出,能有效地突出教学的重点和突破教学的难点,使本课教学目标能有效达成,使课堂教学充满生命的活力。
人教版五年级下册数学说课稿 篇2
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题 的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的'教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节 课堂作业 反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
五、说板书设计
分数除法应用题
例3:白海货运码头有一批货物,运走了 ,还剩240吨,这批货物原有多少吨?运走了剩下240吨? 吨
(一)解:设这批货物原有X吨。 (二) 240÷(9-5)×9
X — X = 240 =
X = 240 =
我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。
人教版五年级下册数学说课稿 篇3
我将从:教材分析、教学目标、教学思想与方法和教学流程与设计意图几个方面谈谈我对本节课的认识与思考。
一、教材分析
本节课是在学生对长方体和正方体体积和体积单位等知识已熟练掌握的基础上来学习的。首先,给出容积和容积概念并说明计量容积一般就是用体积单位;然后,通过从生活中引导学生观察药水瓶、饮料瓶上的容积单位L和ml,并介绍了它们的关系和它们与体积单位的区别与联系;最后,在具体的操作活动中来感知L和ml这两个容积单位的实际大小。并将新知识与实际生活相联系起来。有利于学生更加深刻地理解容积单位的实际意义。培养学生用数学的意识。利用例5计算小汽车油箱容积巩固长方体容积的计算和体积单位与容积单位的关系。
二、教学目标
立体图形中体积与容积的学习,对于学生来说是一个抽象的知识,只有结合生活实际,联系生活,让学生亲眼看一看,亲手做一做,亲自去想一想,才能使之成为具体的,可接受的知识,因此针对教材内容,我制定了以下教学目标:
1.使学生在对具体实物的观察中理解容积与体积;认识容积单位:升、毫升。
2.使学生在具体情境中,经历操作、猜想、验证、感悟等数学活动过程,感知容积单位升与毫升间的进率以及它们和体积单位的关系。
3.理解容积和体积的概念既有联系又有区别。
教学重点:容积和体积概念的联系与区别。
教学难点:理解升与毫升间的进率。以及它们和体积单位的关系。
三、教学思想与方法。
俗话说:教学有法,教无定法。根据学生的年龄特点和认知规律,我打算从又下四步展开教学活动:
1、从学生的生活实际出发,结合具体的实物(塑料盒、木盒),利用学生的已有经验展开教学活动。如:在区分容积与体积时,选择两个大小、形状相同的木盒和塑料盒进行比较,使学生通过感观获得对两个概念的区别,加深学生对概念的理解。
2、在实际的操作活动中,发展学生的空间观念,提升数学思考的水平。操作是学生认识事物、探索知识的一个重要方法和途径。如:在探究中感知1L、1ML的实际大小,以及它们之间的关系。通过操作,学生真正体会到了什么是容积以及感悟出容积的大小。
3、通过有层次地操作活动,为学生留下适当的探索空间,让学生在自主探索、合作交流中提升认识,获得新知。让学生在头脑中留下了深刻的印象,化抽象为形象。
4、将所学容积知识应用于解决生活中的实际问题,加深对所学知识的理解,引导学生感受学习的价值。如:巩固练习中的题目就有所体现。
四、教学过程与设计意图
(一)复习旧知,引入新课
大教育家孔子曾说过:温故而知新。新知识的构建是以已有的旧知识为载体的。因此,在课的开始我设计了复习体积、体积单位以及相邻单位间的进率,以及长方体体积的计算,能够较好的为学习新知识做好铺垫。
(二)动手操作,探究新知
这一部分是本节课的重点和难点。为了更好的突出重点突破难点。因此在一环节中,我设计了四部分,第一、容积的概念,第二、容积与体积的区别与联系;第三、认识容积单位以及单位间的关系;感悟估测升和毫升的实际大小。第四、容积的实际应用。
第一部分内容是容积概念的教学。在这里,我直接出示实物教具,长方体小木盒。通过实物介绍容积就是容器里所能容纳物体的体积。随后让学生举例:生活中,还有哪些物体有容积?联系生活实际加深对概念的理解,避免机械的背诵概念。在此基础上问学生:通过刚才的举例,发现了只有什么样的物体才有容积?学生会很快说出:必须是空心的物体才有容积。
设计意图:激发学生学习兴趣,通过直观感知和联系生活实际理解容积的意义。体会生活中处处有数学的思想。
第二部分容积与体积的区别与联系。在这里我设计了一个竟猜小游戏。拿出两个一样大小的长方体塑料盒和木头盒(用纸蒙好)让学生猜哪一个容积大,在学生的竟猜中揭晓迷底。感受容积与体积的不同之处是容积从里面测量而体积是从外面测量。它们的相同之处是体积相同。俗话说:兴趣是最好的老师。这部分内容是本节课的一个重点。因此,我设计了这个竟猜小游戏,调动学生的学习积极性。让学生始终在一个饱满的精神状态下来学习知识。从而轻松的解决了本课的重点知识。
第三部分内容认识容积单位以及单位间的关系;感悟估测升和毫升的实际大小
课程标准指出:数学教学是活动的教学。让学生在活动中学数学、做数学。因此,为了更好地突破本课的难点。在此,我设计了两个活动。
活动一:认识容积单位,通过实物教具药水瓶和饮料瓶,观察上面的竟含量,引出L和ml两个容积单位,让学生猜想,升和毫升是什么意思?学生根据本节课的内容会猜出是容积单位。教师紧接着问学生:你们想知道1ml水有多少吗?学生通过用针筒吸水并滴在手心活动感受1ml的大小。并把1ml水注入药水瓶中,用它估计老师事先准备好的药水瓶中水的容积。(10ml)通过这个活动使学生初步感受一毫升究竟有多少?并以此为凭借进行估测。培养学生对知识的应用能力。
活动二:操作、猜想、验证、感悟。用250毫升的量桶,向容积是1升的容器中倒水,倒几次是1升?通过倒水活动你发现了什么?学生动手操作。倒四次正好是1升。得出(1L=1000ml)。又将1升水倒入容积是1立方分米的容器中,你猜想会发生什么?动手操作验证猜想。得出1升=1立方分米。那么1毫升与1立方厘米有什么关系?有的学生说继续验证,有的学生会根据升与毫升、1升与1立方分米的关系得出1毫升=1立方厘米。此活动的设计意图是让学生在动手操作中领悟这两个单位间的关系。随后又让学生在生活中寻找哪些容器上还标有L和ml的字样。这样有利于学生将新知识与生活紧密联系起来,有利于学生更加深刻的感知容积单位的实际意义。先将1升水倒入正方体容器中,让学生猜想会有什么现象。接着动手操作验证猜想。学生会得出1升=1立方分米。那么1ml与1cm3又有什么关系呢?这时有的学生说继续操作验证;有的学生说不用,根据升与毫升的关系和1升与1立方分米的关系可以得到。体积与容积单位间的关系是通过学生猜想、操作验证的方法得到的,这样能够使他们真正理解它们之间的关系。再将1升水倒入纸杯中,能倒几纸杯水?估计一下一个纸杯大约能盛多少毫升水?本环节是通过两次倒水活动深刻地理解了升与毫升和它们与体积单位之间的关系。让学生亲身受生活中处处有数学,数学就在我们身边。让学生在“做”中“学”,在“学”中“做”。这时,教师指出:科学规定,每人每天至少要喝1400毫升的水,你知道1400毫升究竟是多少呢?学生用不同的容积来说明1400毫升的多少。这样有利于学生对不同容器建立深刻的表象,丰富数学体验,提高学生的应用能力。
小学生的思维以具体形象为主,通过此活动,充分让学生猜想、验证、感悟、交流,师生互动,生生互动。学生不仅能体会到容积单位间的关系。而且更能深刻地感悟到1L和1ML的实际大小。增强估算的能力。培养学生节约自然资源的好习惯。
第四部分是例题的教学,由学生独立完成,师适时点拨怎样把体积单位转化成容积单位。出现问题及时纠正和指导。最后集体订正,使学生把所学的新知识加以运用。进一步理解容积和体积的关系。从而解决了本节课的难点。
(三)巩固练习,拓展延伸
为了更好的完成教学目标,实现“三清”中的“堂堂清”。在此设计四组练习,第一组题单位间的换算,属容易题。主要目的是对基础知识的掌握情况进行考察。第二组题感知题,使学生加深对L和mL两个单位关系的进一步感悟和理解。第三组计算题。难点是将体积单位转化成容积单位。对新知识加以运用,属中档题。第四组练习即例6,目的是让学生总结出测量不规则物体容积的方法。属于较难题,激发学生的探究欲望。使不同层次的学生有都能够得到不同的发展。
(四)总结反思,提炼升华
回顾课堂知识,最后这个环节通过让学生谈感受、谈收获、谈体会,总结拓展升华,激发学生进一步学习数学的兴趣。加强思想教育。《九章算术》是我国数学届的瑰宝,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。希望同学们有机会也看一下这本书。可以激发学生对科学的探究欲望和学习的兴趣。并加强爱国主义教育。
人教版五年级下册数学说课稿 篇4
一、说教材
异分母分数加减法是第十册第四单元的一个学习内容。在这个内容之前,学生已掌握了分数的基本性质,学会了约分、通分、分数小数互化的方法,懂得了同分母分数加减法的算理,其中同分母分数加减法的计算方法是本节课最直接的知识起点。本节课的内容又是进一步学习分数加减法混合运算的基础,同时又是本单元的重点。五年级学生已经能理解只有分数单位相同的分数才能相加减的算理,并且已经初步具有用旧知识解决新问题的能力,也就是具有了一定的知识迁移能力。
二、说学生
异分母分数加减法的法则是:先通分,再按分母分数加减法的法则进行计算,学生在前一个单元里已经熟练掌握了通分的技能,又在前几节课里学习了同分母分数加减法,明确了分-数单位相同可以直接相加减。因此,对学生而言,作为构成计算法则的两个重要成分都已学过,在这节课,无非是引导学生想到“化异为同”,把异分母分数转化为同分母分数来沟通新旧知识,好在学生已从“异分母分数大小比较”里学会了这一招“化异为同”所以在这节课里要求学生再用“化异为同”来解决问题并不难。
三、说教学目标
1、使学生理解并掌握异分母分数加减法的计算法则,能正确的进行计算。
2、引导学生经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化的数学思想,并进一步培养学生养成良好的验算习惯。
3、受数学与生活的联系,激发学生学习兴趣,并在学习活动中获得积极的,成功的情感体验。
四、教学重点:理解异分母分数加减法的计算法则。
教学难点:理解异分母分数加减法计算时必须先通分的算理。
教学关键:通分。
五、教学理念
通过学习新课标,使我明白:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想与方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。基于新课标的上述理念,我把本节课的教学流程预设为:创设情境,激趣引入----合作探究,自主建构------巩固内化,拓展创新------回顾总结,完善认知。
六、教学流程;
(一)创设情境,激趣导入。
设计意图:我创设这个情境的意图首先想体现数学来源与生活,生活中处处有数学的教学理念。其次在这个情境中,给学生提供了一组开放性的学习素材,有利于学生提出问题,自主探究。
在学生列出的4个算式中,其中1/4+1/4是同分母分数的加法,意图是复习同分母分数的加法的计算法则。另外3个是异分母的加法,为接下来新知的探究提供了素材。
(二)尝试研究
这一环节是探究异分母分数加减法的计算法则,是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用,我安排这样几个小环节:
1、小组合作
我在3个异分母分数的加法中,先选择了能化成有限小数的1/2+1/4,为学生解题策略多样化创造出更宽阔的思维空间。
2、算法优化
在学生出现了多种解题方法后,(1)化成小数计算(2)通分计算(3)画图解决。作为教师,我们应该为学生创设一种情境:继续选择自己喜欢的方法,独立计算1/2+1/3让学生在运用自己喜欢的方法进行解答中发现,化成小数计算时有一定的局限性,画图解决很麻烦。从而得出:异分母分数加法要先通分,再计算比较合理。
3、验算得出异分母分数减法
你能把自己的计算结果验算一下吗?(学生有的用加法,有的用减法)
通过验算这个小环节,自然引出异分母分数的减法,然后让学生通过独立计算,掌握异分母分数的减法的计算方法。
【人教版五年级下册数学说课稿4篇】相关文章: