圆锥的体积说课稿
作为一名教师,常常要写一份优秀的说课稿,编写说课稿是提高业务素质的有效途径。那么说课稿应该怎么写才合适呢?下面是小编整理的圆锥的体积说课稿,仅供参考,希望能够帮助到大家。
圆锥的体积说课稿1
一.说教材
1、说课内容
我今天教学的内容是圆锥的体积,圆锥是小学几何初步知识的最后一个教学单元中的内容,是在掌握了圆的周长、面积和圆柱的体积的基础上进行教学的。通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分的名称。理解求圆锥体积公式的计算公式,会运用公式计算圆锥的体积。圆锥体是人们在生产、生活中经常遇到的形体。教学这部分的内容,有利于进一步发展学生的
2、教学目标:
(1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)技能目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
(3)情感态度目标:渗透事物间相互联系的辨证唯物主义观点的启蒙教育。
3、教学重难点
(1)重点:理解和掌握圆锥的特征、体积的计算公式。
(2)难点:掌握圆锥高的测量方法和圆锥体积公式的推导过程。
二.说教法。
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三.说学法
根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四.说程序设计:
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了六个主要的教学程序是:
(一)复习旧知,课前铺垫
(二)提出质疑,引入新课
(三)动手操作,获得新知 。
(四)综合练习,发展思维
(五)课后小结,归纳知识
(六)作业布置,巩固新知
五、说教学过程:
(一)复习旧知,课前铺垫
1.怎样计算圆柱的.体积?
指名回答,教师板书:圆柱体的体积=底面积×高.
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正.
(二.)提出质疑,引入新课
.圆锥有什么特征?它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
(三)动手操作,获得新知
1.探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体.你们小组比比看,这两个形体有什么相同的地方?学生操作比较.
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”.
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系.
(3)学生分组做实验.
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下.
(老师在体积公式与“等底等高”四个字上连线.)
现在我们得到的这个结论就更完整了。(指名反复叙述公式.)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.
小结:今后我们求圆锥体体积就用这种方法来计算。
圆锥的体积说课稿2
敬的各位考官:
大家好,我是X号考生,今天我说课的题目是《圆锥的体积》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
教材分析是上好一堂课的前提条件,在正式内容开始之前,先谈谈我对教材的理解。
本节课选自人教版六年级下册,主要探究圆锥的体积。它是在学生掌握了圆柱的相关知识、认识圆锥的特征及组成之后的继续学习,对圆锥的体积计算公式进行探究,让学生体验引出问题、实验探究、得出公式的完整探索过程。本节课的学习注重发展学生的空间观念,提高动手操作、概括能力,所以本节课的学习至关重要。
二、说学情
合理把握学情是上好一堂课的基础,再来谈谈学生的实际情况。这一阶段学生的观察和概括能力都已经得到了一定的发展,同时这一阶段的学生还具备活泼好动、注意力不集中的特点,所以我将充分利用这一特点,采用灵活多样的教学方法来进行教学。
三、说教学目标
根据以上对教材的'分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握圆锥的体积公式,并能利用公式正确解决简单问题。
(二)过程与方法
通过操作、观察、比较等活动,自主探索圆锥体积公式,提高分析问题、解决问题的能力。
(三)情感、态度与价值观
感受数学与生活的联系,激发学习兴趣。
四、说教学重难点
一节好的数学课,从教学内容上说一定要突出重点、突破难点。那么根据授课内容可以确定本节课的教学重难点,重点是圆锥体积公式及其应用,教学难点是圆锥体积公式的探究过程。
五、说教法学法
为了突出重点、突破难点,顺利达成教学目标,本节课我将采用讲授法、问答法、小组讨论等方法来进行教学,让学生带着问题学,在合作交流的过程中得到结论。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)引入新课
在导入环节,我会从生活实例入手,大屏幕出示两种冰激凌的图片——圆锥形状的单价0.8元,圆柱形状的单价2元,二者等底等高。然后问:如果花同样的钱,买哪种形状的冰激凌能吃到更多?学生能想到比较相同花费时两种冰激凌哪个体积大,但学生只学过求解圆柱的体积,不会求解圆锥的体积。于是顺势引入课题《圆锥的体积》。
这样设计的好处:从生活实例入手,一方面能吸引学生的兴趣,另一方面也可以很好地体现数学来源于生活,并服务于生活。
(二)探索新知
接下来是探索新知环节,也是本节课的中心环节。为了突出重点、突破难点,我会充分发挥学生的主体作用。先让学生回忆圆锥的特点,并思考:圆锥和之前所学的哪个图形类似?学生能够想到圆锥和之前的圆柱很类似,底面都是一个圆形,并且如果将一个圆柱上底面的圆心和下底面圆周上的每一点连起来,就能得到一个和圆柱等底等高的圆锥。我会用多媒体展示嵌套在一起的圆柱和圆锥,方便学生观察,并明确圆锥的体积是与其等底等高的圆柱体积的一部分。为接下来的实验探究做好铺垫。
在这里仅仅通过观察嵌套在一起的圆柱和圆锥模型猜想圆锥的体积和与它等底等高的圆柱体积的关系是不够的,而且学生的猜想多样,不唯一。考虑到严谨性,接下来设置实验活动来进一步探究。
我会下发等底等高的圆柱形容器、圆锥形容器以及细沙和水等学具。综合实验的困难程度以及学生的能力等因素,我会组织学生四人为一小组,合作进行实验,时间定为五分钟。我会提醒学生开始操作之前可以检验一下两个容器是不是等底等高,确实实验条件无误。考虑到在学习知识的同时,学生的身心健康更加重要,我会叮嘱学生注意安全和卫生,不要将细沙弄进眼睛或弄撒细沙和水。
根据生活经验,学生可能有两种思路。一是将圆锥形容器装满沙子或水,再倒入圆柱形容器,发现三次刚好倒满;二是将圆柱形容器装满沙子或水,再倒入圆锥形容器,发现三次刚好倒空。
圆锥的体积说课稿3
一、说教材
“圆锥的体积”是人教版小学数学第十二册第二单元的内容。是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体以及圆柱体这三种立体图形的基础上进行教学的。主要内容包括理解圆锥体积计算公式和公式的具体运用。学生掌握这些知识,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系,为学生学习初中的几何知识打下基础,同时也可提高学生运用所学的数学知识和方法解决简单实际问题的能力。
依据数学课程标准的理念,结合教材自身的特点和学生的认知规律,本节课需要达到的教学目标有以下几点:
1.通过实验,使学生理解和掌握求圆锥体积的计算公式,并能运用公式正确计算圆锥的体积。
2.培养学生初步的空间观念、观察、操作能力和逻辑思维能力。
3.向学生渗透“事物之间相互联系”及“理论来源于实践”的观点。
其中,教学重点是使学生理解和掌握圆锥体积的计算公式;难点是通过实验理解圆柱和圆锥等底等高时体积间的倍数关系。
二、说教法、学法
根据本节课的内容特点,同时也为了更好的完成教学目标,突出重点、突破难点,本节课,我主要采取让学生做实验的方法,通过动手操作、直观演示,让学生在充分感知中主动获取知识,理解和掌握圆锥体积公式,这样就克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解的弊病。学生则在教师的引导下充分发挥自身的主体作用,通过自己的操作、实验、观察比较、讨论小结推导出圆锥体积的计算公式,从而初步学会运用实验的方法探索新知。
三、说教学准备
为了提高教学效率,课前需要准备好多媒体课件,并为每个小组准备一盆水及一个圆柱和两个圆锥,另外还要为每个小组准备实验记录表一份,
四、说教学过程
熟悉教材只是上好一节课的基础,而合理科学的教学程序才是上好一节课的关键。为了顺利完成本节课的教学任务,我精心设计了一下教学程序。主要分为以下几个环节:
一、情境引入;二、探究新知;三、综合归纳;四、合理应用;五、能力拓展;六、全课总结。
下面我就从这五个环节说一说本节课的教学过程。
一、情境引入
良好的导入是一节课成功的关键,它不仅能抓住学生的心弦,促使学生情绪高涨,步入智力兴奋状态,还有助于帮助学生获得良好的学习效果。
根据本节课圆锥体积公式的推导要用到等底等高的圆柱与圆锥这一具体情况,本环节我设计了这样一个情境:今天我们班来了一位新朋友:淘气。淘气想请同学们帮忙解决一个小问题,同学们愿意吗?事情是这样的:淘气的学校门口有一个卖瓜子的小摊,老板为了省事,不用称称着卖,而是用硬纸板做了两个容器,(大屏幕出示底为12。56平方厘米,高为6厘米的等底等高的圆柱和圆锥形容器)老板总是这样给同学们宣传:我的这两个容器,底一样高也一样,如果你用圆柱形容器买一元钱只能装一次,如果用圆锥形容器买一元钱则可以装两次。同学们,请你们帮淘气想一想,淘气应该用那种方法卖瓜子呢?问题抛出后,给同学们一定的思考时间,然后让同学们各抒己见。同学们的想法不同,当然答案也就不同,这是教师抓住时机再次提问:要想知道那种方法划算,必须怎么办?当学生提出计算体积时,就会发现所学知识不够用了,学生的求知欲望自然被调动起来,这时出示课题:圆锥的课题。
二、探索研究
此时的学生极想知道圆锥体积的计算方法,这时教师给学生提出一个疑问:在我们学习圆柱体积时我们已经清楚:长方体、正方体、圆柱的体积都可以用底面积乘高求得,那么圆锥的体积能否用底面积乘高来求呢?学生通过观察等底等高的圆柱与圆锥不难发现,底面积乘高求得的是圆柱的体积,这时教师再加以引导:能否利用圆柱的体积来求圆锥的体积呢?为每组同学提供交流的时间,让学生明白,只要弄清它们之间的关系,就能利用圆柱的体积求出圆锥的体积。究竟它们的体积之间有什么关系呢?先将圆锥放入圆柱中估计一下。我们要让事实说话。
引导学生做实验发现等底等高的'圆柱与圆锥体积之间的关系。为了保证实验能有序有效地开展,实验前要对学生提出明确的要求:
1、组长要明确分工,确定检测员、操作员、记录员。
2、各小组做两次实验,两次方法可以相同也可以不同,要保证实验过程及结果的准确性。
让学生做两次实验的目的,是让学生再次确定实验的结果。当学生完成后,请各组同学进行汇报交流。学生通过实验会发现在等底等高的情况下圆锥体积是圆柱体积的1/3。教师板书。为了再次向学生强调等底等高,教师可以问学生:你们的学具都等底等高吗?让各组学生举起自己的学具。老师发现我们各组之间的学具大小不同,结论怎么相同呢?使学生明白,在等底等高的情况下圆锥体积总是圆柱体积的1/3。这时教师再次质疑:如果不等底等高还会存在这层关系吗?小组之间交换圆锥再次做实验,再次强调等底等高。
三、综合归纳
利用板书,让学生观察,圆锥的体积我们可以怎样进行计算?得出公式:圆锥体积=底面积×高×1/3。
用字母表示:v=1/3sh
然后请同学们仔细阅读所得的结论,你认为哪些字、词比较关键?为什么?要求圆锥的体积必须知道哪些条件?对公式的辨析不仅可以使学生深入理解公式,而且可以避免学生在运用公式时出现错误。
四、合理应用
上课时的情境激发了学生的求知欲望,如果能够解决这一问题,一定能让学生获得成功的体验,因此本环节我安排学生解决的第一个问题是:采用哪种方法更划算?让学生利用条件计算圆柱与圆锥的体积。这样做不仅前后呼应,而且也能让学生再次深入理解圆锥的计算公式。
第二个问题,则是利用例2改编的一个情境:淘气的同学晶晶看到同学们帮淘气解决了问题,也想请同学们帮个忙,利用多媒体出示:麦收季节,晶晶家把收的小麦堆成了一个近似圆锥形的小麦堆,测得底面直径是4米,高是1。2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整数)。教师做简单引导:要解决这一问题必须先求什么?然后让学生独立完成,再利用展台展示个别学生的解题过程,并请学生谈一谈自己的解题思路。
五、能力拓展
此时学生可能已经有些满足,如果继续毫无意思的练习,必将降低其学习的积极性,为此这一环节我就将练习题起了两个有趣的名字:火眼金睛和智力大比拼,以此来激发学生的学习兴趣。同时培养学生用所学知识解决实际问题的能力。这实际上是对圆锥等于与它等底等高圆柱体积的1/3的又一次体会。
1、火眼金睛
火眼金睛其实是几道判断题,希望同学们能像孙悟空一样利用自己的火眼金睛能识别出几句话的对错呢。
1)、圆锥体积是圆柱体积的1/3。( )
2)、如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
3)、等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。( )
通过这样几句话的判断,可以让学生深入的思考等底等高的圆柱与圆锥体积之间的关系,教师也可以从学生判断的正误上了解一下学生是否对这类应用题已经掌握。
2、智力大比拼
智力大比拼则是在判断题的基础上,来解决一道实际问题,题目是这样的:有一个高9厘米,底面积是20平方厘米的圆柱形容器,里面装满了水,用一个与它等底等高的实心圆锥挤压,最后能挤出多少水?还剩多少水?如果有学生不明白题意,可利用手中的学具进行直观演示。这样也更有利于学生理解等底等高的圆柱与圆锥体积之间的关系。
六、全课总结:
学生学了一节课,究竟学会了什么,让他自己说说看,当然,从学生的回答中教师也可以看出自己的教学任务是否完成,课上的是否成功。
圆锥的体积说课稿4
一、教材分析教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的.实际问题。
二、学生基本情况六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。
三、教学方法由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。
本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。
四、教学过程本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。
紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。
然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。
学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。
最后,设计了三个巩固练习,都是在基本求出圆锥体积的基础上进行提高训练,这样即满足了基础知识的学习,又使优生能有所提高。
圆锥的体积说课稿5
我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。
一、说教材
数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。是本单元的重点。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。
根据课程标准的要求,教材的编排特点,学生的实际情况我确定的教学目标是:
1、情感目标:培养学生的探索精神、合作意识。
2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。
3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
难点:圆锥体积计算公式的推导过程。
关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
二、说教法
为了能够使学生在情境中学习数学,在活动中体验数学因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。
本节课把多媒体演示引进课堂,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
三、说学法
教法和学法是相互联系的,“教”是为了更好地“学”,教学中充分体现出学生的主体作用,尽量让学生自己动手实践、自己想、自己说,想不到的,教师要从不同角度启发、引导学生去想,去发现。创设一定的问题情境,让学生的整个学习过程围绕着问题去观察,去讨论,去实验,去理解,去总结。
古人说:“授人之鱼,只供一餐所需;而给人之渔,终身受用不尽。”新课程要求学生不仅要“学会”,更要“会学”。本节课采用适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我利用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学模式
本节课运用了小学数学情境———探究式教学模式。
(一)、创设情境、揭示问题
所谓的创设情境,就是指教师要在上课开始创设一种能调动学生先前经验,促进学生思维参与的探究氛围。本节课我创设了两种冰淇淋,怎么样买更合算的情景。这样做的目的,不只在于激趣,主要是让学生逐步形成一种数学的眼光,在面对现实问题时能够主动寻求用数学的'方式来解决。
(二)探究发现,建立模型
这是学生构建新知识的重要一步,要帮助学生通过观察、实践、探索、思考、交流等活动、解释解决问题的基本策略,建立基本的数学模型。
1、直观引入,直觉猜想
在教学中,我首先让学生回忆,以前学过哪些物体的体积的计算,接着猜测圆锥可能与哪个物体的体积有关?再猜测他们之间存在着什么样的关系?这一环节目的是是为了让学生把已有的知识信息与新知识建立联系,为学生调整认知结构,构建新知识奠定基础。
2、实验探索,发现规律
这一环节是合作学习,引导学生分小组做实验总结出等底等高的情况圆锥的体积是圆柱体积的三分之一,最后根据圆柱体积的计算方法,引导学生试着总结圆锥体积的计算公式。这样,学生亲身经历、体验了知识的形成过程,从而使学生的思维能力、动手操作能力,总结概括能力,与人合作的意识都得到了提高。
3、启发引导,推导公式
这一环节首先让学生根据圆柱体积的计算方式推导出圆锥体积的计算方法,然后引导学生说一说,sh各表示什么?为什么要乘三分之一。这样使学生能更深入的理解。整个这一环节我一直本着引导学生主动建构知识的重要理念,引导学生通过自主探索、合作交流、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”。
(三)、理解应用,强化体验
因为学生在探究发现、建立模型中创造的数学知识,发现的数学方法,要有一个内化的过程,为了关注每一个孩子这一环节我设计的四个层次的练习。
【基本练习】
首先解决情境中的问题,到底买哪一种冰淇淋合算。然后计算圆锥冰麒麟和圆柱冰淇淋的体积。在计算圆锥冰淇淋的体积时,允许学生有选择的完成,这样对学生进行数量上和难易程度上的开放,不但关注了学困生,也促进了尖子升和特长生的发展。
【变式练习】
是一组判断题
【应用练习】
让学生解决生活中的问题。能够使学生对所学的知识再一次深化理解,并同时培养学生解决生活中问题的能力。
【综合练习】
把一个圆柱加工成一个最大的圆锥形零件。求削去的体积。
这是一道思维拓展题。首先引导学生独立思考,然后再解决问题,最后得出结论。这样,不但注重了新知识的结构化,而且使学生对知识得到进一步的拓展和延伸。
这样学生在应用中充分理解,加深了体验,使新建立的数学知识得到进一步强化。从而实现人人学习有价值的数学,不同的人在数学上得到不同的发展。
(四)、总结归纳,提升经验
这一环节主要引导学生对本节课的知识进行系统的归纳、还对探究发现的过程、方法、经验、进行了梳理。
在本节课的课后我布置了一项实践性的作业,让学生用硬纸板做一个圆锥,圆柱。要求是,圆锥和圆柱的体积相等。
操作实践是一个手脑并用的过程,是培养技能技巧,促进思维发展的一种有效手段。更是一种让学生继续获取知识的延伸性学习活动,能够提高学生的学习技能;培养学生的求知欲;巩固所学知识,扩大知识领域,并且产生知识迁移;培养学生的合作意识;让学生明白学习既没有时间限制,又没有空间限制,以培养学生良好的学习习惯。
五、说三生培养
在整个教学过程中,我力求照顾全体学生的学习感受,因材施教。学困生学习最基本的内容,优等生在达到课程标准要求的基础上,适当扩大知识面,拓展了思维。在教学中,简单的问题留给学困生,有难度的留给优等生,实验操作环节以强带弱,最后分层次练习,基本练习和变式练习,主要是关注学困生,同时也促进了尖子生的发展。应用练习和思维拓展主要是关注尖子生和特长生。从而使不同的学生在本节课得到不同的发展。
总之,本节课,以教材为主源,教师为主导,学生为主题,训练为主线,思维为核心,为了每个孩子的发展为宗旨,让学生在情境中学习数学,在活动中体验数学,这样,既重视了知识的形成过程,又重视了学生的思维的发展过程,是每个孩子都在获得新知识的过程中,提高了能力发展了思维。
这次教学大赛的要求是同题同构,目的是共同提高。我们六年组三个数学老师在选课上,备课上,制作课件中,到后来写教案设计,说课材料,真的是做到了合作。虽然是我们精心的准备了,但在教学中还是出现了很多的遗憾。
1、多媒体课件的制作和运用不是尽善尽美。
2、在三生培养中,对差生的关注不是很到位。
3、课堂中有浪费现象,造成了教学时间的紧张。
4、在小组合作中,学生的参与程度还有待提高。
在今后的工作中,一定要多听课、多学习、多研究、多总结、多反思、使今后四十分钟的数学课堂每一分都有效。
圆锥的体积说课稿6
一、说教材
1、教材简析
首先说一说这节课的内容。圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。(播放课件)圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。(播放体积公式课件)
2、学情分析
通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。
3、教学目标
根据以上所述我制定了这节课的教学目标:
知识与技能目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
过程与方法目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
4、教学重难点
根据学生学情和教学目标,我确立了以下教学重难点。
教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
5、教具、学具准备
多媒体教学软件、空心圆柱、圆锥容器、装有水的水桶。
二、说教法
《数学课程标准》明确指出,教师应激发学生的学习积极性,给学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法、实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课堂上设计的实验,让学生动手操作,推导出圆锥的体积公式,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。
三、说学法
有句话说的非常好“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课我设计了以下六个教学程序:
1、复习旧知,做好铺垫。
利用复习圆柱、圆锥的认识和圆柱的体积公式的推导及其应用,为新知识的迁移做好铺垫。通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切,从而产生学习新知的欲望。
2、谈话激趣,导入新课。
很多同学都喜欢吃冰淇淋,你们看,冰淇淋蛋筒的形状是什么样的?你们有没有想过一个圆锥形蛋筒能装多少冰淇淋呢?(板书课题)怎样求它的体积?能不能把它转化成我们已经学过的'图形的体积来求?转化成什么图形最合适?猜猜看?下面我们就来探讨这个问题。(通过一系列问题聊天,激发兴趣,活跃气氛引出课题)
3、实验操作,探究新知。
这个环节分三个步骤进行。
第一步:实验操作
学生通过刚才的谈话已经迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。
1、我准备出一个圆柱和一个圆锥容器,先让学生们自己观察两个物体的联系,引导他们说出等底等高。(此过程我会拿着两个容器到学生中去让他们不仅仅能看到还能摸一摸,从而更直观的感受等底等高。)
2、质疑生趣
我会抛出问题:同学们你们说如果把圆锥倒满水然后往圆柱里放,几次能把圆柱也放满水?(让学生根据自己的认知大胆猜测)
3、动手操作,实验出真知
带着疑问、猜测做实验。请两组学生进行操作,其他学生一起帮他们做记录。实验结果就是三次能装满。(播放课件演示实验过程)
4、反复质疑,实验解决
是不是所有的圆锥都是正好用三次就倒满这个圆柱呢?(强化对等底等高的理解,小组讨论各抒己见)这时拿一个小一点的圆锥容器继续做一次实验。实验证明只有等底等高的圆锥装满水往圆柱里倒需要三次。
第二步:推导公式
1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流。最终达成共识圆柱的体积是等底等高圆锥体积的3倍,即圆锥体积是等底等高圆柱体积的。这时我利用多媒体演示圆柱容器里的水体积的分解,再次肯定学生自己的观点的准确性。
2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:(出示课件)V锥=1/3 SH本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。
4、尝试练习,巩固提高。
以上两道题,指名学生板书解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。
5、拓展深化,综合运用
工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。
练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生的解题能力和技巧,运用所学知识解决实际问题的能力。
6、评价反思,自我提升
课末,我通过聊天形式引导学生通过反思、评价,梳理本课知识点,形成系统的知识结构,进一步巩固本课教学内容。以下就是我进行的话题。
①这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。
②对自己和别人你有什么话要说?让学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内在动力。
③布置作业:练习四的有关练习。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。
五、板书设计
根据本课重难点和学生认知特点,我设计了简洁明了而又形象直观的板书。这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,形象直观。
六、教学反思
1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活.这就需要我们在备课时不局限于教材,要结合生活实际去备课.2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。
3.学生课后反馈上来的问题是计算问题很大,公式会用但是计算出现问题了,以后要多锻炼学生的计算能力。
(强两点我简单的概括了这节课我的理论支撑和设计构想,第三点是课后学生反映出来的问题。)本节课我的设计体现了数学核心素养中的数感、空间观念几何直观、数据分析、运算能力及推理能力等几方面。初步探究中,效果还需有待观察。
圆锥的体积说课稿7
一、说教材:
1、本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第一单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2、例3,相应的“做一做”及练习四的习题。
2、本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
知识目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
二、说教法:
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
我在研究教法的同时,更重视对学生学法的指导。
1、实验操作法。
2、尝试练习法。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
(1)我们掌握了圆柱体积公式及其应用,并认识了圆锥,这节课,我们一起来学习圆锥的体积。(板书课题)
(2)圆锥体积和圆柱体积有什么关系吗?
3、实验操作,探究新知。
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
(1)在实验时,我提出了四个问题,让学生带着问题进行操作:
a比一比,量一量,圆柱和圆锥的底和高之间有什么关系?
b用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?
c通过实验你发现了什么?
d你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?
(2)学生汇报实验结果。说出圆锥体及计算公式。
(3)教师归纳公式,学生记忆公式。(板书结论和公式)
4、尝试练习,巩固提高。
(1)同时出示例2和例3。
①课件示例题,指名读题,说出已知条件和所求问题;
②分析题意。
③指名板演。
③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。
(2)巩固练习,形成技能,完成“做一做”。
这个环节充分放手让学生自己尝试练习,可以挖掘学生的.潜能,让学生体验成功的乐趣。
5、看书质疑,布置作业。
通过这节课的学习,你学到了什么知识?还有什么疑问的吗?看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑答难,从而实现课内向课外的延伸。在完成了书上的基础练习之后,设计了三个发展练习,分别是知道半径和高;直径和高;周长和高;求体积,这样即满足了基础知识的学习,又使优生能有所提高。
以上是我对《圆锥的体积》一课的说课,如有不妥望各位老师给予帮助指导。
圆锥的体积说课稿8
一、说教材:
1、说课内容:
圆锥的体积。(小学六年级数学第十二册第二单元《圆柱和圆锥》中《圆锥》的第二课时)
2、教材简析:
圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。
3、教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
(3)德育方面:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
二、说教法:
教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程”。学生是学习的主体,因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:
以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。本节课引导并演示了两个实验。
第一、让学生比较圆柱和圆锥是否等底等高。
第二、在“等底等高”的条件下通过装水实验比较圆锥与圆柱的体积。使学生理解“等底等高”的条件下,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。
通过小组讨论、全班交流,归纳、推导出圆锥体积的计算公式:v=1/3sh。
教学准备:
多媒体课件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。因此我在讲求教法的同时,更重视对学生学法的指导。
1、学生学法:观察法、实验法、探索法。学生在学习圆锥体积公式的推导时,通过操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的`方法来探索新知识。
2、在教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
利用复习圆柱、圆锥的认识和圆柱的体积公式及其应用,为新知识的迁移做好铺垫。
2、谈话激趣,导入新课。
很多同学都喜欢吃冰淇淋,你们看,冰淇淋的形状是什么样的?你们想没想过一个圆锥筒能装多少冰淇淋呢?这就是这节课我们大家一起探究的内容。(板书课题)
3、实验操作,探究新知。
(1)通过引导,课件演示,学生观察,然后出示三个问题,让学生展开讨论:
问题一:刚才演示的圆柱、圆锥,它们有什么关系?
问题二:将空圆锥装满水往空圆柱里倒,倒了几次才能将空圆柱倒满?
问题三:你有什么发现?
(2)汇报交流:
圆锥的体积是与它等底等高圆柱体积的1/3,圆柱的体积是与它等底等高圆锥体积的3倍。
(3)师生共同归纳公式:圆锥的体积等于和它等底等高的圆柱体积的三分之一,即v=1/3sh(板书公式)
(4)强调:等底等高两个条件缺一不可。
4、尝试练习,巩固提高。
(1)想一想,议一议,说一说。
①、已知圆锥的底面半径r和高h,如何求体积v?
②、已知圆锥的底面直径d和高h,如何求体积v?
③、已知圆锥的底面周长c和高h,如何求体积v?
通过本题的尝试练习,让学生熟练掌握公式。
(2)运用所学知识解决实际问题。(指名学生板演)
(3)学习例3。让学生尝试自己讲,教师加以补充。
(4)反馈练习。
由圆锥体积的实际应用、填表格、判断、拓展题四部分组成,拓展题让学生采用多种解法,同时使学生懂得圆柱削成最大的圆锥,削去的体积是圆锥体积的2倍。
5、看书质疑,布置作业。
①通过这节课的学习,你学到了什么知识?
看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生自己去质疑,从而实现课内向课外的延伸。
②布置课堂作业:练习四的有关练习题。
圆锥的体积说课稿9
教学内容:
教材第20页例2、练一练。
教学要求:
使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:
教学重点:
进一步掌握圆锥的体积计算方法。
教学难点:
根据不同的条件计算圆锥的体积。
教学过程:
一、铺垫孕伏:
1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?
(2)口答下列各圆锥的体积:
①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:
l.教学例2。
出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的'重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后
学生做在练习本上。集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?
三、课堂小结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业
1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
圆锥的体积说课稿10
一、说教材
本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。
二、说教法
本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
三、说学法
动手操作法,观察发现法,自主探究法,合作交流法
四、说教学过程
1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。
2、揭示课题,展示目标。
3、以旧引新,探究新知。
通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的.体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)
4、运用公式,解决问题
通过“算一算”和“试一试”让学生掌握公式的运用。
5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。
6、质疑问难,总结升华
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
圆锥的体积说课稿11
一、说教材
(一)、圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(三)、教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说教法
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
三、说学法
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的.问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
四、说教学程序
(一)、导入课题
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积
(二)讲授新知
1、(1)引入新课
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
(2)教学圆锥体积公式
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是( )立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是( )立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
①基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。
②变式练习。只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
③小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。
3、 教学例3(出示例3)
例3:工地上有一些沙子,堆起来近似于一个圆锥,测得底面直径是4米,高是1.2米。这堆沙子大约有多少立方米?(得数保留两位小数。)
学生读题、想:要求这堆沙子大约有多少立方米,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
4 、操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
(三)、巩固应用
1、做P27-28练习九的第3、4、7、8题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。
(四)全课总结,课外延伸。
让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。
总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.
圆锥的体积说课稿12
微课作品介绍
本作品是针对苏教版数学教材六年级下册第二单元《圆柱和圆锥》中的“圆锥的体积”这一知识点而设计的微课。适用于义务教育六年级即将学习“圆锥的体积”或者已经学过但仍需巩固的学生。
本节内容是在学生了解圆锥的特征、掌握了圆柱体积的计算方法基础上进行教学的,有些学生可能通过预习等途径已经知道了圆锥的体积公式,但公式是熟知的,原理是抽象的。圆锥的体积公式是如何推导而来的?怎样透过公式了解原理?对学生来说有一定的难度,所以针对这个学习内容制作了本节微课。
通过本节微课的学习,学生能突破“圆锥的体积是怎么推导得出的”这一难点,能用科学的方法来解释体积公式的由来,进而更好地理解、掌握、运用圆锥体积公式,为今后学习立体几何相关知识打下坚实的基础。
教学需求分析
适用对象分析
本节微课适用于即将学习“圆锥的体积”或者已经学过但仍需巩固的学生。本节内容是在学生了解圆锥的特征、掌握了圆柱体积的计算方法基础上进行教学的。
高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还没得到完全发展,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,让学生切身体验知识的生成和形成。
学习内容分析
本节课是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的.教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。在教学中重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解并掌握圆锥体积的推导过程和计算公式。
教学目标分析
1.使学生在认识等底等高的圆柱和圆锥的基础上,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,推导圆锥的体积公式;掌握圆锥体积的计算公式,能应用公式解决相关的实际问题。
2.使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
教学过程设计
(一)定向明法。
1,谈话:生活中有许多圆锥形的物体。
生:今年我家粮食大丰收,爸爸他们把稻谷堆成一堆一堆的,就是一个个大圆锥。可是,这些圆锥的体积怎么 求啊?
师:思考一下你能帮助马小兰同学解决这个问题吗!?
2,揭示课题。
(二)实验验证
师:回忆一下:之前我们怎么探索圆柱体积公式的(把圆柱转化成长方体)
师:思考一下,我们可以怎么探求圆锥的体积?
师:哦,是的或许,我们可以把圆锥的体积转化成圆柱的体积!
1,估计圆锥和圆柱的体积关系。
出示圆柱和圆锥的直观图
师:请大家估计一下,圆柱的体积和圆锥的体积有怎样的关系呢?
问:这仅仅是我们的估计,可以用什么方法来验证我们的估计呢?
师:为了验证我们的猜想,我们一起来做个实验吧!
2, 明确实验方法。
(1)实验思路:在圆锥容器里装满沙子,然后倒入空圆柱容器,看几次正好倒满,就能得出这个圆锥体积与圆柱体积之间的关系。
(2)实验注意点:①装沙子要装满,又不能多装;
②倒的时候要小心,不能泼洒;
3,汇报总结。
(1)比较原来的圆柱和圆锥形容器,有什么特点
(2)结论:等底等高时,①圆柱的体积是圆锥体积的3倍;
②圆锥的体积是圆柱体积的三分之一。
(3)总结得出圆锥体积计算公式:圆锥的体积=× 底面积×高
(三)全课总结。
师:同学们,经过今天的学习,你知道圆锥体积公式是怎么推导出来的吗?以后遇到圆锥形物体,它的体积你会求了吗?
(四)课后巩固。
一堆大米,近似于圆锥形,量得底面面积是18平方分米,高5分米。它的体积是多少立方厘米?
学习指导
请在预习或复习苏教版数学教材六年级下册第二单元《圆柱和圆锥》中的“圆锥的体积”时使用本视频,并尝试在观看后使用所学知识解决实际问题。另外,相关资料还有很多,可以去网上搜索更多进行巩固。
配套学习资料
苏教版数学教材六年级下册
制作技术介绍
制作PPT课件,再利用录屏软件录制过程,用摄像机拍摄实验过程,最后用非编软件进行整合。
圆锥的体积说课稿13
尊敬的各位领导、老师:
大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。
一、说教材
《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的.基础上进行教学的。
教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。
二、说学情
本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。
三、说教学重难点
根据对教材和学情的分析,我制定以下三维教学目标:
知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。
过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。
情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。
四、说教学重难点
教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。
教学难点:理解圆锥体积公式的推导过程。
说教法学法
为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。
学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。
说教学过程
课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:
第一环节:自主学习
第二环节合作学习
第三环节:教师讲导
第四环节:精练强化
五、说板书设计
圆锥的体积=×圆柱的体积=×底面积×高
S=sh
圆锥的体积说课稿14
一,说教材
本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下
学习目标:
知识与技能目标:
掌握圆锥的体积公式,能运用公式进行计算。
过程与方法目标:
在观察、讨论等活动中探索圆锥的体积公式。
情感态度价值观目标:
体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。
教学重点:
圆锥体积公式的运用。
教学难点:
掌握圆锥体积公式的推导过程。
突破点:
组织学生动手做实验,引导学生动脑、动手,推导出圆锥体积的'计算公式。
二.说教法、学法
教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。
三,课前准备
要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。
四,教学过程:
1、情境导入,引出课题:(3分钟)
首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》
2、读讲结合,自主探究(15分钟)
此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的特征2。谁的体积更大?3。圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?
问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh
3、运用新知,解决问题(10分钟)
多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?
=100.48(立方厘米)
答:这个铅锤的体积是100.48立方厘米。
你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:1。改变题中的半径和高的数值2,把半径该为直径3,把半径改为高,从而起到进一步巩固公式的作用
多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)
煤堆的底面积:
煤堆的体积:
1.4 16.956÷5≈5(辆)
答:需要5辆车。
学生自主解决,同组交流解题的心得。
4、圆锥在生活中的应用(多媒体展示)(2分钟)
5、运用公式,体会新知(多媒体展示)(5分钟)
6、质疑问难,总结升华(3分钟)
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
7、布置作业(多媒体展示)(2分钟)
圆锥的体积说课稿15
今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
“圆锥的体积”教学是在学生学习掌握了圆的周长、面积和圆柱的体积的基础上进行教学的,并且上节课初步认识了圆锥,本节教材内容突出了探索体积计算公式的过程,应注重发展学生的操作能力、实践能力、培养创新能力,为今后学生的深层次学习和自主发展打好基础。通过本节课的学习使学生掌握圆锥体积的推导公式以及运用公式解决一些实际问题。
2、学情分析
学生以前学习了长方体、正方体、圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。但对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,教师应帮助学生理解。
3、教学目标
根据教材的编写特点和意图,结合学生的认知特点,我把本课的教学目标确定为:
(1)知识目标:
通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。(3)情感目标:
通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握圆锥的'特征、体积的计算公式
教学难点:掌握圆锥高的测量方法和体积公式的推导过程
5、教具准备
多媒体、圆柱、圆锥、三角尺、直尺、水桶等
二、说教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法
教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。让学生在实际操作的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四、说教学程序
1、复习引入新课
怎样计算圆柱的体积?
(1)多媒体展示圆柱图形让学生计算(学生回答并计算)
说明:V圆柱=1/3V圆锥=1/3Sh,先复习圆柱体积计算方法,抓住所学知识的内在联系,为学习圆锥的体积计算方法进行铺垫
(2)多媒体演示圆柱体的一个底面逐渐变小直到剩一个点为止这是什么图形这个图形怎么得来的,怎么求它的体积?(学生回答教师并书写课题)
学生回答可能出现情况:(及时给于学生鼓励)
说明:设疑激趣,激发学生探求新知的欲望
2、动手操作获得新知
(1)根据学生的回答让学生利用已有的教具(等底等高的圆柱和圆锥)小组进行动手操作探讨体积公式——这样做的目的:激发学生学习的兴趣,培养学生动手的能力和合作的能力(教师在教室中来回走动注意观察学生的操作及脸部表情,及时给于指导)
(2)教师提问学生动手操作得出的结论
学生回答情况两种:三倍与三分之一的关系,如果没强调等底等高教师要及时补充,这样做的目的是让学生进行班内交流,从而让学生获得更多的解题方法
(3)通过教师引导学生能够完整的总结出圆锥体积的计算公式
教师板书圆锥体积计算公式:V圆柱=1/3V圆锥=1/3Sh
3、巩固练习
(1)让学生先来解决刚开始的那个由圆柱体转换而来的圆锥体的体积
说明:学生最先求过这个圆柱体的体积转换成的圆锥这个对于他们来说很容易,让学生学会了转换思想。然后继续出练习题
(2)多媒体展示出三个图形:一题是书上的例题告诉底面直径和高的
二题是告诉底面周长和高的
三题是告诉底面半径和高的
说明:这样做的目的就是要让学生抓住知识的内在联系来解决实际问题,把教材前后知识相串联用活教材
4、拓展延伸
让学生小组合作测量教具中圆锥的体积并说出你的测量方法
说明:这样可以激发学生的动手能力、锻炼学生的思维能力和协调学生的合作能力(锻炼学生如何测量圆锥德高)教师走动引导学生,学生测量底面直径、底面周长的情况
5、学生总结这节课所学内容
五、说板书
我的板书简洁明了对整节课的学习起到画龙点睛的作用。
纵观整节课我通过创设情境、动手操作哦,调动学生的积极性,使学生最大限度的投入到观察、思考、操作、探究等活动中,亲身经历实践学习的过程。充分体现了新课程标准中提倡的“动手实践、自主探究、合作交流”的学习方式,让学生体验到学习成功的喜悦我的说课到此结束,谢谢!
【圆锥的体积说课稿】相关文章:
《圆锥的体积》说课稿11-10
圆锥的体积说课稿11-10
圆锥的体积说课稿07-14
《圆锥的体积》说课稿11-13
圆锥的体积说课稿实用04-14
圆锥的体积应用的说课稿范文10-27
圆锥的体积说课稿(15篇)11-13
圆锥的体积应用的说课稿范文11-30
《圆锥体积》说课稿12-19