圆锥的体积应用的说课稿范文
作为一位不辞辛劳的人民教师,往往需要进行说课稿编写工作,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写呢?下面是小编为大家收集的圆锥的体积应用的说课稿范文,仅供参考,希望能够帮助到大家。
圆锥的体积应用的说课稿范文1
一、说教材
1、教材分析
《圆锥的体积》教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装水的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。
2、学情分析
六年级的学生具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。
3、教学目标
知识与技能目标:引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,培养学生的观察,猜测、操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握公式,能正确运用公式解决实际问题
教学难点:圆锥体积公式的推导过程
5、教具、学具准备
教具:一个圆柱、1个与圆柱等底、等高的圆锥、水;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺、沙子等
二、说教法
在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:
①、让学生测量比较自制圆柱、圆锥的高;
②、让学生用自制的等底等高、不等高等底圆柱与圆锥分别装沙实验入手。
通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:V= Sh,然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
三、说学法
以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。
新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。
针对本节,在学法上主要采取:
1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课的教学,我安排了5个教学程序:
1、激趣导入,设疑自探:
通过与学生关于买冰激凌的的对话,引导学生回忆圆柱体积的计算方法,提出圆锥的体积这一概念。
2、探索新知,解疑合探
小组合作,用自制等底等高、不等底等高的圆柱圆锥装沙子进行实验,从而得出等底等高的情况下,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一。推导出圆锥的体积公式V = S·h
3、运用公式,质疑再探
引导学生回到导入环节,运用总结出的公式计算圆锥形冰激凌的体积,解决买冰激凌的方案。然后出示圆锥形图片,给出直径和高,有学生自主解答,将知识进一步延伸。
4、课堂练习,拓展运用
由学生回顾整理本节课的主要内容,即圆锥的体积计算方法,同时引导学生加深对乘三分之一的记忆。
5、全课小结,布置作业
通过一些具有一定难度的练习题,使学生能够较好地运用圆柱与圆锥的关系,体会圆柱与圆锥之间只有在等底等高的情况下才有三倍的关系,合理布置本节课的作业,课下加深巩固。
五、说板书
板书内容力求醒目,字母公式使用彩色大字标示:
圆锥的体积
圆柱的体积=底面积×高
V = S·h圆锥的体积=圆柱的体积=底面积×高
圆锥的体积应用的说课稿范文2
一、说教材
本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下
学习目标:
知识与技能目标:
掌握圆锥的体积公式,能运用公式进行计算。
过程与方法目标:
在观察、讨论等活动中探索圆锥的体积公式。
情感态度价值观目标:
体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。
教学重点:
圆锥体积公式的运用。
教学难点:
掌握圆锥体积公式的推导过程。
突破点:
组织学生动手做实验,引导学生动脑、动手,推导出圆锥体积的计算公式。
二、说教法、学法
教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。
三、课前准备
要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。
四、教学过程:
1、情境导入,引出课题:(3分钟)
首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》
2、读讲结合,自主探究(15分钟)
此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的特征2。谁的体积更大?
3、圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?
问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh
4、运用新知,解决问题(10分钟)
多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?
=100.48(立方厘米)
答:这个铅锤的体积是100.48立方厘米。
你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:
改变题中的半径和高的数值2,把半径该为直径3,把半径改为高,从而起到进一步巩固公式的作用
多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)
煤堆的底面积:
煤堆的体积:
1.4 16.956÷5≈5(辆)
答:需要5辆车。
学生自主解决,同组交流解题的心得。
5、圆锥在生活中的应用(多媒体展示)(2分钟)
6、运用公式,体会新知(多媒体展示)(5分钟)
7、质疑问难,总结升华(3分钟)
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
8、布置作业(多媒体展示)(2分钟)
圆锥的体积应用的说课稿范文3
一、说教材
1、教材简析
首先说一说这节课的内容。圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。(播放课件)圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。(播放体积公式课件)
2、学情分析
通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。
3、教学目标
根据以上所述我制定了这节课的教学目标:
知识与技能目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
过程与方法目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
4、教学重难点
根据学生学情和教学目标,我确立了以下教学重难点。
教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
5、教具、学具准备
多媒体教学软件、空心圆柱、圆锥容器、装有水的水桶。
二、说教法
《数学课程标准》明确指出,教师应激发学生的学习积极性,给学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法、实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课堂上设计的实验,让学生动手操作,推导出圆锥的体积公式,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。
三、说学法
有句话说的非常好“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的'基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课我设计了以下六个教学程序:
1、复习旧知,做好铺垫。
利用复习圆柱、圆锥的认识和圆柱的体积公式的推导及其应用,为新知识的迁移做好铺垫。通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切,从而产生学习新知的欲望。
2、谈话激趣,导入新课。
很多同学都喜欢吃冰淇淋,你们看,冰淇淋蛋筒的形状是什么样的?你们有没有想过一个圆锥形蛋筒能装多少冰淇淋呢?(板书课题)怎样求它的体积?能不能把它转化成我们已经学过的图形的体积来求?转化成什么图形最合适?猜猜看?下面我们就来探讨这个问题。(通过一系列问题聊天,激发兴趣,活跃气氛引出课题)
3、实验操作,探究新知。
这个环节分三个步骤进行。
第一步:实验操作
学生通过刚才的谈话已经迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。
1、我准备出一个圆柱和一个圆锥容器,先让学生们自己观察两个物体的联系,引导他们说出等底等高。(此过程我会拿着两个容器到学生中去让他们不仅仅能看到还能摸一摸,从而更直观的感受等底等高。)
2、质疑生趣
我会抛出问题:同学们你们说如果把圆锥倒满水然后往圆柱里放,几次能把圆柱也放满水?(让学生根据自己的认知大胆猜测)
3、动手操作,实验出真知
带着疑问、猜测做实验。请两组学生进行操作,其他学生一起帮他们做记录。实验结果就是三次能装满。(播放课件演示实验过程)
4、反复质疑,实验解决
是不是所有的圆锥都是正好用三次就倒满这个圆柱呢?(强化对等底等高的理解,小组讨论各抒己见)这时拿一个小一点的圆锥容器继续做一次实验。实验证明只有等底等高的圆锥装满水往圆柱里倒需要三次。
第二步:推导公式
1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流。最终达成共识圆柱的体积是等底等高圆锥体积的3倍,即圆锥体积是等底等高圆柱体积的。这时我利用多媒体演示圆柱容器里的水体积的分解,再次肯定学生自己的观点的准确性。
2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:(出示课件)V锥=1/3 SH本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。
4、尝试练习,巩固提高。
以上两道题,指名学生板书解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。
5、拓展深化,综合运用
工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。
练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生的解题能力和技巧,运用所学知识解决实际问题的能力。
6、评价反思,自我提升
课末,我通过聊天形式引导学生通过反思、评价,梳理本课知识点,形成系统的知识结构,进一步巩固本课教学内容。以下就是我进行的话题。
①这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。
②对自己和别人你有什么话要说?让学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内在动力。
③布置作业:练习四的有关练习。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。
五、板书设计
根据本课重难点和学生认知特点,我设计了简洁明了而又形象直观的板书。这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,形象直观。
六、教学反思
1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活。这就需要我们在备课时不局限于教材,要结合生活实际去备课。
2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。
3.学生课后反馈上来的问题是计算问题很大,公式会用但是计算出现问题了,以后要多锻炼学生的计算能力。
(强两点我简单的概括了这节课我的理论支撑和设计构想,第三点是课后学生反映出来的问题。)本节课我的设计体现了数学核心素养中的数感、空间观念几何直观、数据分析、运算能力及推理能力等几方面。初步探究中,效果还需有待观察。
圆锥的体积应用的说课稿范文4
一、教学内容
九年义务教育六年制小学教科书《数学》(第一版)六年级第十二册第二单元。
二、教材分析
1、内容分析:这是本单元实验探究性较强的知识点,通过学生合作探究,理解并掌握圆锥体积的计算方法,且能加以运用。
2、教学重点:正确运用公式计算圆锥的体积,学会解决与计算圆锥形物体有关的实际问题。
3、教学难点:理解圆锥体积公式的推导。
三、教学目标
1、知识教学点:让学生通过观察、亲自动手做对比实验、分析、验证等活动,初步感知圆锥的体积计算公式的由来,能理解并加以运用。
2、能力训练点:培养学生的观察、比较、分析、综合、概括以及初步的自主探究的能力。
3、思想渗透点:激发学生积极探索新知和学习数学的欲望。
四、教、学具准备
1、教具:量筒(2只)、圆柱和圆锥(等底等高,可装水)、红颜色的水、不规则的石块。
2、学具:教师指导用硬塑料纸做3组可盛水的圆柱和圆锥(①等底等高②等底不等高③等高不等底)、适量的水。
五、教学过程
(一)创设探究情景,激趣引思
1、教师行为
(1)谈话:同学们探究了计算圆柱体积的方法。想不想探究圆锥体积的计算方法呢?今天我们用准备好的学具试一试!
(2)演示实验:先出示实验器材,让学生细心观察比较;在空圆柱里装满红颜色的水,然后倒入一只量筒里;在空圆锥里装满红颜色的水,倒入另一只量筒里,像这样倒三次。
(3)质疑:通过老师做实验,同学们看到了什么?想到了什么?发现了什么?有什么感想?
2、学生活动
(1)听谈话,明确主题。
(2)细致入微地观察演示实验。
(3)四人小组合作讨论交流,看到的、想到的。并分组汇报讨论结果。(两只一样的量筒里水面高度一样,用空圆锥倒了三次水,空圆柱倒了一次,它们的底面大小及高度一样,两只量筒里水的体积相等、空圆锥装三次的水与空圆柱装一次的水一样多等)。
(4)亲自用教师演示用具验证讨论结果。
(设计意图:通过演示实验激发学生的探究兴趣,激活学生思维。)
(二)提出探究假想,实践验证
1、教师行为
(1)启迪:老师做的实验对我们今天的探究活动有什么启发?请同学们提出自己的设想,并给予各组学生必要的指导,进行小组讨论。
(2)综述讨论结果,提问:所有圆柱的体积都等于圆锥体积的3倍,圆锥体积都等于圆柱体积的1/3,是否正确,为什么?有什么条件限制?再让学生观察老师用的实验器具思考。
(3)促思:同学们设想的条件哪一种正确?大家没有量筒,用你们准备的学具怎样才能验证假设?
(4)合作探究:创新验证方案,怎样让它具有可操作性,教师适当点拨。
(5)组织学生用确定的方案进行合作探究,实践验证。
(6)诱导:修正假设,反思结果,得出结论,层层深入。
2、学生活动
(1)小组讨论,积极交流,达成共识。
(2)分组汇报讨论结果:对今天的学习有帮助,假设空圆柱和空圆锥里装水的体积近似等于它们的体积;则老师所用的空圆柱的体积将等于空圆锥体积的3倍,空圆锥的体积就等于空圆柱体积的1/3。
(3)根据问题设想条件:圆柱和圆锥、等底等高、等底不等高、等高不等底。
(4)交流确定验证方案:分别用三组准备好的空圆锥装满水倒入空圆柱里,看哪一组装3次刚好装满。
(5)分组实验。
(6)汇报探究情况:等底等高的一组空圆柱和空圆锥才符合原先假设。
(7)小结:圆柱的体积等于和它等底等高的圆锥体积的3倍;圆锥体积等于和它等底等高的圆柱体积的1/3.即
V柱=1/3 V锥=1/3 sh=1/3 ∏r2h
(设计意图:培养学生的分析能力和自主探究学习的能力。)
(三)巩固探究成果,深化理解
1、教师行为
(1)巩固新知:让学生计算课本例1、例2、做一做,然后集体订正。
(2)强调:计算圆锥体积时,最容易出现的错误是什么?
(3)引申练习:一个圆锥形零件,已知下列条件,分别求其体积
①底面半径3厘米,高15厘米;
②底面直径5厘米,高10厘米;
③底面周长12.56厘米,高10厘米;
④底面半径3厘米,比高少70%。
2、学生活动
(1)自主训练,多思多问。
(2)总结:计算时,不能忘记特殊数字“1/3”
(3)灵活运用公式,找出自己知识的不足。
(设计意图:运用探究成果进行强化练习,加深对知识的理解,培养学生综合运用能力。)
(四)拓展探究思维,迈向生活
1、教师行为
质疑:
(1)出示一个不规则滑石块,怎样求其体积?(教师作指导)
(2)学校食堂买来一车煤炭,倒堆成圆锥体,量得其底面周长和高分别为12.56米,每立方米煤200元,结果付了1300元,问学校有没有多花钱?
2、学生活动
(1)分组讨论,引导得出求其体积的方法:把不规则的物体(不吸水)放进盛水的容器里,求出上升那部分水的体积也就等于不规则物体的体积。
(2)合作探讨明确计算方法。
(设计意图:解决生活中的实际问题,体现“人人学有价值的数学,不同的人在数学上得到不同的发展”的新课程理念,培养学生的创新意识和实践能力。)
教学反思:
立足教材,根据本地区挖掘学生较熟悉的、乐于接受的、具有多方面教育价值,能引起学生思考的素材,真正实现用教材,并加以创新,让探究成功率提高,激起了学生的学习兴趣。在课堂教学中充分发挥学生的主体性,构建了“激趣引思——实践验证——深化理解——迈向生活”的教学模式,促进了学生学习方式的转变。]
教学评析:
教师充分利用教学用具,开发数学课程资源,让学生在探究新知的过程中,进一步发展空间观念和应用数学的能力,实现了让学生在生活中学数学、用数学的愿望。
在教学过程中与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生观察、质疑、探究,在实践中学习,促进学生在教师指导下主动地、富有个性的学习,以学生为本,以问题为中心,以实验探索为主要手段,以讨论为交流方式,以陈述观点及根据为要求,把学生推到了探究性学习的前台,让学生去想、去说、去做、去表达,去自我评价、去体会科学知识的真谛,促进学生全面发展。
圆锥的体积应用的说课稿范文5
教学目标
1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。
2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生认真审题,仔细计算的习惯。
重点:
进一步掌握圆锥的体积计算及应用
难点:
圆锥体积公式的灵活运用
教学过程
一、知识回顾
1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?
2、学生说,教师板书:
圆锥圆柱
特征1个底面2个
扇形侧面展开长方形
体积V=1/3SHV=SH
二、提出本节课练习的内容和目标
三、课堂练习
(一)、基本训练
1、填空课本1----2(独立完成后校对)
2、圆锥的体积计算
已知:底面积、直径、周长与高求体积(小黑板出示)
(二)、综合训练:
1、判断
(1)圆锥的体积等于圆柱的1/3
(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH
(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升
(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米
2、应用:练习四第45题任选一题
3、发展题:独立思考后校对
四课堂小结:说说本节课的收获
圆锥的体积应用的说课稿范文6
一、说教材
本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。
二、说教法
本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
三、说学法
动手操作法,观察发现法,自主探究法,合作交流法
四、说教学过程
1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。
2、揭示课题,展示目标。
3、以旧引新,探究新知。
通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)
4、运用公式,解决问题
通过“算一算”和“试一试”让学生掌握公式的运用。
5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。
6、质疑问难,总结升华
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
圆锥的体积应用的说课稿范文7
一、说教材
《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。
二、说学情
本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。
三、说教学重难点
根据对教材和学情的分析,我制定以下三维教学目标:
知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。
过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。
情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。
四、说教学重难点
教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。
教学难点:理解圆锥体积公式的推导过程。
说教法学法
为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。
学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。
说教学过程
课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:
第一环节:自主学习
第二环节合作学习
第三环节:教师讲导
第四环节:精练强化
五、说板书设计
圆锥的体积=×圆柱的体积=×底面积×高
S=sh
圆锥的体积应用的说课稿范文8
教学内容:
教材第20页例2、练一练。
教学要求:
使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:
教学重点:
进一步掌握圆锥的体积计算方法。
教学难点:
根据不同的条件计算圆锥的体积。
教学过程:
一、铺垫孕伏:
1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?
(2)口答下列各圆锥的体积:
①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:
l.教学例2。
出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后
学生做在练习本上。集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?
三、课堂小结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业
1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
【圆锥的体积应用的说课稿】相关文章:
《圆锥的体积》的说课稿01-22
《圆锥的体积》说课稿02-18
圆锥的体积说课稿07-12
《圆锥的体积》的说课稿12-20
圆锥的体积说课稿11-04
圆锥的体积的说课稿06-12
圆锥的体积说课稿07-14
圆锥的体积说课稿01-17
圆锥的体积应用的说课稿(通用8篇)09-24