《有理数的乘法》说课稿(精选14篇)
作为一名优秀的教育工作者,总不可避免地需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。写说课稿需要注意哪些格式呢?以下是小编整理的《有理数的乘法》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
《有理数的乘法》说课稿 1
我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。
一、教材分析
1、教材的地位和作用
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
2、教材的重点和难点
本节课的重点是有理数的乘法法则。这是因为:
(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。
(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。
本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。
二、教学目标
1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。
三、教学方法
本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。
四、学法指导
通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的.学习品质。
五、教学程序设计
本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。
以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:
(一)创设情境、引入新课
教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。
(二)观察——猜想
这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。
意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。
(三)探究——验证
教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。
(四)比较——提炼
在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。
(五)分析法则、掌握实质
教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。
(六)应用——巩固:
例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。
(七)小结——反思这一环节我设计了三个问题:
1、本节课你学到了什么?
2、本节课你有何收获?
3、你还有什么疑问?
目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。
(八)作业——延展
为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。
《有理数的乘法》说课稿 2
尊敬的各位评委、老师、亲爱的同学们:
大家好,我是1号选手,今天我说课的内容是新课标人教版七年级上册第一章第四节的内容《有理数乘法》,我将从以下几个方面进行说课。
一、教材分析
(一)教材的地位与作用
有理数的乘法是在引入了负有理数以及学过有理数的加法之后学习的。它与有理数加法运算一样,是建立在小学算术的基础上。因此,有理数乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
(二)学情分析
1、学生在小学的学习中已经熟练掌握了两个正数之间、正数与零之间的乘法运算。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
3、在学习有理数加法法则的过程中,学生已经尝试了借助数轴来分析问题的方法。
根据课程标准对本节教学内容的要求和学生原有的知识经验及认知规律,确定如下教学目标:
(三)目标分析
1、知识与技能目标
掌握有理数乘法的意义和法则,能熟练运用有理数乘法法则进行乘法运算。
2、过程与方法目标
通过对实际问题的观察、分析、操作概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力。
3、情感态度与价值观
激发学生学习兴趣,培养学生化归及分类讨论思想和勇于探索的精神。
(四)教学重、难点分析
根据本节课的内容和学生的认知发展水平,确定本节课的重点是:掌握有理数的乘法法则,会进行有理数的乘法运算。难点是:有理数的乘法法则的探索和对法则的理解。
(五)教法和学法
《新课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用“引导——探究法”组织教学。同时鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
二、教学过程
基于上述思想,为了有效的突出重点,突破难点,实现知识的“再创造”,本节课的教学过程我设计了如下几个环节:
第一个环节:创设情境,提出问题。
对于引入课题,我采用回顾乘法的意义,要求学生把几个相同负数的连加,写成乘积的形式并口答,这时只引入异号两数相乘的情况,缺少两个负数相乘以及0与负数相乘这两种类型。接着提出问题:你能给出下列各式的结果吗?两个有理数相乘有几种情况?
回顾复习以前的相关知识,由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能够形成知识迁移,做好中学与小学知识的衔接,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到新的探索活动中就过来。
第二个环节:类比感知,归纳结论。
根据七年级学生形象思维能力强,而抽象思维能力还在形成的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:蜗牛问题,建立模型,探索规律,归纳法则这样四个层次,来逐步展开对课题的探究。这样可以更好的展示知识的形成过程;更好的突出重点,突破难点;可以减轻学生对法则的理解难度。
1、蜗牛问题
第一步,借助多媒体,出示“蜗牛问题”。用多媒体课件演示一只蜗牛在直线L上,沿着一定的方向,以每分钟2cm的速度爬行,要求学生根据多媒体演示,直观感受蜗牛最后所在的位置,然后回答4个问题,如果蜗牛一直向右爬行,3分钟后它在什么位置?蜗牛一直向左爬行,3分钟后它在什么位置?蜗牛一直向右爬行,3分钟前它在什么位置?蜗牛一直向左爬行,3分钟前它在什么位置?通过演示,学生很容易就能看出各种情况下蜗牛最后所在的位置,因此我打算指名学生回答,并对回答正确的学生给予一定评价。本环节动画演示,激发学生的学习兴趣和探究欲望,但是学生的这种认识是直观的,感性的,需要一定的理性思维作支撑,因此,我进入下一个环节————建立模型。
2、建立模型在本环节中,我给与学生充分的合作交流、自主探索的'时间和空间。通过创设情境、设置问题并用课件向学生演示蜗牛在直线上的运动过程,激发学生的学习兴趣。而且设置了四个问题:第一个问题,可以看成是与以前学过的乘法一样,学生容易理解。第二个问题中,结合有理数加法时的讲法,向右为正,向左为负,很容易得出负数与正数相乘结果。第三个问题是关键,在这个问题中,对于时间规定了现在前为负,有了这个规定,就可以得出正数与负数相乘的结果。此难点一但突破,第四个算式学生通过类比,也就迎刃而解了。
这样设计符合七年级学生的心理特点,易引起学生的学习兴趣。在此教学活动中我以学生的发展为本,让学生经历探索的过程,培养学生把实际问题抽象成数学问题的能力和自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法算式的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。接着我引导学生进入第三步:探索规律。
3、探索规律
通过对建立模型中4个问题的解答,学生对有理数乘法有了一定的认识,接着让学生根据自己对有理数乘法的思考,填空:让学生清楚同号相乘,积的情况以及异号相乘,积的情况,并且明确乘积的绝对值等于各乘数绝对值的积。
在上面的问题中只涉及到同号两数相乘与异号两数相乘,于是我又设置了想一想。新课程标准指出:“要让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。”启发学生探索有理数中的特殊数“0”与其他数相乘的规律,以此引导学生运用数学模型解决实际问题、通过前面问题的解决,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我进入第4个环节:法则归纳。让学生对有理数乘法法则进行归纳,以填空形式引导学生对照实例自主完成。进一步引导学生观察积的符号的特点,师生共同归纳出有理数的乘法法则。
4、归纳法则
你能概括出有理数的乘法法则吗?归纳:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。(多强调)
由于学生刚接触负数,对负数的意义理解不深,计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及想一想,让学生能准确的运用法则进行有理数的乘法运算,并清楚运算时的几个步骤、然后引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。通过这些层层设置的问题,引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力、在探究归纳的过程中,也培养学生类比和分类讨论的思想,以及从特殊到一般的思想,并渗透数学建模的思想方法。
第三个环节:知识运用,加深理解。
1、运用法则进行计算
在知识运用,加深理解这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数、
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,每登高1km的气温变化量为—6℃,攀登3km后,气温有什么变化,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,让学生体验到数学来源于生活又服务于生活的数学理念,培养了学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高兴了学生学习兴趣,培养了学生严谨的数学思维习惯。
为了充分挖掘了学生的思维潜能,我设置了变式训练,拓展思维这一环节、第四个环节:变式训练,拓展思维。
通过变式训练题,进一步加深了学生对有理数乘法法则的理解与应用,使学生的学习巩固过程成为再深化、再创造的过程。第1题的6个计算是对法则进行巩固;第2题是对法则运用的巩固;第3个问题让学生给出乘积为—20的乘法运算的式子,很多学生会给出(—5)×4=—20或者4×(—5)= — 20等异号两数相乘的式子,但也有很多学生会给出三个或者三个以上数相乘的式子,此时,教师给予高度评价。这种开放性的试题,让不同学生的思维潜能得到展示,体现了“不同的人在数学上得到不同的发展”的数学理论。
接着在思考题中让学生独立思考、分组讨论,完成填空,进一步培养学生的合作意识,使学生有效的理解本节课的难点。
最后利用摸牌游戏,激发学生的学习兴趣,抓住学生对竞争充满兴趣的心理特征,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。
第五个环节:总结收获,畅谈体会。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法,同时培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
第六个环节:布置作业,巩固深化。
新课程强调发展学生的数学交流能力,我用小日记给学生提供一种表达数学思想和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。必做题和选做题,体现分层教学,让“不同的人在数学得到不同的发展”,从而让学生巩固本节所学知识,并能解决实际问题。
本节课我的板书设计是这样的,这样板书一目了然,直观形象,达到了教学的目的。
三、教学反思
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
《有理数的乘法》说课稿 3
本节课选自上海市二期课改新教材数学六年级第二学期第五章:有理数5.6节有理数乘法的第一课时。
从以下四个方面:教材分析教材处理教法和学法教学过程向大家介绍我对本节课的理解。
教材分析
1.本节在教材中的地位和作用
有理数的减法和除法是通过转化为有理数的加法和乘法来进行计算的,所以加法和乘法的运算是有理数运算中的重点部分。本节内容是培养学生计算能力的一个重要环节,与今后学习的有理数的混合运算、实数运算、代数式的运算、解方程以及研究函数等内容密切相关。
有理数乘法分为2课时,第一课时着重研究有理数乘法的法则,使学生通过实际问题的探讨来接受乘法法则的合理性,让学生感知到数学知识来源于生活并应用于生活。同时培养了学生的分类研究意识和抽象概括的能力,也为后面学习的乘方和混合运算打下了好的基础。
2.教学目标
教学大纲中要求学生理解有理数的乘法法则,学会运用法则准确运算。同时结合二期课改的理念:培养学生的数学能力,确定如下的教学目标。
1)知识与技能目标:理解有理数乘法法则,会利用法则进行乘法运算。培养学生的运算能力
2)过程与方法目标:通过探索有理数乘法法则的过程,培养学生观察、归纳、概括能力。学习分析问题时分类研究、举例验证和抽象概括的方法。
3)情感态度与价值观:感受法则与生活的密切联系,理解有理数法则的合理性,激发学生对数学学习的兴趣、对生活实践的积极态度。
3.教学重点和难点
预备年级这一阶段的学生很难把握学习内容的主要特征,往往对法则的理解和运用有很大的困难,因此本节的重点和难点确定为:
教学重点:
理解和运用有理数的法则
教学难点:
有理数乘法中符号的法则
教材处理
本节结合课本中的行程问题的实例,配合多媒体的运用,把问题直观形象的展现在学生面前,通过直观的教学方式,让学生参与进来,通过学生的试验---观察---感性认识----理性认识的探究过程获取运算法则的知识,这一过程能使学生更加体会到数学贴近生活,理论来自于实践,在探究中能感受到“数”“形”结合的数学思想。
在法则的运用上利用课本上的练习达到熟练法则的目的,通过变式训练的配备达到提高学生能力的目的,在课堂中适当安排学生遍题互测的环节,更能调动学生学习的积极性,活跃课堂的氛围。
教法和学法
在教学过程中,要注重教师的导向作用和学生的主体作用,通过直观形象的教学方式吸引学生成为知识的发现者,为学生创设良好的动手、动脑的机会,为学生的自主探究、自主学习提供了一个好的环境,使其在学习知识的同时得到能力上的提高。
教学过程
教学环节教学设计设计意图引入问题:结合小学的'知识说出两个有理数乘法运算的情形?(正×正正×0 0×0正×负负×负)创设情景,引入新课,探索新知,培养学生思维的有序和全面性。
新课讲解
一、探索规律演示课件:通过行程问题的实例,用时间、速度、位置三者之间的关系来为上诉几种情况的有理数相乘的例子编排实际的情形。结合课件的演示师生共同分类探究列出几种算式。增强探索法则的直观性,促进学生对法则的感性认识,使学生感受到法则的合理而自然的接受,培养分类探究的意识和分析观察的能力。
二、概括归纳结合上面所得出的几种算式,观察每个式子中的两个因数及积的符号,学生通过观察、讨论得出有理数的乘法法则进一步感受有理数的乘法法则,提高学生的归纳总结能力,和运用数学语言的表达能力
三、例题讲解及变式训练通过例题的示范,规范书写的形式,熟练法则的运用。通过变式训练(结合自己的学生的实际情况设置)提高学生对法则的应用水平和运算能力。
四、自主小结
五、作业的安排板书设计5.6有理数的乘法
《有理数的乘法》说课稿 4
我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:
一、 教材分析:
1. 教学内容:
本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。
2. 教材地位和作用:
“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。
二、 教学目标:
1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。
知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。
2. 教学重难点:
本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。
三、 教法与学法:
1. 教法:
采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。
2. 学法:
事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。
四、 教学过程分析:
1. 导入过程:
利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。
2. 探索新知过程:
首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。
对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。
对于乘法中确定符号的问题,我引导学生通过对例题中式子的'观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。
3. 随堂练习:
在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。
4. 小结:
以提问的形式大致回顾本节所学的内容,主要问了三个问题:
(1) 这节课我们主要学习了些什么内容?
(2) 有理数的乘法法则是什么?
(3) 什么样的数互为倒数?
5. 作业:
作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。
6. 自我评价:
这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。
当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。
另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
《有理数的乘法》说课稿 5
一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7)。
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律。
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的'尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9)。
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题。
五、练习设计
计算:
(7)(—7.33)×42.07+(—2.07)(—7.33);
(8)(—53.02)(—69.3)+(—130.7)(—5.02);
六、布置作业:
《伴你学》有理数的乘法第二课时
九、板书设计:
(一)乘法交换律:a×b=b×a
乘法结合律:[a×b]×c与a×[b×c]
乘法分配律:(a+b)×c=a×c+b×c
(二)典例示范:
十、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律。为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力。因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动。只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
《有理数的乘法》说课稿 6
一、说教材:
(一)地位、作用:
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率
3、能运用乘法运算律简化运算,进一步提高学生的运算能力
(三)重点、难点:
运用乘法的运算律进行乘法运算
运用乘法法则和乘法运算律进行运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的`认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教材程序:
第一步
现在用我们所学的知识,大家解一下这几道题:
6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
乘法的交换律:两个数相乘,交换因式的位置,积不变。
ab=ba第二步
现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律
乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练
(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步
大家再试试这2道题
(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法
例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法
解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦
技能训练,先动手试一试,再讲解
70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5
三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12
四、布置作业P33练习
新课堂作业P20第8题
《有理数的乘法》说课稿 7
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
(第一课时)
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2)。
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的.新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米。
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米)。
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6。
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6。
此外,(-3)×0=0。
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中中特别注意“负负得正”和“异号得负”。
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。
因此,在进行有理数乘法时,需要时时强调:先定符号后定值。
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度。
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际。
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a。
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数。+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5)。同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的。
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。
《有理数的乘法》说课稿 8
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、 教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
教后反思事项:
(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:
(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高。
教后反思事项:
(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的'内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
《有理数的乘法》说课稿 9
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的`除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.(1)若ab=1,则a、b的关系为()
(2)下列说法中正确的个数为( )
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身
A 1个B 2个C 3个D 4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
《有理数的乘法》说课稿 10
学习目标:
1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。
2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。
3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。
学习重点、难点
重点:有理数乘法运算法则的推导及熟练运用。
难点:有理数乘法运算中积的符号的确定。
学习过程
一、预习导航
1、在小学我们已经接触了乘法,那什么叫乘法呢?
求几个的运算,叫乘法。
一个数同0相乘,得0。
2、请你列举几道小学学过的乘法算式。
二、合作探究、展示交流
1、问题1:森林里住着一只蜗牛,每天都要离开家去寻找食物,如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:(+2)(+3)=
问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的`()边()cm处。
可以列式为:
问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
2、观察这四个式子:
(+2)(+ 3)=+6(—2)(—3)=+6
(—2)(+3)=—6(+2)(—3)=—6
根据你对有理数乘法的思考,总结填空:
正数乘正数积为__数:负数乘负数积为__数:
负数乘正数积为__数:正数乘负数积为__数:
乘积的绝对值等于各乘数绝对值的_____。
思考:当一个因数为0时,积是多少?
3、试着总结一下有理数乘法法则吧:
两数相乘,同号得,异号得,并把绝对值。
任何数同0相乘,都得。
三、小试牛刀。
1、你能确定下列乘积的符号吗?
3 7积的符号为;(—3)7积的符号为;
3(—7)积的符号为;(—3)(—7)积的符号为。
2先阅读,再填空:
(—5)x(—3)。同号两数相乘
(—5)x(—3)=+()得正
5 x 3= 15把绝对值相乘
所以(—5)x(—3)= 15
填空:(—7)x 4____________________
(—7)x 4 = —()___________
7x 4 = 28_____________
所以(—7)x 4 = ____________
[例1]计算:
(1)(—5)(2)(—5)
(3)(—6)(—0.45)(4)(—7)0=
解:(1)(—5)(—6)=+(56)=+30=30
请同学们仿照上述步骤计算(2)(3)(4)。
(2)(—5)6 = =
(3)(—6)(—0.45)= =
(4)(—7)0=
让我们来总结求解步骤:
两个数相乘,应先确定积的,再确定积的。
四、巩固练习
1、小组口算比赛,看谁更棒
(1)3(—4)(2)2(—6)(3)(—6)2
(4)6(—2)(5)(—6)0(6)0(—6)
2、仔细计算。,注意积的符号和绝对值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)
(4)(—2)(—)(5)(—)(—)(6)(—)5
3、用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1千米,气温的变化量为—6℃,攀登3千米后,气温有什么变化?
五、一分钟过关检测
1、下列说法错误的是()
A、一个数同0相乘,仍得0
B、一个数同1相乘,仍得原数
C、如果两个数的乘积等于1,那么这两个数互为相反数
D、一个数同—1相乘,得原数的相反数
2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()
A、10 B、12 C、—20 D、不是以上的答案
3、计算下列各题:
(1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9 =;
(5)(—6)(—5)=;(6)(—5)(—6)=
六、体会联想:
1、有理数的乘法的计算步骤分哪两步?
2、有理数的乘法法则是什么?
《有理数的乘法》说课稿 11
学习目标:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。
3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。
学习重点:
有理数乘法
学习难点:
法则推导
教学方法:
引导、探究、归纳与练习相结合
教学过程
一、学前准备
计算:
(1)(一2)十(一2)
(2)(一2)十(一2)十(一2)
(3)(一2)十(一2)十(一2)十(一2)
(4)(一2)十(一2)十(一2)十(一2)十(一2)
猜想下列各式的值:
(一2)×2(一2)×3
(一2)×4(一2)×5
二、探究新知
1、自学有理数乘法中不同的形式,完成教科书中29~30页的.填空。
2、观察以上各式,结合对问题的研究,请同学们回答:
(1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,
(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。
提出问题:一个数和零相乘如何解释呢?
《1.4.1有理数的乘法》同步练习含解析
1、若有理数a,b满足a+b<0,ab<0,则()
A、a,b都是正数
B、a,b都是负数
C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值
D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值
5、若a+b<0,ab<0,则()
A、a>0,b>0
B、a<0,b<0
C、a,b两数一正一负,且正数的绝对值大于负数的绝对值
D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0
《1.4.1.2有理数的乘法运算律》课时练习含答案
2、大于—3且小于4的所有整数的积为()
A、—12 B、12 C、0 D、—144
2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,这个运算运用了()
A、加法结合律
B、乘法结合律
C、分配律
D、分配律的逆用
3、下列运算过程有错误的个数是()
①×2=3—4×2
②—4×(—7)×(—125)=—(4×125×7)
③9×15=×15=150—
④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50
A、1 B、2 C、3 D、4
4、绝对值不大于2 015的所有整数的积是。
5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。
6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。
7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。
《有理数的乘法》说课稿 12
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的'一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
(1)(2)
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
《有理数的乘法》说课稿 13
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的.方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
《有理数的乘法》说课稿 14
目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:
1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:
一、创设情景,导入新
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的.马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号;
(2)把绝对值相乘。
五、作业:P39习题1.5 A组 1、2
【《有理数的乘法》说课稿】相关文章:
有理数乘法说课稿11-21
有理数的乘法说课稿07-17
《有理数的乘法》说课稿11-10
《有理数乘法》说课稿(精选6篇)09-30
有理数的乘法教案06-20
有理数乘法的教学反思03-07
有理数的乘法教学反思09-04
有理数的乘法教案范文08-25
有理数的乘法教学反思09-04