《平面向量》说课稿

时间:2024-07-01 02:41:05 说课稿 我要投稿

《平面向量》说课稿

  作为一名教职工,总归要编写说课稿,借助说课稿我们可以快速提升自己的教学能力。快来参考说课稿是怎么写的吧!下面是小编精心整理的《平面向量》说课稿,仅供参考,希望能够帮助到大家。

《平面向量》说课稿

《平面向量》说课稿1

  一、 教材分析

  1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

  2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节教学目标确定为:

  1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题

  2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

  教学重点

  平面向量数量积的坐标表示及应用

  教学难点

  探究发现公式

  二、 教学方法和手段

  1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的`方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。

  2教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。

  三、 学法指导

  改善学生的学习方式是高中数学课程追求的基本理念。独立思考,自主探索,动手实践,合作交流等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。为了实现这一目标,本节教学让学生主动参与,让学生动手,动口、动脑。通过思考、计算、归纳、推理,鼓励学生多向思维,积极活动,勇于探索。具体体现在:1、通过提出问题,把问题的求解与探究贯穿整堂课,使学生在自主探究中发现了结论,推广了命题,使学生感到成果是自己得到的,增强了成就感,培养了学生学好数学的信心和良好的学习动机。2、通过数与形的充分挖掘,通过对向量平行与垂直条件的坐标表示的类比,培养了学生数形结合的数学思想,教给了学生类比联想的记忆方法。

  四、教学程序

  本节课分为复习回顾、定理推导、引申推广、例题讲析、练习与小结五部分。

  复习回顾部分通过两个问题,复习了与本节内容相关的数量积概念,为本节内容的学习作了必要的铺垫。

  定理推导部分通过设问,引出寻求向量的数量积的坐标表示的必要性,引入课题,并引导学生应用前述知识共同推导出数量积的坐标表示。

  引申推广部分,让学生自主推导出向量的长度公式,向量垂直条件的坐标表示、夹角公式等三个结论,强化了学生的动手能力和自主探究能力。

  例题讲析,通过四道紧扣教材的例题的精讲,突出了结论的应用,也起到了示范作用。

  练习及小结:通过练习题验收教学效果,突出训练主线,小结部分画龙点睛,强调本节重点。再结合课后作业,进一步实现本节课的教学目的。同时小结也体现主体性,由教师提出问题学生总结得出。

《平面向量》说课稿2

各位专家:

  你们好!

  今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。

  一、 教材分析:

  1、教材的地位和作用

  向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.

  结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:

  2、教学目标

  (1) 知识与技能目标

  1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;

  2)识记向量模的定义,会用字母和线段表示向量的模.

  3)知道零向量、单位向量的概念.

  (2) 过程与方法目标

  学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.

  (3)情感态度与价值观目标

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.

  3、教学重难点

  教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量

  教学难点:向量的几何表示的理解,对零向量和单位向量的理解

  二、学情分析

  (1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.

  (2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

  (3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.

  三、教法学法

  教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学

  学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.

  四、教学过程

  课前:

  为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:

  1、你学过的其他学科中有没有可以称为向量的?

  2、向量的.特点是什么?有几种描述向量的表示方法?

  3、零向量的特点是什么?

  【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。

  课上教学过程:

  1、 创设情境

  数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量

  【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。

  2、 形成概念

  结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?

  采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。

  单位向量、零向量的概念

  【即时训练】

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知

  3、 知识应用

  本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力.

  4、 学以致用

  为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。

  5、课堂小结

  为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)

  【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础

  6、 布置作业

  出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间.

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。

  以上就是我对本节课的设计和说明,请各位领导,老师批评指正

《平面向量》说课稿3

  一、说教材

  平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

  二、说学习目标和要求

  通过本节的学习,要让学生掌握

  (1)、平面向量数量积的坐标表示。

  (2)、平面两点间的距离公式。

  (3)、向量垂直的坐标表示的充要条件。

  以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的`充要条件以及它的灵活应用。

  三、说教法

  在教学过程中,我主要采用了以下几种教学方法、

  (1)启发式教学法

  因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论、如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

  (2)讲解式教学法

  主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

  主要辅助教学的手段(powerpoint)。

  (3)讨论式教学法

  主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

  四、说学法

  学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

  五、说教学过程

  这节课我准备这样进行、

  首先提出问题、要算出两个非零向量的数量积,我们需要知道哪些量?

  继续提出问题、假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

  引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论。

  (1) 模的计算公式

  (2)平面两点间的距离公式。

  (3)两向量夹角的余弦的坐标表示

  (4)两个向量垂直的标表示的充要条件

  第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

  例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用、即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

  例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

  再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

《平面向量》说课稿4

  尊敬的各位评委、各位老师:

  大家好!

  今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。

  第一部分:教学内容分析:

  1、教材的地位及作用:

  将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。

  2、教学目标的设定:

  (1)知识目标:

  平面向量数量积的定义及初步运用。

  (2)能力目标:

  通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。

  (3)情感目标:

  通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。

  3、教学重点:平面向量的`数量积定义。

  4、教学难点:平面向量的数量积定义及平面向量数量积的运用

  第二部分:教法分析:

  采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

《平面向量》说课稿5

  各位老师好:

  我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。

  一、学情分析

  本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

  二、高考的考点分析:

  在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。

  三、复习目标

  1.会用坐标表示平面向量的加法、减法与数乘运算.

  2.理解用坐标表示的平面向量共线的条件.

  3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

  4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

  教学重难点的确定与突破:

  根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。难点为:平面向量坐标运算与表示的理解。我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。

  四、说教法

  根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。

  五、说学法

  根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。根据学情,所以我将指导通过“自学,探究,模仿”等过程完成本节课的学习。

  六、说过程

  (一) 知识梳理:

  1.向量坐标的求法

  (1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

  (2)设A(x1,y1),B(x2,y2),则

  =_________________

  ||=_______________

  (二)平面向量坐标运算

  1.向量加法、减法、数乘向量

  设 =(x1,y1), =(x2,y2),则

  + = - = λ = .

  2.向量平行的坐标表示

  设 =(x1,y1), =(x2,y2),则 ∥ ________________.

  (三)核心考点习题演练

  考点1.平面向量的坐标运算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

  (2)求满足 =m +n 的实数m,n;

  练:(20xx江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

  (m,n∈R),则m-n的.值为 .

  考点2平面向量共线的坐标表示

  例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

  若( +k )∥(2 - ),求实数k的值;

  练:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )

  思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

  考点3平面向量数量积的坐标运算

  例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

  则的值为 ; 的最大值为 .

  【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

  练:(20xx,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )

  【思考】两非零向量 ⊥ 的充要条件: =0 .

  考点4:平面向量模的坐标表示

  例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的最大值为( )

  A.6 B.7 C.8 D.9

  练:(20xx,上海,12)

  在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

《平面向量》说课稿6

  1、教材与学情分析

  “平面向量的应用”这节教材在二期课改课本第10章最后一节10.6,属于拓展内容。教材选取5个例题说明向量作为工具在数学、物理中的广泛应用性,其中例1和例2说明向量在平面几何中的应用,例3(柯西不等式的证明)说明向量在代数中的应用,例4和例5说明向量在力学中的应用。已学完“力学”的高二学生对向量在力学中的应用并不陌生,联想向量相等、平行向量的关系、垂直向量的关系等解决平面几何问题让学生感到也较自然,因为这是形——形的转化、很直观,而且涉及的向量知识也较容易,学生掌握得也好。而联想向量模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的平方小于或等于模的平方的积”、将“向量加法的多边形法则”转化为“有关坐标的等式”等解决函数最值、不等式和等式证明、三角求值等问题让学生感到比较困难,其原因之一是以上的知识掌握和理解有一定的难度,二是联想构造“数——形——数”转化的要求高、综合性强、较抽象,三是教学中能力培养不到位,因此在“平面向量在代数中的应用”的教学中能力培养是关键。

  本课是在学生已经学习“向量在平面几何中的应用”基础上,学习“向量在代数中的应用”。围绕以上向量的概念和运算性质的应用精心问题,引导学生观察、分析表达式的特征,联想向量知识,通过构造向量将已知条件或结论转化为向量表达、进行向量运算或向量性质的应用将所得的结果转化为所求结论的过程,学生会对数学思想方法中的“数形结合”、“转化”等有更深刻的理解;通过变式教学、特殊与一般的研究,感受数学发现的乐趣;通过错误辨析、一题多解、一题多变的探究,夯实学生基础,达到深刻理解向量的概念,熟练掌握向量的运

  算和性质的目的,因而本节课的教学有助于学生能力的提高。

  本课的教学对象为松江二中高二学生,他们已较好地理解了向量的概念,比较熟练地掌握向量的运算和性质,并能进行简单应用,有“数形结合”的应用意识,善于思考和发现,有较高的认知水平。因此,有可能也有必要引导他们进行问题探究。关于“数形结合”的思想应用,来源于两个方面,一是已体会到向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,二是通过基本函数的图象与性质的学习,体会到应用“数形结合”研究函数性质、解决函数的零点、方程和不等式的解等问题。正如美国数学家斯蒂恩说:“如果一个特定的问题可以转化为一个图形,那么思想就整体地把握了问题,并能创造性思索问题的解法”。所以本节课以“向量在代数中的应用”为载体,进一步让学生体验“数形结合”、“转化”的思想应用为目标,培养学生的探究精神为归宿,促进学生思维能力的提高。

  2、教学目标

  2.1学生通过问题探究,深刻理解向量的概念,熟练掌握向量的运算和性质,并能着意联想恰当应用,解决有关代数问题;

  2.2学生通过一题多解、一题多变的研究,揭示向量在代数问题中的应用本质,体验数形结合思想及特殊与一般关系的应用,感受数学发现的乐趣,培养学生的创新意识。

  3、教学重点、难点、注意点

  本课重点是加深向量概念、向量的运算和性质的理解,并应用数形结合与转化思想解决有关代数问题;难点是如何数形转化和有关向量模的不等式等号成立的本质理解;注意点要求学生规范表达数形结合解题的步骤。

  重点突破:以问题为出发点,观察、分析、展开联想,实践探索,展示学生在讨论、回答过程中的思维活动,体会问题本质。难点突破:复习回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,通过问题衔接设计,铺垫暗示,一题多解、一题多变、错题辨析、几何画板的应用等达到突破难点目的。

  4、教学方法与教学手段

  4.1充分体现“以学生为主体,教师为主导”的原则

  注重问题设计,体现教师的导向功能,展示学生是展开联想的主体;

  重视实践探索,体现教师的导律功能,展示学生是揭示规律的主体

  应用媒体实验,体现教师的导标功能,展示学生是体验演示的主体

  4.2采取教师指导下的学生实践、探索的模式,把问题作为教学的出发点,指导尝试,总结反思。

  4.3 powerpoint、几何画板、多媒体系统

  5、课堂设计

  5.1新课引入

  (1)用PPT在屏幕上显示华罗庚的相片和华罗庚关于“数形结合”的至理名言“数缺形时少直观形离数时难入微”的话,让学生体验数形结合是数学中非常重要的思想和解决问题的常用策略,以数学家的语言激发同学进一步学好数学的.愿望;

  (2)向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,引导学生回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,期望能进一步说出有关的不等式和等式,如模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的平方小于或等于模的平方的积”、将“向量加法的多边形法则”转化为“有关坐标的等式”……

  (3)提出课题,在学习“向量在平面几何中的应用”基础上,学习“向量在代数中的应用”。

  5.2问题探究

  出示问题1。设a、b为不相等的实数,要求学生自主探索、相互讨论。

  预计:学生思路分下列三种类型:

  (1)有根号想到两次平方分析;

  (2)由根号内的现性特征,联想向量的模概念,构造向量,将结论转化为向量表达式,从而揭示“两向量和与差的模与向量模的和与差的不等关系”本质;

  (3)由根号内的现性特征,联想两点间距离公式,构造点坐标,将结论转化为平面上三点间距离的不等关系,从而揭示“两线段长度之和(差)大于或等于(小于或等于)第三线段的长”本质。

  分析:学生讨论三种方法的异同点,期望说出(1)是处理绝对值和根号的一般代数方法;而(2)(3)都是应用数形转化解决,体现本问题的特殊性,且强调(2)(3)两种方法解题原理相同……

  总结用向量解决代数问题的步骤:

  (1)构造向量,将已知条件或结论转化为向量表达式(数————形);

  (2)进行向量运算或向量性质的应用;

  (3)将所得的结果转化为所求的结论(形————数)。

  老师板书示范后,引导学生讨论,条件不变的前提下,由于构造向量或向量性质应用的差异,会得到不同的结论,期望同学一题多变……

  注意:“两向量和与差的模与向量模的和与差的不等关系”等号成立的条件,为下面突破难点作好铺垫。

  练一练

  求函数的最小值。

  由学生的错误答案13,引导学生寻找错误原因,并通过几何画板演示最小值取得的条件。强调最值的验证,揭示数学问题的实质,突破难点。

  引导:当看到

  出示问题2,即课本P50例3,让学生讨论总结“数量积的平方小于或等于模的平方的积”的应用,就证明了柯西不等式,此时预计学生比较活跃,课堂进入高潮……

  变式

  并指出等号成立的充要条件。

  预计:许多学生已观察出仍然是“数量积的平方小于或等于模的平方的积”的应用,揭示数学本质本质,体会柯西不等式所反映实数关系的奇妙性,感受一般与特殊关系。

  注意:“数量积的平方小于或等于模的平方的积”中等号成立的条件,为下面练习铺垫,。

  练一练

  预计:学生使用计算器,很快发现值为0……

  教师因势利导:你能不用计数器解决吗?观察角构成的等差数列的代数特征,公差为72,项数为5,如果构造五个单位向量且顺次连接,那么将会得到什么图形?学生动手实验画图、几何画板演示,学生观察、体验。

  °

  预计:学生回答正五边形,并很快解释值为0的理由,将五个单位向量的起点放在原点处,终点连接,也构成正五边形,原点为其中心,由力学知识所知,五个单位向量的和为零向量。

  教师给予表扬,强调同学有很好的直觉思维,因为一个真理的发现很重要,而证明只是一个时间问题。正如大数学家、物理学家牛顿有句名言:“没有大胆的猜想,就做不出伟大的发现。”并鼓励他完成逻辑证明。

  教师点拨:既然构造五个单位向量能组成正五边形,那么对于多边形有怎样的向量运算性质呢?

  学生:此时五个单位向量的和为零向量的结论有了依据,学生兴奋不已,而且得到了一个“副产品”,这五个角的正弦和也为0。

  由此引导学生自我编题,体验一类三角求值的本质特点,从而进行一般研究。

  推广:

  5、3课堂总结,

  (1)深化理解向量概念,熟练掌握向量的运算和性质。掌握平面向量在代数中应用的解题步骤。

  (2)善于抽象概括,从而做到触类旁通;研究问题的数学特征(代数意义、几何意义),善于联想,使数量关系与几何形式有机结合。

  (3)通过问题探究,应注重逻辑思维和直觉思维的有机渗透,因为直觉思维是创造性思维活动的一种表现。

  5、4注意

  向量是解决数学问题的一个工具,当然如果不用向量,也可以解决有关问题。

  但是如果由代数特征,联想向量的概念和运算,巧设向量解题,那么可以简化问题解决,也可以加强数形结合思想的应用。

  5、5作业(为进一步巩固本课所学知识和方法,完成下列作业,因课上时间)

  5、6板书

  投影和黑板(在代数中应用向量的运算性质解题的工具和问题1的解题过程及问题2、3的简要过程一直留在黑板上,其它都通过投影显示。)

《平面向量》说课稿7

  说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

  下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

  一、 背景分析

  1、学习任务分析

  平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

  本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

  2、学生情况分析

  学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

  二、 教学目标设计

  《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:

  (1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

  (2)体会平面向量的数量积与向量投影的关系。

  (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

  从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

  综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

  1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

  2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

  并能运用性质和运算律进行相关的运算和判断;

  3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

  三、课堂结构设计

  本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

  即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

  四、 教学媒体设计

  和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

  1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

  2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

  平面向量数量积的物理背景及其含义

  一、 数量积的概念 二、数量积的性质 四、应用与提高

  1、 概念: 例1:

  2、 概念强调 (1)记法 例2:

  (2)“规定” 三、数量积的运算律 例3:

  3、几何意义:

  4、物理意义:

  五、 教学过程设计

  课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

  活动一:创设问题情景,激发学习兴趣

  正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的`线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

  问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

  问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

  期望学生回答:物理模型→概念→性质→运算律→应用

  问题3:如图所示,一物体在力F的作用下产生位移S,

  (1)力F所做的功W= 。

  (2)请同学们分析这个公式的特点:

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

  问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

  问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

  活动二:探究数量积的概念

  1、概念的抽象

  在分析“功”的计算公式的基础上提出问题4

  问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

  学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

  2、概念的明晰

  已知两个非零向量

  与

  ,它们的夹角为

  ,我们把数量 ︱

  ︱·︱

  ︱cos

  叫做

  与

  的数量积(或内积),记作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5

  问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

  角

  的范围0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符号

  通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

  3、探究数量积的几何意义

  这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

  如图,我们把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,记做:OB1=│

  │cos

  问题6:数量积的几何意义是什么?

  这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

  4、研究数量积的物理意义

  数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

  问题7:

  (1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。

  (2)尝试练习:一物体质量是10千克,分别做以下运动:

  ①、在水平面上位移为10米;

  ②、竖直下降10米;

  ③、竖直向上提升10米;

  ④、沿倾角为30度的斜面向上运动10米;

  分别求重力做的功。

  活动三:探究数量积的运算性质

  1、性质的发现

  教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

  (1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?

  (2)比较︱

  ·

  ︱与︱

  ︱×︱

  ︱的大小,你有什么结论?

  在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

  2、明晰数量积的性质

  3、性质的证明

  这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

  活动四:探究数量积的运算律

  1、运算律的发现

  关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

  问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

  通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

  学生可能会提出以下猜测: ①

  ·

  =

  ·

  ②(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜测①的正确性是显而易见的。

  关于猜测②的正确性,我提示学生思考下面的问题:

  猜测②的左右两边的结果各是什么?它们一定相等吗?

  学生通过讨论不难发现,猜测②是不正确的。

  这时教师在肯定猜测③的基础上明晰数量积的运算律:

  2、明晰数量积的运算律

  3、证明运算律

  学生独立证明运算律(2)

  我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

  当λ<0时,向量

  与λ

  ,

  与λ

  的方向 的关系如何?此时,向量λ

  与

  及

  与λ

  的夹角与向量

  与

  的夹角相等吗?

  师生共同证明运算律(3)

  运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

  在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

  活动五:应用与提高

  例1、(师生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  与

  的夹角为60°,求

  (

  +2

  )·(

  -3

  ),并思考此运算过程类似于哪种运算?

  例2、(学生独立完成)对任意向量

  ,b是否有以下结论:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(师生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  与

  不共线,k为何值时,向量

  +k

  与

  -k

  互相垂直?并思考:通过本题你有什么收获?

  本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

  为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

  1、 下列两个命题正确吗?为什么?

  ①、若

  ≠0,则对任一非零向量

  ,有

  ·

  ≠0.

  ②、若

  ≠0,

  ·

  =

  ·

  ,则

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,当

  ·

  <0或

  ·

  =0时,试判断△ABC的形状。

  安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

  通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

  活动六:小结提升与作业布置

  1、本节课我们学习的主要内容是什么?

  2、平面向量数量积的两个基本应用是什么?

  3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

  4、类比向量的线性运算,我们还应该怎样研究数量积?

  通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

  一节做好铺垫,继续激发学生的求知欲。

  布置作业:

  1、课本P121习题2.4A组1、2、3。

  2、拓展与提高:

  已知

  与

  都是非零向量,且

  +3

  与7

  -5

  垂直,

  -4

  与 7

  -2

  垂直求

  与

  的夹角。

  在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

  六、教学评价设计

  评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

  1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

  性的评价。

  2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

  3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

  4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

《平面向量》说课稿8

  【研究点】

  在课堂教学中引导学生开展数学交流,培养学生的数学交流能力。

  在数学课堂教学和课外辅导中,常常会有这样的情形:学生觉得上课听得懂,但一下课做作业就不知如何下笔;学生对于自己所掌握的知识说不出,对于自己不懂的地方提不出问题;或者是对于作业学生会做,但讲不清为什么这样做,而职中学生数学成绩差的主要原因就在于学生不会进行交流合作,这表明我们的课堂教学中缺乏数学交流,我们的学生数学交流的能力很低。

  所谓数学交流能力就是学生将自己在学习基础知识、掌握基本技能过程中“想到的”“说”给别人“听”,对数学问题发表看法,讲清道理,相互促进,相互提高的能力。数学交流是多向的,有师生间的交流,学生间的交流,组际间的交流,学生与教材间的交流,甚至还有学生与社会间的交流等。听、说、读、写是交流的主要方式。

  对于本堂课,我主要从教材分析、教法分析、学法指导、教学过程等进行阐述。

  【教材分析】

  1、地位作用:

  本节内容是第十五章《空间向量和立体几何Ⅱ》第三节内容,学生在一年级已学了平面向量和立体几何Ⅰ的基础内容,此章是综合前面两章的提高部分内容。这节内容要求学生能学会应用空间向量解决平面直线、空间直线中的问题。本小节的内容分两个层次,第一层次是用空间直线的方向向量、平面的法向量判定空间直线、平面间的位置关系;第二个层次是能利用直线的方向向量和平面的法向量求空间直线与直线、平面与平面及直线与平面间的夹角。

  2、学情分析:学前班的学生相对基础要好一点,学生的学习主动性较好,有一定的学习兴趣。所以在教学中可以尝试让学生进行数学交流,学生的合作学习能力还可以。但由于教材的编排原因,前后知识的协接不是很好,要求学生对第一、二册基础掌握扎实,这一点学生做得不是很好。我是今年才接这个班,并且在开学初开始让学生尝试合作交流的模式,所以说还是属于刚开始阶段。还有许多的不成熟的地方。

  根据教材、考试大纲对学生的要求,结合学生现有的知识水平和存在的问题,我将本节课的教学目标定为:

  3、教学目标:

  知识目标:掌握空间直线的方向向量和平面的法向量的概念

  能力目标:能利用直线的方向向量和平面的法向量判定空间直线、平面间的位置关系。

  情感目标:引导学生开展数学交流、鼓励学生反思自己的认识和解决问题的方法。

  3、重点与难点:利用直线的方向向量和平面的法向量判定平面与平面、直线与平面的位置关系

  【教法设计】

  为了实现上述教学目标,结合教材特点,本课采用的主要教学方法有“学案导学法”、“合作交流法”等。通过交流已学过的平面向量和立体几何中的相关知识,过渡到空间向量应用于立体几何,引导学生讨论两者之间的`关系,教学中,启发、诱导贯穿始终,充分调动学生的学习积极性,培养学生合作交流的能力。

  【学法指导】

  空间向量这一节课内容抽象,要求学生有一定的空间想象能力和分析推理能力,学生接受起来有一定的困难。因此,设计学案,让学生能主动预习、复习,参与问题的讨论、交流,积极探究,善于思考,协作学习,便于学生掌握知识,培养学生的合作交流能力。

  【教学过程】

  在课堂结构上,我根据学生的认知水平和知识的衔接关系,设计了四个主要的程序是:

  (1)预习交流

  (2)新授→形成概念、交流探究、巩固训练

  (3)课堂练习、小结→强化重点,提高认识

  (4)布置作业→复习巩固等四个层次的学法。

  1、预习交流

  学生将课前讨论完成的学案进行交流,教师引导学生评析纠错,查漏补缺。设计目的:通过课前的练习可以进一步明确学生现在掌握知识、应用知识的能力及存在的知识缺陷和解题思路的清晰与否,为本堂课后面要实施的教学环节抛砖引玉。

  2、新授

  先讲解空间直线的方向向量和平面的法向量的概念,并演示说明。同时出示空间直线与直线、直线与平面、平面与平面的位置关系图示(1)~(9),引导学生交流讨论用平行向量、方向向量来判定线、面等的位置关系。对于线面、面面相交的问题这个难点问题,师生共同探讨,推导其关系。然后出示例题,学生交流探讨,进行巩固练习。

  设计目的:让学生在合作交流中学习新知识,充分体现学生的主体地位,激发学生学习的兴趣。

  3、归纳小结、反馈练习

  用向量判断线、面间的位置关系,前提要找出对应的平面向量或法向量,然后利用向量之间的关系证明线面间的关系或进行夹角的计算。

  由于本堂课的内容比较抽象,学生进行应用有一定的困难,故练习的设置降低难度,依照例题进行巩固练习,提高放在下一课时进行。

  4、布置作业

  书本第103页第2小题,第104页第1题

  【板书设计】

  根据需要把黑板设计成三大块,在左边设置投影,中间偏左书写本节课的重要知识点。右边进行例题重点步骤板演和学生练习,结合投影,使学生根据板书达到规范格式,巩固知识的目的。

《平面向量》说课稿9

  各位评委,老师们:大家好!

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是平面向量的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)数学第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一教材分析

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的.顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段---提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段---探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

《平面向量》说课稿10

  各位评委、各位老师,大家好。今天,我说课的内容是:人教A版必修四第二章第三节《平面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。

  一、教材分析:

  1、教材的地位和作用:

  向量是沟通代数、几何与三角函数x的一种工具,有着极其丰富的实际背景。本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.

  2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。

  (1)知识与技能

  了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交 分解及其坐标表示。

  (2)过程与方法

  通过对平面向量基本定理的探究,以及平面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。

  (3)情感、态度与价值观

  引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。

  3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———平面向量基本定理的探究,以及平面向量的坐标表示

  教学难点:对平面向量基本定理的理解及其应用

  二、教法分析:

  针对本节课的教学目标和学生的实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。

  三、学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。让学生借助学案,在教师创设的.情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。

  四、重点说明本节课的教学过程:本节课共设计了五个环节:发放学案,依案自学;分组探究 ,信息反馈;精讲点拨,解难释疑 ;归纳总结,建构网络 ;当堂达标,迁移拓展 。

  1、发放学案,依案自学

  学习并非学生对教师授予知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构。根据这一理念,我在课前下发“导学学案”,让学生以学案为依据,以学习目标、学习重点难点为主攻方向,主动查阅教材、工具书,思考问题,分析解决问题,在尝试中获取知识,发展能力。这是我编制学案的纲要。

  经过学生的自学,在课堂上,我采用提问的方式,让学生对知识点进行简单概述,并阐述自己的学习方法和体会。其中,向量的夹角概念,学生基本上能独立解决,我会引导学生归纳出求两个向量夹角的要点:(1)两个向量要共起点,(2)两个向量的正方向所成的角。然后,通过学案上的练习题目1,检查学生的掌握程度。对本节课的重点和难点:平面向量基本定理的探究及坐标表示,我准备通过分组探究,精讲点拨,归纳总结三个方面来突破。

  2、分组探究 ,信息反馈

  这一环节,我先把学生分组,让其对定理及坐标表示,进行讨论、探究、交流,先组内互相启发,消化个体疑点,然后以组为单位提出疑问。如果某个问题,某个组已经解决,其它组仍是疑点,我让已解决问题的小组做一次"教师",面向全体学生讲解,教师可以适当补充点拨,这也可以说是讨论的继续。对于难度较大的倾向性问题,我准备

  3、精讲点拨,解难释疑

  本节课的目的是要帮助学生建立向量的坐标.要求先运用已有的知识去研究平面向量的基本定理,然后以这个定理为基础建立向量的坐标。对于定理的探究,有些学生只是从形式上加以记忆,缺乏对问题本质的理解,为了帮助学生改进学习方法,提升数学能力,我先提问学生如何把平面上任一向量分解成两个不共线向量的线性组合,学生会通过作图来说明这一问题。我们要强调的是,这里的向量是自由向量,其起点是可以移动的,将三个向量的起点放在一起可便于研究问题.类比物理上力的分解,利用平行四边形法则,我们把向量 分解成 ,根据向量共线定理 ,存在一对实数λ1,λ2 ,使 , 从而 =λ1 +λ2 ,教师再引导学生自主归纳,从而得出平面向量基本定理。为了加深对定理的理解,我设计了如下的几个问题,学生思考回答后,教师再利用几何画板作进一步的演示。当 , 共线时,与它们不共线的向量 不能用 , 当线性表示,所以共线向量不能作为基底;当不共线向量 , ,任意 确定后,λ1,λ2是唯一确定的;我们改变向量 的大小和方向,发现 仍然可以用 , 线性表示,说明了任意向量 能分解成两个不共线向量的线性组合;改变基底 , 的大小和方向,保持向量 不变,刚才的结论仍然成立,说明了同一个向量 能用不同的基底线性表示,由此说明基底不唯一,具有可选择性。

  对于向量的坐标表示,我先用火箭速度的分解引入正交分解,然后提问:根据平面向量基本定理,基底是可以选择的,为了研究的方便,我们应该选取什么样的基底呢?引导学生由一般到特殊,选择平面直角坐标系中 轴和 轴上,且方向与轴的正方向同向的单位向量 做基底,那么根据刚刚得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在数对(x,y)与向量a一一对应,从而得到平面向量的坐标表示。需要说明的两点是:第一,向量的坐标表示与其分解形式是等价的,可以互相转化。第二点说明:求向量坐标的关键是构造平行四边形,确定实数x、y。学生在理解起点不在坐标原点的向量的坐标表示时会出现障碍,其原因是在直角坐标系中点和点的坐标是一一对应的,到了向量时,向量的坐标只是和从原点出发的向量一一对应,必须使学生在这种特定的场合中明白:要求点 的坐标就是要求向量 的坐标.只要结合向量相等的条件学生应该容易克服这一难点。随后,通过学案上的练习2,让学生巩固所学知识。

  4、第四个环节,归纳总结,建构网络

  建构主义教学理论认为,知识是主体在与情境的交互作用中、在解决问题的过程中能动地构建起来的,学生应在教师指导下自主归纳出新旧知识点之间的内在联系,构建知识网络,从而培养学生的分析能力和综合能力。为此,我设计了如下的问题:

  通过本节课的学习,你收获了什么?……

  在学生回答的过程中,我及时反馈,评价学生课堂表现,起导向作用。

  学生完成个人新知建构之后,为了帮助学生检验自己的学习过程,我设计了

  5、第五个环节,当堂达标,迁移拓展

  本部分检测题,紧扣目标,当堂训练,而为了尊重学生的个体差异,满足多样化学习的需要,我又分必做和选做两部分来布置题目,允许学生根据个人情况来完成。

  五、我说课的最后一部分是教学设计说明:

  1、贯彻了学生主体、教师主导的原则

  “学案导学”要求学生主动试一试,并给予学生充分自由思考的时间。学生在尝试中遇到问题就会主动地去自学课本和接受教师的指导。这样,学习就变成了学生自身的需要,使他们产生了“我要学”的愿望,在这种动机支配下学生就会依靠自己的力量积极主动地去学习。

  教师通过启发、激励,诱导学生全员、全过程参与教学过程,体现教师的主导作用。

  2、培养了自主探索,合作交流的能力

  新的课程理念,要求学生的学习不仅仅是在理解基础上掌握和记忆知识,还要学习探索和解决问题的方法和途径。

  本节课采用诱导式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学知识、形成数学能力,培养探索精神和团队意识。

  我相信,通过本节课的学习,学生获取的将不仅仅是知识,获取知识的手段、途径和方法,以及勇于探索、合作交流的能力,才是他们最大的收获。

《平面向量》说课稿11

尊敬的各位专家、评委:

  上午好!

  今天我说课的课题是人教A版必修4第二章第三节《平面向量的基本定理及其坐标表示》。

  我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  教材的地位和作用

  1、向量在数学中的地位

  向量在近代数学中重要和基本的数学概念,是沟通代数,几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。

  2、本节在全章的地位

  平面向量基本定理揭示了平面向量的基本关系和基本结构,足以进一步研究向量问题的基础,是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。

  3、平面向量基本定理具有十分广阔的应用空间

  平面向量基本定理蕴含一种十分重要的数学思想——转化思想。

  二、目标分析

  (一)、教学目标

  1、知识与技能目标

  了解平面向量基本定理的条件和结论,会用它来表示平面上的任意向量,为向量坐标化打下基础。

  2、过程与方法目标

  通过对平面向量基本定理的学习过程。让学生体验数学定理的产生,形成过程,体验定理所蕴含的数学思想方法。

  3、情感,态度和价值观目标

  通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题有力的工具之一。

  (二)、教学的重点和难点

  1、重点:对平面向量定理夫人探究

  2、难点:对平面向量基本定理的理解及运用

  三、教法、学法分析

  (一)、教法

  在教法上采取三主教学法:教师主导,学生主体,思维主线

  1、教学手段

  使用多媒体辅助教学,使书本的图形动起来,加强了教学的主观性

  2、学情分析

  前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课做了充分的准备。

  (二)学法

  教师通过启发,激励来体现教师的主导作用,引导学生全员,全过程参与。

  四、教学过程分析

  (一)教学过程设计

  创设情境,提出问题

  数形几何,探究规律

  揭示内涵,理解定理

  例题练习,变式演练

  归纳小结,深化认知

  布置作业,巩固提高

  1、创设情境,提出问题

  如果e1,e2是同一平面内的两个不共线的向量,a是这一平面内的任意向量,那么a与e1,e2之间有什么关系呢?怎探求这种关系呢?

  2、数形几何,探究规律

  平面向量基本定理

  如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量,a,存在一对实数R1,R2使得a=R1e1+R2e2

  3、揭示内涵,理解定理

  (1)、为什么基底e1,e2必须不共线?

  (2)、基底e1,e2是否可以选择?

  (3)、定理中R1,R2的值是否唯一?

  (4)、定理的价值何在?

  4、例题练习,变式演练

  如图4,在□ABCD中,AB=a,AD=b

  试用a,b分别表示AC,BD

  如图5,如果E,F分别是BC,DC的中点,试用a,b分别表示BF,DE

  如图6,如果O是AC,BD的交点,G是DO的中点,试用a,b表示AG

  5、小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

  (1)、课堂小结

  ①、向量的坐标表示

  a、对于向量a=(x,y)的理解

  a=xe1+ye2(e1,e2分别是x轴,y轴正方向上的单位向量);

  若向量a的起点是原点,则(x,y)就是其终点的坐标。

  b、向量AB的坐标

  一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标。即如果A(x1,y1),B(x2,y2),则有AB=(x2—x1,y2—y1)。

  c、注意要把点的坐标与向量的坐标区别开来。相等的向量坐标是相同的,单起点和终点的坐标却可以不同。

  ②、平面向量共线的坐标表示

  a、a=(x1,y1),b=(x2,y2),其中(b≠0),a//b的充要条件a=与x1y2—x2y1=0在本质上市相同的,只是形式上的差异。

  b、要记准公式坐标特点,不要用错公式。

  c、三点共线的判断方法

  判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判断。

  (2)、反思

  我设计了三个问题

  ①、通过本节课的学习,你学到了哪些知识?

  ②、通过本节课的学习,你最大的体验是什么?

  ③、通过本节课的.学习,你掌握了哪些技能?

  (二)、作业设计

  作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

  我设计了以下作业:

  必做题:课本97页第二题,98页第六题

  ——巩固作业的设计是保证了全体学生对平面向量基本定理的巩固应用。

  选做题:用向量法证明三角形的中位线平行于第三边切等于第三边的一半

  ——创新作业的设计,体现了向量的工具性,使得学生对于用向量的方法证明几何命题有了初步的体验。

  (三)、板书设计

  板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

《平面向量》说课稿12

  各位评委老师:

  大家好!我今天说课的课题是《平面向量的加法、减法和数乘向量》、

  下面我从教材分析、学情分析、教学目标及重难点等六个方面进行说明、

  一、教材分析:

  我选用的教材是由江苏教育出版社出版,马复教授主编的“江苏省职业学校文化课教材《数学》(基础模块·下册)”、

  《平面向量》具有数形双重性,不仅能方便地解决一些平面几何问题,而且能帮助我们找到解析几何中一些点的坐标之间的代数关系;平面向量的运算巧妙地把量的大小与方向结合到一起,为几何图形的角度计算提供了一个很好的代数工具;平面向量是《电工基础》中交流电电路分析和《工程力学》中力的分析、计算的主要工具、

  《平面向量》安排在第七章,前承三角函数,后启直线与圆的方程、第1节通过实例引入了向量的有关概念,为《平面向量的加法、减法和数乘向量》的学习奠定了基础、本节介绍了是平面向量的三种运算,为进一步学习向量知识提供了准备、

  二、学情分析:

  我班学生是中职电子专业一年级学生,他们已初步了解了矢量的合成;学习了向量的有关概念;运用到了数形结合的方法;通过一学期的共同努力,学生已具有一定的自主学习与合作学习相结合的意识;但他们动手能力不够强,数学表达和交流的能力欠缺、

  三、教学目标:

  结合教材和学情,我确定本节的教学目标为:

  (1)理解平面向量的加法、减法和数乘向量的相关运算,并理解其代数、几何意义,掌握各类运算的代数式运算的特点、

  (2)通过动手作图,进一步渗透数形结合的思想;通过学生探究,培养学生的合作意识、

  重点:向量加法两个运算法则,用代数式、三角形法则和平行四边形法则求和向量,把减法运算转化为加法运算,用运算律进行向量的数乘运算、

  难点:把向量的减法运算转化为加法运算,向量数乘的几何意义、

  四、教法学法:

  根据教材和学生的'具体学情,本节主要借助情境激趣、启发引导等形式组织教学,并借助探究、小组合作、练习等方法组织学生学习、

  五、教学过程:

  为达成本节目标,将本节内容分解成4个课时,五个任务、

  安排了新课导入、任务落实、思考交流等七个环节来实施教学、

  具体步骤如下:

  1、首先,复习向量的有关概念,温故而知新、再创设问题情境导入新课、

  【通过位移的变化引出向量的加法,初步体会向量相加的概念、】

  2、第2个环节是任务落实,目的是让学生通过反复练习,在“做中学,学中做”,从而突出了重点、突破了难点、

  任务1是“会用向量加法的三角形法则求和向量”

  板书向量加法的定义,并结合图形讲解向量加法的定义,从代数形式和几何形式两方面强调向量加法的三角形法则(首尾相接,自始至终)、

  【板书能突出重点;借助图形直观理解向量加法的三角形法则(首尾相接,自始至终),渗透数形结合的思想、】

  然后,通过试试看引出向量加法的交换律,让学生类比实数加法的运算律,迁移出向量加法的运算律,并结合图形讲解、

  【让学生初步体验向量加法的三角形法则(首尾相接,自始至终);借助图形,理解向量加法的运算律,培养学生观察、类比能力、】

  接着通过2组例题“用向量加法的三角形法则作不共线向量和共线向量的和向量”,进一步感知、应用向量加法的三角形法则、

  【学生通过动手操作,体验了“首尾相接,自始至终”,理解向量的加法运算;通过模仿练习,检测学习效果,让学生享受到成功的喜悦、】

  课堂上部分学生平移时没有注意“大小不变,方向不变”;作反向向量的和向量时出现了“搞不清和向量是哪一个”的现象,我在黑板上用不同颜色的粉笔标出向量,强调“首尾相接,自始至终”、

  任务2是“会用向量加法的平行四边形法则求和向量”

  通过拉伸弹簧的实验,迁移到向量加法的平行四边形法则,教师动手作图并让学生模仿,强调“加向量共起点,和向量是以它们作为邻边的平行四边形的共起点的对角线所在向量”,初步体会向量加法的平行四边形法则、

  然后,通过一组例题“用向量加法的平行四边形法则作不共线向量的和向量”,让学生通过动手操作,理解向量加法的平行四边形法则,培养学生动手能力、

  接着让学生解决教材上的思考交流、通过学生思考、交流,教师启发引导,得出平行四边形法则和三角形法则的区别和联系,比较得出用代数式求两个和向量的特点、

  任务3是“会用向量减法的三角形法则求差向量”

  通过相反向量和向量的加法运算引出向量的减法运算;板书向量减法的定义,并结合图形讲解,从代数形式和几何形式两方面强调向量减法的三角形法则(共起点,连终点,指向被减)、

  【借助图形直观理解向量减法的三角形法则(共起点,连终点,指向被减),渗透数形结合的思想、】

  然后,通过学生观察作业评讲中的图形和向量减法的几何图形,并类比实数的加减运算,迁移出向量的减法是向量加法的逆运算、这里,我要求学生解决教材上的思考交流、

  【借助图形直观感知,培养学生识图能力;理清向量加减运算的关系,培养学生类比和迁移能力、】

  例4是用向量减法的三角形法则作不共线向量的差向量,并让学生用向量加法验向量减法、

  【学生通过动手操作,体验了“共起点,连终点,指向被减”,提高了动手能力;借助向量加法验向量减法,一方面检查作图正确性,另一方面深化对向量加减法的理解、】

  通过模仿练习,检测学习效果,让学生享受到成功的喜悦、

  这样,对“把向量的减法运算转化为加法运算”这个难点进行了突破、

  例5是借助平行四边形,巩固向量减法的三角形法则,同时复习向量加法的平行四边形法则,提高学生识图能力、

  模仿练习是通过学生自评,互评和师评的方式完成,充分体现学生的主体作用和教学评价的多样化、

  任务4是“形成向量数乘的概念,会作数乘向量”

  通过质点运动问题,从加法的特例(即几个相同的向量相加)入手,师生共同归纳出向量数乘的概念,结合图形让学生直观理解数乘向量的大小和方向;并用试试看进一步辨析数乘向量的概念,加深学生对数乘向量的大小和方向的理解、

  然后,通过一组例题“在方格纸中作数乘向量”,进一步感知、应用向量数乘的概念、

  【学生通过动手操作,体验了数乘向量的大小和方向,提高了动手能力;对“数乘向量的几何意义”这个难点进行了突破、】

  课堂上不少学生在作“”时无处下手,小组交流时有学生提出,其实就是作两个向量的差向量;我当即肯定了他们,并提醒学生“共起点,连终点,指向被减”、

  任务5是“会用运算律进行向量数乘运算”

  借助填空的形式,师生共同探究出数乘向量满足的运算律、

  【体现了从特殊到一般的数学思想、】

  接着,通过一组例题让学生在“做中学,学中做”,会用运算律进行向量数乘运算、

  课堂上不少学生出现了“解:=”和向量的书写错误,我用实物投影反应在屏幕上,让学生纠错,进一步树立解题规范的思想、

  3、思考交流:目的是【通过学生小组合作,深化对向量共线以及向量数乘的大小和方向的理解,培养学生数学交流和表达的能力、】

  4、问题解决:【借助平行四边形,巩固向量加法、减法和数乘运算,培养学生识图和综合应用知识的能力、】

  5、课堂检测:目的是【检测本节重点内容的掌握情况,以便查漏补缺、】

  6、通过师生共同小结,构建完整的知识体系,培养学生归纳能力、

  7、作业布置:【巩固所学内容,并对所学内容的检测与反馈、】

  这是我的板书设计:

  六、教学反思:

  用口诀让学生理解向量的加减运算法则;任务1中让学生观察图形发现向量加法满足的运算律,与课堂检测前后呼应;任务3中设计巧妙,突破了“把向量的减法运算转化为加法运算”这个重点和难点、

  存在问题:对合作探究的能力上把握不够准确,导致在导入环节所花时间与预设有所出入、

  改进的措施:在以后的教学中,还需在学情把握上多下功夫、

  我的说课到此结束,谢谢各位评委老师!

【《平面向量》说课稿】相关文章:

平面向量的概念说课稿07-12

《平面向量数量积》说课稿04-30

《平面向量的数量积》说课稿04-30

《平面向量》说课稿(通用12篇)10-15

平面向量的概念说课稿(精选6篇)04-15

《平面向量》优秀说课稿(通用3篇)01-28

高二数学《平面向量的坐标表示》说课稿05-24

高三数学说课稿-平面向量数量积03-04

高中数学《平面向量数量积》说课稿01-05

平面向量教学反思07-31