《勾股定理》说课稿

时间:2023-01-05 12:54:49 说课稿 我要投稿
  • 相关推荐

《勾股定理》说课稿集锦15篇

  作为一位杰出的教职工,时常需要用到说课稿,是说课取得成功的前提。说课稿要怎么写呢?以下是小编整理的《勾股定理》说课稿,欢迎阅读,希望大家能够喜欢。

《勾股定理》说课稿集锦15篇

《勾股定理》说课稿1

  各位考官,大家好,我是X号考生,今天我说课的内容是《勾股定理的逆定理》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。

  教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。

  一、说教材

  “勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。

  二、说学情

  中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。

  三、说教学目标

  根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。

  【知识与技能】

  理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。

  【过程与方法】

  通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  【情感态度与价值观】

  通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  四、说教学重难点

  重点:勾股定理逆定理的应用;

  难点:探究勾股定理逆定理的证明过程。

  五、说教学方法

  科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。

  六、说教学过程

  (一)导入新课

  在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题——勾股定理逆定理。

  【设计意图】通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。

  (二)探究新知

  一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的13个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。

  因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

  这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

  接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。

  在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。

  (三)巩固提高

  本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)让学生口答让所有的学生都能完成。

  第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。

  思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。

  (四)小结作业

  在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。

  设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。

  由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用ppt出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。

《勾股定理》说课稿2

  尊敬的各位领导、各位老师,大家好:

  我叫李朝红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。

  一、教材分析

  1、教材的地位和作用:

  在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。

  2、教学目标

  教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标

  知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。

  过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成

  过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。

  情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神.

  3、重点难点

  本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点

  重点:理解并掌握勾股定理的逆定理,并会应用。

  难点:理解勾股定理的逆定理的推导。

  二、教法学法分析

  八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。

  教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。

  三、教学过程分析:

  (一)创设情景,引入新课

  1、展示图片:古埃及人制作直角的方法

  2、让学生试一试用一根绳子确定直角

  设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 ,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。

  (二)动手检测,提出假设

  在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

  上面三组线段为边画出三角形,猜测验证出其形状。

  再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的推测能力,严密的逻辑思维能力和灵活的动手实践能力。

  (三) 探索归纳,证明假设:

  勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先

  1、 让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,

  2、 然后在黑板上画一个三边长为a、b、c,且满足 a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。

  在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足 a2+b2=c2的△ABC与以a、b为直角边的直角三角形的关系。

  设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——猜测——探索——论证”的过程,体验了“特殊到一般,个性到共性”的伟大数学思想在实际中的应用。

  这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

  (四)学以致用、巩固提升

  本着由浅入深的原则,安排了三个题。第一题比较简单,判断由a,b,c组成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.让学生仿照课本上的例题,独立完成,教师提醒书写格式。并说明像15,8,17能够成为直角三角形的三条边长的正整数,我们称为勾股数。第二题我改变题的形式,把一些符合a+b=c的三角形放入网格中让学生运用勾股定理及其逆定理来说明理由。第三题是求一个不规则四边形的面积,让学生思考如何添加辅助线,把它分成一个直角三角形和一个非直角但能判定是直角的三角形,让学生运用勾股定理及其逆定理证明并求解。

  设计意图:采用启发教学与诱导教学方法相结合的方法分层练习,由浅入深地逐步提高学生解决实际问题的能力,达到巩固知识,学以致用的目的

  (五)回顾总结,强化认知

  课堂小结以填空体的形式检测、归纳总结

  设计意图:让学生以填空题的形式进行总结,不仅能够起到检测的目的,而且帮助学生理清知识脉络,起到重点强调,产生高度重视的效果。

  (六)作业布置

  教材33页练习

  设计意图:加强学生对勾股定理逆定理的理解,使学生的练习范围拓展到多个题型。

  教学反思:本节课以学生为主体、教师为主导,通过启发与诱导,使学生动手操作、动脑思考、动口表达,让学生在实践与探究中发挥自我,充分调动了学生的自主性与积极性,整个过程注重了学生课上知识的形成与巩固,以及学生各方面素质的培养。总之本节课的知识目标基本达成,能力目标基本实现,情感目标基本落实。

  以上是我对本节课的理解,还望各位老师指正。

《勾股定理》说课稿3

  一、说教材分析

  本节研究的是勾股定理的探索及其应用。它从边的角度进一步对直角三角形的特征进行了刻画。 它的主要内容是探索勾股定理,验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。

  二、说教学目标

  教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。一堂课的教学目标应全面、适度、明确、具体,便于检测。因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为:

  1、知识技能:

  (1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。

  (2)运用勾股定理进行简单的计算和解释生活中的实际问题。

  (3)运用勾股定理会在数轴上画出表示无理数的点。

  2、数学思考:

  在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。

  3、解决问题:

  通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。学会与人合作并能与他人交流思维的过程和探究的结果。能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。

  4、情感态度:

  (1)通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。

  (2)通过获得成功的经验和克服困难的经历,增进数学学习的信心。

  (3)通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。

  三、说教学重、难点

  教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。

  重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。

  难点:利用数形结合的方法探索发现、验证勾股定理及其在实际生活中的应用。

  四、知识反映出来的技能、能力、方法、德育等因素

  本节知识通过 “ 探索发现---拼图实践—探索验证—分析结果—运用定理 ” 等活动过程,使学生进一步理解勾股定理,并从中学会思考,学会探索,学会运用,学会交流,体会知识反映出来的丰富的文化内涵,指导学生认识现实世界中蕴涵着的数学信息。

  五、教学方法

  数学知识、数学思想和方法必须由学生在现实的数学活动实践中理解和发展;教学中,以学生为本位,充分挖掘教材的空间,为学生搭建动手实践、自主探索、合作交流的平台;

  注重让学生经历数学知识的形成过程,充分调动学生的学习积极性,并通过这个过程,使学生体验学习成功的乐趣,在积极的思维中获取知识,发展能力。

  六、教学程序设计:

  为充分发挥学生的主体性和教师的主导辅助作用,设计了以下几个环节:

  (1)创设情境,引入新课

  问题

  某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?

  师生行为:教师出示照片及图片,并提出问题,学生观察图片发表见解。

  设计意图:从现实生活中提出勾股定理,为学生能够积极主动的投入到探索活动创设情景,激发学生学习热情。同时为探索勾股定理提供背景材料。达到引入新课的目的。

  (1)独立探究,合作交流。

  讲述数学家毕达哥拉斯的故事

  问题

  A、B、C的面积有什么关系?

  SA+SB=SC

  直角三角形三边有什么关系?

  两直边的平方和等于斜边的平方

  设计意图:问题是思维的起点,通过激发学生好奇、探究和主动学习的欲望。利用面积相等法,让学生发现以直角三角形两直角边为边长的正方形的面积,以斜边为边长的正方形的面积之间的关系。降低学生学习难度,从(3)自主实践,探索验证

  《课程标准》指出:“数学教学是数学活动的教学。”要求学生分学习小组,动手实践,积极思考,获得技能与解决问题的方法。关注学生动手实践,关注学生主动探索与合作,关注学生积极思考,给学生思维表达的时间、空间,让学生经历探索知识的过程,并在这个过程中得到发展.。

  两种拼图方案

  1、2、

  师生行为:教师演示动画和图片,同时提出问题,学生在独立思考的基础上以小组为单位,动手拼接,教师深入小组活动倾听学生的交流,帮助、指导学生完成拼图活动。学生展示分割、拼接的过程。

  设计意图:通过观察、拼图、探究活动,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性,充分调动学生思维的积极性,发展形象思维,使学生对定理更加深刻,通过这一教学过程来达到突破难点的目的。

  (4)应用定理,解决问题

  数学源于实践,运用于实践;开放性处理教材,鼓励学生充分地发表意见,表现自我,让学生在教师营造的“创新土壤”中成为主人;给学生思维以广阔的空间,培养学生从多角度运用所学知识寻求解决问题的能力.

《勾股定理》说课稿4

  课题:勾股定理

  内容:教材分析、教法学法分析、教学过程设计、设计说明

  一、 教材分析

  (一)教材所处的地位

  这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)根据课程标准,本课的教学目标是:

  1、能说出勾股定理的内容。

  2、会初步运用勾股定理进行简单的计算和实际运用。

  3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

  4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

  (三)本课的教学重点:探索勾股定理

  本课的教学难点:以直角三角形为边的正方形面积的计算。

  二、教法与学法分析

  教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

  学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  三、 教学过程设计

  (一)数学史导入

  以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

  (二)实验操作

  1、投影课本图的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

  3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

  (三)归纳验证

  1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

  2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。

  (四)问题解决

  让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

  (五)课堂小结

  主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

  (六)布置作业

  习题19.2(1-5)

  有兴趣的同学可以查找另外的证明方法,写出1-2种出来

  四、 设计说明

  1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

  2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

  3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出1-2种出来

  4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。

《勾股定理》说课稿5

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

  情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、 教学过程设计

  1、创设情境,提出问题

  2、实验操作,模型构建

  3、回归生活,应用新知

  4、知识拓展,巩固深化5。感悟收获,布置作业

  (一)创设情境提出问题

  楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

  实验操作模型构建

  1、等腰直角三角形(数格子)

  2、一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  四、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  五、感悟收获布置作业:

  这节课你的收获是什么?

  1、课本习题2。1

  2、搜集有关勾股定理证明的资料。

  板书设计 探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  李景萍《探索勾股定理》第一课时说课稿

  设计说明:

  1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

《勾股定理》说课稿6

  尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

  一、教材分析:

  (一) 教材的地位与作用

  从知识结构上看百度一下,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对学生进行爱国主义教育的良好素材,因此具备相当重要的地位和作用。

  根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的'探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引领学生动手实验突出重点,合作交流突破难点。

  二、教学与学法分析

  教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引领学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

  学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

  三、教学过程

  我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

  首先,情境导入 古韵今风

  给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

  第二步 追溯历史 解密真相

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具备局限性。因此教师应引领学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

  使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。

  以上三个环节层层深入步步引领,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  第三步 推陈出新 借古鼎新

  教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引领者与合作者”这一教学理念。学生会发现两种证明方案。

  方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。

  教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。

  第四步 取其精华 古为今用

  我按照“理解—掌握—运用”的梯度设计了如下三组习题。

  (1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用

  第五步 温故反思 任务后延

  在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体学生的理念。

  四、教学评价

  在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。

  五、设计说明

  本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。

  采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。

  以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。

《勾股定理》说课稿7

  一、教材分析

  勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一。它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一。在实际生活中用途很大,教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,让学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

  据此,制定教学目标如下:

  1、理解并掌握勾股定理及其证明。

  2、能够灵活地运用勾股定理及其计算。

  3、培养学生观察、比较、分析、推理的能力。

  4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

  教学重点:勾股定理的证明和应用。

  教学难点:勾股定理的证明。

  二、教法和学法

  教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

  1、以自学辅导为主,充分发挥教师的主导作用;运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

  2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理。提高学生动手操作能力,以及分析问题和解决问题的能力。

  3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

  三、教学程序

  本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

  (一)创设情境 以古引新

  1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

  2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

  3、板书课题,出示学习目标。

  (二)初步感知 理解教材

  教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

  (三)质疑解难 讨论归纳

  1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

  2、教师引导学生按照要求进行拼图,观察并分析;

  (1)这两个图形有什么特点?

  (2)你能写出这两个图形的面积吗?

  (3)如何运用勾股定理?是否还有其他形式?

  这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

  (四)巩固练习 强化提高

  1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

  2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

  (五)归纳总结 练习反馈

  引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

  本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

《勾股定理》说课稿8

各位专家领导:

  上午好!今天我说课的课题是《勾股定理》。

  一、教材分析:

  (一)本节内容在全书和章节的地位。

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  1、知识与能力目标。

  (1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  (2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  2、过程与方法目标。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  3、情感态度与价值观。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  1、教学重点:勾股定理的证明与运用

  2、教学难点:用面积法等方法证明勾股定理

  3、难点成因:

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  4、突破措施:

  (1)创设情景,激发思维:

  创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  (2)自主探索,敢于猜想:

  充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  (3)张扬个性,展示风采:

  实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析:

  1、教法分析:

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  2、学法分析:

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计:

  (一)创设情景:

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作:

  1、课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、紧接着让学生思考:

  上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  3、再问:

  当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证:

  1、归纳:

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  2、验证:

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决:

  1、让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  2、自学课本P101例1,然后完成P102练习。

  (五)课堂小结:

  1、小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。

  2、教师用多媒体介绍“勾股定理史话”。

  (1)《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  (2)康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  3、目的:对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:

  课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

《勾股定理》说课稿9

  一、教材分析

  (一)教材所处的地位

  这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)根据课程标准,本课的教学目标是:

  1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程。

  2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

  3、解决问题:①通过拼图活动,体验数学思维的严谨性,发展形象思维。

  ②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。

  4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。

  ②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

  (三)本课的教学重点:探索和证明勾股定理

  本课的教学难点:用拼图的方法证明勾股定理

  二、教法与学法分析:

  教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。

  学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  三、教学过程设计

  (一)提出问题:

  首先提出问题1:你知道下图所表示的意义吗?创设问题情境,2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。

  其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。

《勾股定理》说课稿10

  一、 教材分析

  (一)教材地位与作用

  勾股定理它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 情感态度与价值观: 激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、 教学过程设计

  1、创设情境,提出问题 2、实验操作,模型构建 3、回归生活,应用新知 4、知识拓展,巩固深化5、感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树20xx年国际数学的一枚纪念邮票 大会会标

  设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

  二、实验操作模型构建

  1、等腰直角三角形(数格子)

  2、一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  三。回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  四、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  五、感悟收获布置作业: 这节课你的收获是什么?

  作业:1、课本习题2、1

  2、搜集有关勾股定理证明的资料。

  板书设计 探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么a2?b2?c2

  设计说明:1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

《勾股定理》说课稿11

尊敬的各位评委、老师,大家好!

  我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。

  教材分析:

  如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。

  勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。

  新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:

  1、探索并利用拼图证明勾股定理。

  2、利用勾股定理解决简单的数学问题。

  3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。

  本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:

  勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。

  为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:

  教法分析:

  新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。

  学法分析

  学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆偿试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。

  为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。

  以学生必读课本48—52页,选读课本55、56页的课前预习为前提,共分四个环节来进行教学

  1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。

  2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。

  3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。

  4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。

  说创新点:

  为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、逻辑推理能力,又达到了直观高效的效果。

  教学中我注重人文环境的创设,使数学课堂充满亲切、民主的气氛,例如整节课我以学生的操作、展示、讲解、个性补充为主,拉近了数学与学生的距离,激发了学生的学习兴趣;为了使不同的学生得到不同的发展,人人学有价值的数学,在教学中我创造性的使用教材,在不改变例题的本意为前提,创设身边暖房工程为情境,体现数学的生活化;以一题多变、中考题改编等形式进行练习题的层层深入,体现数学的变化美。

  以学生个性补充的形式促进课堂新的生成,最大限度的培养学生创新思维,使不同的人在数学上有不同的发展。本节课既做到了课程的开放,为充分发挥学生聪明智慧和创造性的思维提供了空间,又创设了具有独特教学风格的作文式数学课堂。而多媒体教学的引入更为学生提供了广阔的思考空间和时间;同时,我注重对学生进行数学文化的薰陶和数学思想的渗透,注重美育、德育与教育的三统一,如小结时由“勾股树”到“智慧树”的希望寄语。

《勾股定理》说课稿12

尊敬的各位领导,各位老师:

  大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。

  一、教材分析

  (一) 教材地位和作用

  勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。

  (二)教学目标

  根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:

  1、知识与技能方面

  了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系, 并能简单应用。

  2、过程与方法方面

  经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。

  3、情感态度与价值观方面

  (1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

  (2) 通过研究一系列富有探 究性的问题,培养学生与他人交流、合作的意识和品质。

  (三)教学重点难点

  教学重点:掌握勾股定理,并能用它来解决一些简单的问题。

  教学难点:勾股定理的证明。

  二、学情分析

  我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确 归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他 们的创造愿望。

  三、教法选择

  根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计" 观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅 助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。

  四、学法指导:

  为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方 法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思 想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。

  五、教学过程

  根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:

  (一)创设情境,引入新课

  一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:

  星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,

  ∠ACB=90° ,你能用所学知识算出缆车路线AB长应为多少?

  答案是不能的。然后教师指出,通过这节课的学习,问题将迎刃而解。

  设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。 教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。

  紧接着出示本节课的学习目标:

  1、了解勾股定理的文化背景,体验勾股定理的探索过程。

  2、掌握勾股定理的内容,并会简单应用。

  (二)勾股定理的探索

  1、猜想结论

  (1)探究一:等腰直角三角形三边关系。

  由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。

  在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。

  提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?

  (2、)探究二:一般的直角三角形三边关系。

  在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。

  设 计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学 生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。

  2、证明猜想

  目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证 明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a + b = c。即直角三角形两直角边的平方和等于斜边的平方、

  设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。

  3、简要介绍勾股定理命名的由来

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理, 但他比商高晚出生五百多年。

  设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。

  (三)勾股定理的应用

  1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。

  2、教学例1:课本66页探究1

  师生讨论、分析: 木板的宽2、2米大于1米,所以横着不能从门框内通过.

  木板的宽2、2米大于2米,所以竖着不能从门框内通过.

  因为对角线AC的长度最大,所以只能试试斜着 能否通过.

  从而将实际问题转化为数学问题.

  提示:

  (1)在图中构造出一个直角三角形。(连接AC)

  (2)知道直角△ABC的那条边?

  (3)知道直角三角形两条边长求第三边用什么方法呢?

  设计意图:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边A C的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。

  (四)、课堂练习 习题18、1 1、5。 学生板演,师生点评。

  设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。

  (五)课堂小结

  对学生提问:"通过这节课的学习有什么收获?"

  学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

  设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。

  (六)达标训练与反馈

  设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。

  以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样 教",让学生人人参与,注重对学生活动的评价, 探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!

《勾股定理》说课稿13

  说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小编整理的初中数学《勾股定理的逆定理》说课稿,欢迎大家阅读参考。

  一、教材分析:

  (一)、本节课在教材中的地位作用

  “勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

  (二)、教学目标:

  根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

  知识技能:

  1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

  过程与方法:

  1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

  2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

  3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  情感态度:

  1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

  2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

  (三)、学情分析:

  尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

  重点:勾股定理逆定理的应用

  难点:勾股定理逆定理的证明

  关键:辅助线的添法探索

  二、教学过程:

  本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

  (一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

  (二)、创设问题情境

  一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

  (三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

  因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

  这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

  接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

  在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

  (四)、组织变式训练

  本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

  (五)、归纳小结,纳入知识体系

  本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

  (六)、作业布置

  由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

  三、说教法、学法与教学手段

  为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

  此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

  总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

《勾股定理》说课稿14

  一、教材分析

  本节课是九年制义务教育课程标准实验教科书(苏科版)八年级上册第二章第一节“勾股定理”的第一课时.在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

  在探求勾股定理的过程中,蕴涵了丰富的数学思想。把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,是数形结合的典范;把探求边的关系转化为探求面积的关系,将边不在格线上的图形转化为可计算的格点图形,是转化思想的体现;先探求特殊的直角三角形的三边关系,再猜测一般直角三角形的三边关系,再解决一些特殊直角三角形的问题,这是特殊——一般——特殊的思想。在本节课,要创设问题串,提供学生活动的方案,让学生在活动中思考,在思考中创新,认识和理解勾股定理,并能利用勾股定理解决一些简单的有关直角三角形的计算问题.

  二、教学目标

  1、让学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历拼图实验、计算面积的过程,在过程中养成独立思考、合作交流的学习习惯;让各类型的学生在这些过程中发挥自己特长,通过解决问题增强自信心,激发学习数学的兴趣;通过老师的介绍,感受勾股定理的文化价值.

  3、能说出勾股定理,并能用勾股定理解决简单问题.

  三、教学重点

  勾股定理的探索过程.

  四、教学难点

  将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  五、教学方法与教学手段

  采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

  六、教学过程

  (一)创设情境 提出问题

  1.同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你知道第三边的长吗?你知道第三边长的范围吗?

  2.如果又已知这两边的夹角,那么第三边的长是多少?

  3.已知直角三角形的两边的长,如何求第三边的长呢?这节课就让我们一起来探讨这个问题.板书:直角三角形三边数量关系.

  (这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生从原有的认知水平出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标.让学生体会到当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究.)

  (二)实践探索 猜想归纳

  1、用什么方法来探求板书:直角三角形三边数量关系呢?

  回忆我们曾经利用图形面积探索过数学公式,大家还记得在哪用过吗?

  (学生讨论)

  课件展示:平方差公式、完全平方公式、单项式乘多项式、多项式乘多项式.

  今天,让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关系.

  (从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心.)

  2、(课件展示图2)观察图形,我们分别以直角三角形ABC的三边为边向形外作三个正方形.若将图形①、②、③、④、⑤剪下,用它们可以拼一个与正方形ABDE大小一样的正方形吗?

  (同位利用教师提供的学案,合作拼图。)

  通过拼图,你有什么发现?

  (如图3,以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积.拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力.体现了活动——数学的思想.)

  3、拼图活动引发我们的灵感;运算推演

  证实我们的猜想.为了计算面积方便,我们可

  将这幅图形放在方格纸中.如果每一个小方格的边长记作“1”,请你求出图中三个正方形的面积(图4).

  (学生容易回答SP=9,SQ=16。)

  你是如何得到的?

  (可以数图形中的小方格的个数,也可以通

  过正方形面积公式计算得到。)

  如何计算 ?

  (的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示.学生可能提出割(图5)、补(图6)、平移(图7)、旋转(图8)等方法,旋转这种方法只适用于斜边为整数的情况,没有一般性,若有学生提出,应提醒学生.)

  4、肯定学生的研究成果,进而让学生打开书回顾课本上的提示.从小明、小丽的方法中你能得到什么启发?

  (把图形进行“割”和“补”,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形,让学生体会将较难的问题转化为简单问题的思想)

  5、再给出直角边为5和3的直角三角形(图9),让学生计算分别以三边作为边所作的正方形面积.

  (这是转化思想,也是“割补”方法的再一次应用.在

  前面的探求过程中有的学生没能自己做出来,提供再一次的机会,可让全体学生再次感受转化思想,体验成功的乐趣.)

  通过计算,你发现这三个正方形面积间有什么关系吗?

  (SP+SQ=SR,要给学生留有思考时间.)

  6、通过以上的实验、操作、计算,我们发现以直角三角形的各边为边所作的正方形的面积之间有什么关系呢?同学们还有什么疑问吗?

  (以直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积。如果学生提出我们讨论的都是边长为整数的直角三角形情况,那么边长是小数时,结论是否成立?教师就演示以下实验。)

  利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积之间也有如上关系吗?

  将网格线去掉,利用《几何画板》的度量工具可以看到SP+SQ=SR.

  (利用几何画板的高效性、动态性反映这一过程,让学生体会到更多的特殊情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻.)

  7、我们这节课是探索直角三角形三边数量关系.至此,你对直角三角形三边的数量关系有什么发现?

  (面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于下边的平方.)

  (这一问题的结论是本节课的点睛之笔,应充分让学生总结,交流,表达.)

  8、用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.一段紧张的探索过程之后,播放一段有关勾股历史的录音.

  (这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,

  激励学生发奋学习的情感.)

  9、阅读课本,提出问题

  (让学生有将知识内化为自己的知识结构的过程,教师巡视,对有困难的同学给予帮助,促进全班同学共同进步,体现面向全体的教学原则.)

  (三)课堂练习 巩固新知

  1.完成课本第45页练习第1题、第2题.

  (1)求下列直角三角形中未知边的长:

  (2)求下列图中未知数x、y、z的值:

  (充分利用课本,在前面阅读的基础上做课本上的练习题。提问学生口答,老师再规范板书一题.通过对勾股定理的基本应用,让学生知道已知直角三角形三边中的任意两边,可以求第三边.)

  2、 如图:一块长约80 m、宽约60 m的长方形草坪,被几个不自觉的学生沿对角线踏出了一条斜“路”,这种情况在生活中时有发生。请问同学们:

  (1)这几位同学为什么不走正路,走斜“路”?

  (2)他们知道走斜“路”比正路少走几步吗?

  (3)他们这样这样做,值得吗?

  (这是一道贴近学生生活的实例,在勾股定理的运用中渗透了德育教育.)

  (四)课堂小结 布置作业

  1、通过本节课的学习,大家有什么收获?有什么疑问?你认为还有什么要继续探索的问题?

  (学生总结本堂课的收获,可以是知识、应用、数学思想方法以及获取新知的途径等.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生的综合表达能力.如果学生没有提出继续要探讨的问题,教师可以引导学生思考:直角三角形的三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?再展示上课开始的问题:如果一个三角形的两条边分别长6和8,这两边的夹角确定了,你知道第三边的长是多少?这是我们今后将要探讨的内容,首尾呼应,激发学生不满足于现状,有不断提出新问题的欲望,即培养学生的创新意识.)

  2、作业

  (1)课本第471页第2题,并完成第45页的实验。

  (2)在以下网页中你可以找到有关勾股定理的丰富的内容,请你结合本节课的学习

  和从网上或书本上自学到的知识写一篇有关勾股定理的小论文,题目自定,一周后交给课代表并展示交流.

  n

  (作业的多元化、多层次,有利于全体学生的全面素质发展。)教育大全

  七、教学设计说明:

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.

  本节课从学生的原有认知出发提出问题,揭示这节课产生的根源,符合学生的认知心理.教科书设计了在方格纸上通过计算面积的方法探究勾股定理的活动,在此基础上,为了更好地展示这一探索过程,本节课先让学生回顾利用图形面积探求数学公式的经历,以此确定研究方法.继而设计了剪纸活动,从中引发学生的猜想,再利用几何画板这一工具带领学生从直角边分别为3和4的直角三角形到更多的任意直角三角形的研究,让学生充分经历这一观察、猜想、归纳的过程.其中SR的求法是探求过程中的难点,应让学生充分地思考、讨论、总结方法.通过对特殊到一般的考查,让学生主动建立由数到形,由形到数的联想,从中使学生不断积累数学活动的经验,归纳出直角三角形三边数量之间的关系.在教学中鼓励学生采用观察分析,自主探索,合作交流的学习方法,培养学生主动的动手,动脑,动口的学习习惯和能力,使学生真正成为学习的主人.

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.

  练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.题目的设计中渗透了德育教育,拓展了学生的空间思维,使得一节几何课全面地考查了学生的各方面思维.

  让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.

  作业为了达到提高巩固的目的,提供给学生网址是为了拓展学生的视野,以期学生能主动地探求对勾股定理更深入的认识.

《勾股定理》说课稿15

  各位专家领导,上午好:今天我说课的课题是《勾股定理》

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  1.【知识与能力目标】

  ⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  2. 【过程与方法目标】

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  3.【情感态度与价值观】

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  【教学重点】

  勾股定理的证明与运用

  【教学难点】

  用面积法等方法证明勾股定理

  【难点成因】

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  【突破措施】

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  【教法分析】

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  【学法分析】

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结

  1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。

  2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业

  课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

【《勾股定理》说课稿】相关文章:

勾股定理说课稿,勾股定理说课稿范文08-16

勾股定理的说课稿07-30

勾股定理说课稿04-27

《勾股定理》说课稿12-16

《勾股定理》说课稿02-14

勾股定理说课稿06-11

勾股定理的说课稿06-10

勾股定理说课稿精选06-13

勾股定理说课稿11-12

《勾股定理》的说课稿06-08