- 相关推荐
数学综合实践活动说课稿 确定起跑线
作为一名无私奉献的老师,很有必要精心设计一份说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。说课稿应该怎么写呢?以下是小编帮大家整理的数学综合实践活动说课稿 确定起跑线,仅供参考,希望能够帮助到大家。
【教材简析】
《确定起跑线》是一节综合应用数学知识的实践活动课,是在学生掌握了圆的概念和周长等知识的基础上设计的。教材设计这个数学综合实践活动,一方面让学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知识和方法,动手实践解决问题,学会确定起跑线的方法;另一方面让学生体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高实践能力和解决问题的能力。
【教学目标】
知识与技能:让学生经历运用圆的有关知识计算所走弯道距离的过程,了解“跑道的弯道部分,外圈比内圈要长”,从而学会确定起跑线的方法。
过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
情感与态度:在主动参与数学活动的过程中, 让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
【教学重点】
通过圆的周长计算公式,了解田径场跑道的结构,能根据起跑线设置原理正确计算起跑线的位置。
【教学难点】
综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
【教学流程】
首先,第一部分:提出问题。
其实我们六年级的学生在经历了2008年北京奥运会和历年来的校运动会、区运动会以来,对于运动员要站在不同起跑线上,已经有了一些朦朦胧胧的意识,甚至有部分同学已经会跟学习语文一样去预习一下。所以,我打算引导学生,让他们自己来提出问题。通过百米飞人博尔特参加的两个比赛图片,让学生观察。发现两个比赛起跑时的不同点,接着老师提出问题:相邻起跑线相差多少米呢?从而引出课题。
然后是第二部分:解决问题。
解决问题这个部分,我打算分为独立思考、发现规律和验证规律三个环节。
由于这节课的主要目的在于发现、验证、应用规律,而不在于计算,由于书上所提供的数据计算比较麻烦,学生会在这上面花费大量的时间,从而影响主要目标的达成。所以在计算时允许让学生使用计算器计算。
解决问题第一个环节:独立思考。
先让学生根据黑板上的跑道示意图进行研究,讨论怎样求相邻跑道的长度差。要解决这个问题,其中学生最容易想到的一种方案是分别求出第一道和第二道的全长,然后减一减,书上的图二也有提示。但是其实关于跑道周长的计算,在之前数学书第71页的练习十六中已经出现过了,学生已经发现生活中的跑道其实是由两个半圆和两条直道构成的,知道如何计算单条跑道的长度。也会出现直接用相邻跑道的外圆和内圆的周长相减。
解决问题第二个环节:发现规律。
先请学生计算第一和第二跑道起点相差的距离,学生可能会出现几种不同的方法。老师有意识地先请第一种解题方案的小组来汇报,并做好记录。在解决这个问题的过程中,肯定有同学会发现第二种解题方案,也就是书上图三所提示的:因为各条跑道直道的长度都一样,所以要求前两圈跑道差距,只要计算出第二道和第一道所在圆周长的差距就可以了。在汇报完第一种解题方案以后,学生就会提出自己的新方法,这时,可以让学生自己来做做小老师,培养他们把内在知识外化的能力。第三种方案其实是由第二种转化得来的,相邻两个圆周长的差就是它们的直径差乘∏。
至于第四种解决方案,即相邻跑道的差距=2π道宽。这是这节课重点要发现的规律,不一定会有学生想到,这时就要看老师怎么引导了。要得出这个规律,不光要求学生有较强的思维能力,也要求学生有一定的算术素养。即在解决问题的时候,不急着把答案算出来,而是运用代数的知识,符号化的思考,把一些已知数据先用公式字母代替,合并化简以后再最后求出答案。
比方说这里,在学生介绍第二种解题方案的同时,老师就可以一边记录,一边引导学生往第三种方案上靠拢。从方案一开始,相邻跑道的差距=第二道全长-第一道全长,转换成符号化表示:=(2a+πD)-(2a+πd)=πD-πd,即第二道圆周长-第一道圆周长。引导到这里,先让同学把第二种方案介绍完。然后让大家一起观察,还能不能继续等下去?有没有新的方法?这时,就会有同学说用乘法分配律=π(D-d)。那么D-d又是什么呢?部分同学可能已经发现了,让他们来说说看,如果学生解释不清楚,教师可以再通过课件演示,说明D-d就是两个道宽,而道宽是什么?就是两条半径之差。然后继续等下去:=2π(R-r)=2π道宽。
解决问题第三个环节:验证规律。
得出一个规律,就科学的思考过程而言,还不一定正确,必须要经过验证,这时可以出示刚才未完成的表格,让同学们先根据第四种解题方案预测一下各跑道的总长,把直径和全长两栏填完,并再次强化理解每相邻两道的直径各要加上两个道宽。然后让每组同学任选一个跑道,填一填。
最后是第三部分:拓展应用
研究这节课的目的,不只是仅仅为了解决一个跑道问题,而是要举一反三、触类旁通。让学生学会解决生活中的数学问题。因此,我设计了以下几个题目:
拓展一: 在运动场上还有200米比赛,相邻跑道之间又应该相差多少米?200米只有400米的一半,只要跑一个半圆和一个直道就行了,因此,刚才的三种方案都要÷2。相邻跑道的差距= (a+πD/2)-(a+πd/2)=πD/2-πd/2=(D/2-d/2)π=(R-r)π=π道宽。
拓展二: 我们学校有一个200米的运动场,道宽1米,如果要进行男子400米比赛的话,起跑线应该怎么设置?
【数学综合实践活动说课稿 确定起跑线】相关文章:
数学《确定起跑线》教学反思10-19
综合实践活动说课稿06-10
综合实践说课稿11-22
综合实践说课稿10-13
确定起跑线教学反思10-21
数学综合实践活动方案04-17
数学综合实践活动方案06-03
综合实践活动说课稿 (通用17篇)03-05
综合实践活动生活中的垃圾的说课稿07-02
小学综合实践活动说课稿(精选12篇)09-18