《相交线》说课稿

时间:2022-12-16 16:35:04 说课稿 我要投稿

《相交线》说课稿

  作为一名人民教师,时常会需要准备好说课稿,是说课取得成功的前提。那么优秀的说课稿是什么样的呢?下面是小编整理的《相交线》说课稿 ,仅供参考,欢迎大家阅读。

《相交线》说课稿

《相交线》说课稿 1

  教学目标

  1、通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。

  2、在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题。

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用。

  难点:理解对顶角相等的性质的探索。

  教学过程

  一、读一读,看一看

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。

  学生欣赏图片,阅读其中的文字。

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题。

  二、观察剪刀剪布的过程,引入两条相交直线所成的角

  教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?

  学生观察、思想、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。

  教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征。

  三、认识邻补角和对顶角,探索对顶角性质

  1、学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如:

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。

  2、学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等。

  3、学生根据观察和度量完成下表:

  两直线相交

  所形成的角

  分类

  位置关系

  数量关系

  教师再提问:如果改变∠AOC的大小,会改变它与其它角的位置关系和数量关系吗?

  4、概括形成邻补角、对顶角概念。

  (1)师生共同定义邻补角、对顶角。

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。

  如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。

  (2)初步应用。

  练习1:下列说法,你同意吗?如果错误,如何订正。

  ①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上。

  ②邻补角可看成是平角被过它顶点的一条射线分成的两个角。

  ③邻补角是互补的两个角,互补的两个角也是邻补角?

  5、对顶角性质。

  (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。

  (2)教师把说理过程,规范地板书:

  在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD。

  教师板书对顶角性质:对顶角相等。

  强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系。

  (3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象。

  四、巩固运用

  1、例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

  教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程。

  2、练习:

  (1)课本P5练习。

  (2)补充:判断下列图中是否存在对顶角。

  五、作业

  1、课本P9。1,2,P10。7,8。

  2、选用课时作业设计。

  课时作业设计

  一、判断题:

  1、如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角。

  2、两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补。

  二、填空题:

  1、如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________。若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________。

  2、如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________。

  三、解答题:

  1、如图,直线AB、CD相交于点O。

  (1)若∠AOC+∠BOD=100°,求各角的度数。

  (2)若∠BOC比∠AOC的2倍多33°,求各角的度数。

  2、两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?

  《相交线》说课稿这篇文章共5805字。

《相交线》说课稿 2

  说课内容选自义务教育课程标准实验教科书《数学》七年级下册,第五章相交线与平行线中的5.1.1相交线第一课时,主要内容包括:对顶角、邻补角的定义、对顶角的性质,下面我将从教学背景、教学目标的确定、教学重点与难点、教学方式与手段、教学过程设计等几个方面对本节课的教学设计进行说明.

  一、背景分析

  1.学科的特点

  两条直线的位置关系有三种,相交、平行和异面,异面的知识在高中阶段学习,而平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,是初中阶段学习的重点内容之一,同时也是平面几何图形由简单到复杂的最基本图形之一——由两条直线相交构成的角。相交线、平行线在现实生活中随处可见,教学内容紧密联系学生生活和社会发展,同时它们也是同一平面内两条直线的基本位置关系;在七年级上册,已经学习了最基本的平面图形——直线、射线、线段和角,了解了它们的性质,是本章学习的基础;在后续的学习中,三角形、特殊四边形、相似形、圆的知识中,都和相交线的知识息息相关,对顶角相等的性质主要是传递角相等。数学作为一门学科,主要是运用理性,以理服人。学习逻辑推理的顺序按照“说点儿理”“说理” “简单推理”“用符号表示推理”等不同层次分阶段逐步加深。

  2.数学课程标准的要求

  新课标提出,在课程的学习过程中重视学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。在发展空间观念中提出:能从复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系,我讲的相交线这节课恰好是构成复杂图形的一个基本图形,是一个起始点,数学课程标准要求了解补角,对顶角,知道等角的补角相等、对顶角相等,我觉得有些低,在后续的学习知识中不断的会遇到对顶角的图形,所以我把它定位于“理解对顶角相等的性质,并能运用它解决一些实际问题”

  3.教材处理

  教材从剪刀剪开布片过程中角的变化来引出两条直线相交所成的角的问题,引出对顶角和邻补角的概念;对于“对顶角相等”,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,通过学生的充分讨论,探究发现对顶角相等这个结论,然后再对这个结论进行了说理,这样就将实验几何与论证几何相结合。通过阅读教材,理解教材,我在知识的引入上没有采用教材提供的方法,而是从学生已有的知识经验出发,采用画一画,画出一个角两边的反向延长线,即构成两条相交的直线,来探索4个角之间的位置和大小关系;对于例1的处理,则增加了两个变式练习,主要向学生渗透用方程思想解决几何问题;然后增加了理解概念的识图题,和实际应用此知识的题目,感受学习相交线知识的必要性。

  4.学情分析

  (1)知识的储备:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会说点儿理。由于学生的来源复杂,掌握知识的程度各不相同,70%的学生能准确的画出一个角的余角或补角,知道余角和补角的性质,但应用性质则只有30%的学生能有意识的用。

  (2)能力的储备:学生初步具有探究问题的能力,积累了一定的知识经验,有一定的学习迁移能力,但对于几何知识的准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确;

  (3)心理特点:初一年级大都是十二、三岁的孩子,它们积极、热情,喜欢探究活动,有一定的合作探究意识,学习的方式由偏重机械记忆向偏重理解记忆过渡,但他们热衷于口头表达,在笔头表达上70%的学生存在书写困难。

  基于以上分析,我把教学目标确定为:

  二、教学目标:

  1.了解邻补角、对顶角的概念, 能找出图形中的一个角的邻补角和对顶角;理解对顶角相等的性质,并能运用它解决一些实际问题;

  2.学生通过动手画图、观察、推断、交流、归纳小结等数学活动, 初步感受学习几何知识的方法,体会图形语言、文字语言、符号语言三种语言的相互转换;

  3.通过探索邻补角、对顶角的定义及对顶角相等的性质和应用,培养学生言之有理、言之有据的语言表达和书写能力;

  三、教学重点和难点:

  根据学生小学已有的知识、学生的思维特点以及课标要求和教材内容的分析,我认为教学重点是对顶角性质与应用,教学难点是对顶角性质应用几何语言的表达.

  四、教学方式与手段

  在初中,有效的数学学习方式不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学习的重要方式,在教学中我采用启发式,引导学生思考,探究,交流,学生在这样的学习过程中对知识进行认识、体会和内化;教学手段则采用多媒体辅助教学。

  五、教学过程设计

  在学习的过程中,学生始终是学习的主体,老师是学习的组织者、引导者、合作者,本节课以相交线的知识为载体,思维为主线,培养能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生和突破重难点的优势,基于这种理念,我把教学过程设成如下几个环节:

  1.回顾知识,感受必要;

  2.逐步探究,形成新知;

  3.理解概念,巩固新知;

  4.实际应用,体会必要;

  5.小结回顾,习惯反思;

  6.分层作业,获得进步。

  下面就突出难点、突破难点作具体的说明:

  5.1 回顾知识,感受必要

  用几何画板演示学习几何知识简单的过程:点——直线、射线、线段——角,画出角的两边的延长线,引发新的知识——相交线。

  意图是:回顾几何知识的学习过程,重温角的概念,利用已有的知识经验去探索,构想新概念,寻求新知识、新思路和新方法

  5.2逐步探究,形成新知:

  学生画出图形后,提出问题:

  问题1:你能描述一下∠AOB与∠1有什么关系吗?你能给这对角起个新名字吗?

  问题2:回忆刚才的作图,∠2是怎样形成的?∠2和∠4在位置上有什么特殊的关系吗?你能给∠4和∠2这对角起名吗?这两个角数量上有什么关系呢?

  ∵∠1与∠4互补,∠1与∠2互补

  ∴∠4=∠2(同角的补角相等)

  即:对顶角相等

  设计意图:让学生观察图形,抓住两个角的特点,尝试给出邻补角、对顶角的概念,培养学生数学语言的表达;进一步观察,得到对顶角相等的性质,训练学生由图形语言到文字语言,再到符号语言的三种语言的转换,培养学生几何语言的表达的能力,训练学生语言的表达的准确性;

  5.3理解概念,巩固新知;

  (1)通过3个识图题,巩固邻补角和对顶角的概念

  1.下列各图中∠1、∠2是邻补角吗?为什么?

  2.下列各图中,∠1和∠2是对顶角吗?为什么?

  3.如图,直线AB、CD相交 于O点,∠AOE=90°,

  ∠1和∠2是 角;

  ∠1和∠4互为角;

  ∠2和∠3互为 角;

  ∠1和∠3互为 角;

  ∠2和∠4互为 角.

  (2)通过两个例题的学习,体会对顶角相等、邻补角互补的应用。

  例1 如图,直线a、b相

  交,∠1=40°,求 ∠2、∠3、

  ∠ 4的度数.

  变式1:若∠2是∠1的3倍,求∠3的度数。

  变式2:若∠2比∠1大40度,求∠4的度数。

  例2 如图,已知直线AB、CD相交于点O,

  OA平分∠EOC,并且∠EOC=70°,求∠BOD的

  度数.

  例1的设置是要学生观察图形,应用知识,要求学生会表达,即:由什么,根据什么,得到什么。变式练习渗透用方程的思想解决几何问题的方法

  例2的设置是结合前面的角平分线的知识与新知识组合,再次体会新知识的应用,培养学生思考问题的有序性

  5.4实际应用,体会必要;

  做一做,试一试

  1. 要测量两堵墙所成的∠ AOB的度数,

  但人不能进入围墙,如何测量?说明道理

  2. 如图所示,有一个破损的扇形零件,

  利用图中的量角器可以量出这个扇形零件的

  圆心角的度数.你能说出所量角是多少度

  吗?你的根据是什么?

  用这节课所学的知识解决生活中的现实问题,体会学习对顶角和邻补角的价值,体会数学知识来源于生活又服务于生活的.

  5.5小结回顾,习惯反思

  为了让学生学完知识后形成反思与小结的良好学习习惯,将新知识纳入已有的知识体系,引导学生从知识上、学习的方法上和后续知识的设想上进行了小结。内容如下:

  1.对比邻补角和对顶角的概念,它们有什么异同?

  相同点:1都是两条直线相交而成的角;

  2都有一个公共顶点;

  3都是成对出现的 ;

  不同点:1邻补角要有公共边,而对顶角没有公共边;

  2两直线相交时,对顶角只有两对, 邻补角有四对

  2.今天主要学习邻补角和对顶角的知识,我们从哪几方面研究的?

  (1)从两个角位置和两个角数量关系,两方面进行了探究;

  (2)从图形、文字、符号语言的转换;

  (3)在实际生活中的应用。

  3.我们的研究由一个角到两个角,由一条直线到两条直线,图形由简单逐渐变复杂,根据你的学习经验,接下来我们要研究哪些知识?说说你的想法?

  期待学生能回答:

  (1) 垂直(两条相交直线的特殊位置);

  (2) 添加一条直线,研究三线八角;

  两直线平行……

  5.6分层作业,获得进步。

  必做题:第8页习题5.1第1题和第2题,第9页8题写书上;第9页第7题,写本上.

  选作题:如图,直线AB、CD交EF

  于点G、H,∠2=∠3,∠1=70 °,求∠4的度数.

  必做题要求所有的学生完成,选做题为学有余力的学生准备,目的是初步体会对顶角相等在后续知识中怎样应用。

  说课到此结束,欢迎大家批评指正!

《相交线》说课稿 3

  一、教材分析:

  1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。

  2、活动目标:根据对教材的研究和分析,综合学生的认知基础,我确定了下列

  活动目标:

  1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。

  2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。

  3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。

  4)指导学生探究、应用的能力。

  3、重难点确定及成因分析:

  重点:

  理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法

  难点:

  探索新的画两直线平行的方法,并能简单说理。

  分析:

  平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。

  二、教法、学法本节课

  借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。

  三、活动准备:

  1、 学生自动分组,5—6人一组,自选组长。

  2、 尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学

  (一) 情景激趣,导入实验5分钟

  (二) 动手实验,探究创新25分钟

  (三) 联系实际,铸就能力10分钟

  (四) 归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。

  (一) 情景激趣,导入实验。

  1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。

  (设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。

  2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。

  (设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。

《相交线》说课稿 4

  尊敬的各位评委各位老师上午好:

  我今天说课的题目是《相交线》:

  一:教材分析

  1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

  2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学习平面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

  3、教学的重点、难点:

  重点:邻补角、对顶角的概念,对顶角的性质和应用。

  难点:理解对顶角性质的探索

  (确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

  4、教学目标:

  A:知识与技能目标

  (1).理解对顶角和邻补角的概念,能在图形中辨认.

  (2).掌握对顶角相等的性质和它的推证过程

  (3).会用对顶角的性质进行有关的简单推理和计算.

  B:过程与方法目标

  (1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

  (2).体会具体到抽象再到具体的思想方法.

  C:情感、态度与价值目标

  (1).感受图形中和谐美、对称美.

  (2).感受合作交流带来的成功感,树立自信心.

  (3).感受数学应用的广泛性,使学生更加热爱数学。

  二、学情分析:

  在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

  三、教法和学法:

  教法:

  叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学 相结合的方法.

  学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

  四、教学过程:

  1课前准备:课件,剪刀,纸片,相交线模型

  2教学过程:设置以下六个环节

  环节一:情景屋(创设情景,激发学习动机)

  请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

  环节二:问题苑(合作交流,解释发现)

  通过一些问题的设置,激发学生探究的欲望,具体操作:

  (1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

  (2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

  (让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

  (3):分析研究此模型:

  设置以下一系列问题:A、两直线相交构成的4个角两两相配共能组成几对?(6对)

  B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

  另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

  C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

  D、你能阐述它们互补和相等的理由吗?

  (一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流 讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

  环节三:快乐房(大胆创设,感悟变换)

  (设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

  环节四:实例库(拓展应用,升华提高)

  例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

  例子2:例子2是用对顶角和邻补补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力。

  (一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体)

《相交线》说课稿 5

尊敬的各位评委、亲爱的各位同仁:

  我说课的内容是:义务教育课程标准实验教科书数学七年级下册第五章第36页的活动1:你有多少种画平行线的方法。下面我将从以下四个方面对本课时的内容进行说明。

  一、教材分析:

  1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。

  2、活动目标:根据对教材的研究和分析,综合学生的认知基础,我确定了下列活动目标:

  1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。

  2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。

  3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。

  4)指导学生探究、应用的能力。

  3、重难点确定及成因分析:

  重点:理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法

  难点:探索新的画两直线平行的方法,并能简单说理。

  分析:平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。

  二、教法、学法

  本节课借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。

  三、活动准备:

  1、学生自动分组,5—6人一组,自选组长。

  2、尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学

  (一)情景激趣,导入实验5分钟

  (二)动手实验,探究创新25分钟

  (三)联系实际,铸就能力10分钟

  (四)归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。

  (一)情景激趣,导入实验。

  1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。(设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。

  2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。(设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。

  3、教师让学生通过平移三角尺的方法画平行线,学生独立完成,教师对不能独立完成的同学给予指导,并演示课件,展示用平移三角尺的方法画平行线。(设计意图)与后面多种方法画平行线形成一种对比,为下一个活动作好准备。

  (二)动手实验,探究创新

  1、教师演示课件,展示李强过一点画一条直线的平行线的过程,提出问题,李强画平行线是通过画什么角相等来得到平行线?(设计意图)让学生有目的地观察,激发学生思考,形成学生的理性认识。

  2、教师提出问题,你能用其它方法来画平行线吗?要求学生充分利用所学知识,发挥想象力,进行实验操作,小组讨论,体验活动中的各种感受,探究中得到的结论可以是画平行线的方法,也可以是画平行线的说理过程。(设计意图)动手实践,自主探索与合作交流是学生学习数学的重要方式,让学生在亲身体验和探索中经历“做数学”的过程,能够使学生学习的主体性、能动性、独立性,不断生成、张扬、发展和提升。

  3、请小组代表向同学们展示本组的图形,并说明画平行线的方法及其平行的道理,有的同学通过画内错角相等,同旁内角互补或垂直于同一条直线来构造平行线,甚至有的同学会通过画出相等的外错角或互补的同旁外角的方法来得到平行线,教师给予肯定。(设计意图)通过交流,让学生体验解决问题策略的多样性,同时提高了学生的表达能力,给学生获得成功体验的空间。

  4、要求学生观察课本“活动1”中张明同学的画法,请学生说出其中的道理,并要求学生根据张明的画法再次产生新的画法,学生讨论后进行交流,教师可演示课件,展示用画菱形的方法得到平行线,并告诉学生在今后学习了四边形的知识后,就能明白其平行的道理。(设计意图)让学生感受到数学知识充满了探索性和创造性,激发了学生的求知欲。

  5、教师提出问题,不用作图工具,通过折纸能得到平行线吗?要求学生先看书,教师再演示课件,展示折纸过程,学生模仿制作,并简单说理。(设计意图)让学生觉得数学好“玩”,使学生在“玩”中接受数学,运用数学。

  (三)联系实际,铸就能力

  1、教师演示课件,依次展示铁轨,木工师傅画平行线,学校跑道、树林,提出问题,它们各自是运用前面哪一种方法画平行线的?学生思考后回答,教师逐一点评。

  2、教师提出问题,正值插秧季节,你能帮父母在秧田打行距吗?小组讨论后进行交流,教师演示课件,展示插秧图。(设计意图)让学生了解到数学来源于生活,又服务于生活。

  (四)归纳小结,体验感受课堂小结以学生总结为主,既可培养学生的表达能力,又能提高学生的自信心,我设计了两个问题:

  1、本节课,你学会了什么?

  2、本节课,你最深的感受是什么?

《相交线》说课稿 6

  今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:

  一、教材分析

  (一)地位、作用

  该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。

  (二)、教学目标

  根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:

  1、知识与技能

  (1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

  (2)掌握“对顶角相等的性质”。

  (3)理解对顶角相等的说理过程。

  2、过程与方法

  经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。

  3、情感态度和价值观

  通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

  (三)重点,难点

  根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:

  重点:邻补角和对顶角的概念及对顶角相等的性质。

  难点:写出规范的推理过程和对对顶角相等的探索。

  二、教学方法

  在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。

  三、学法指导

  让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的`学习习惯。

  四、学情分析

  七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。

  五、教学过程

  (一)创设情景,引入新课

  多媒体显示立交桥、防盗网。

  设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。

  (二)新课探讨

  1、对顶角、邻补角的位置关系。

  让学生们用已备好的剪刀剪纸片、向他们提出以下问题:

  问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?

  学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。

  通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。

  问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?

  学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。

  2、对顶角的大小关系

  学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:

  (1)我演示教具(自己制作),也给学生们操做。

  (2)让学生们通过量角器测量。

  (3)让学生们把画好的对顶角剪下来,进行翻折。

  (4)引导学生们根据同角的补角相等来推导对顶角相等的性质。

  引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。

  学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。

  (三)让学生们举出生活中对顶角相等的例子

  学生们可以通过合作性交流、思考、发表见解。

  让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。

  (四)例题解析

  例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。

image.png

【《相交线》说课稿 】相关文章:

《相交线》说课稿02-15

相交线说课稿02-19

《相交线》说课稿09-22

《相交线》 说课稿范文07-29

《相交线》 说课稿范文06-13

《平行线与相交线》说课稿06-12

《相交线与平行线》说课稿11-25

初中数学相交线说课稿11-12

相交线数学说课稿09-03