比的基本性质说课稿

时间:2023-11-02 16:40:12 说课稿 我要投稿

比的基本性质说课稿20篇

  在教学工作者实际的教学活动中,就难以避免地要准备说课稿,说课稿有助于提高教师的语言表达能力。那么应当如何写说课稿呢?以下是小编为大家整理的比的基本性质说课稿,欢迎阅读与收藏。

比的基本性质说课稿20篇

  比的基本性质说课稿1

  一、说教材

  (1)地位与作用

  《比例的基本性质》是人教版六年级下册第四单元第一节的内容,属于数与代数的知识。本节课主要介绍了比例的基本性质,是在学生已经认识了比和比例的意义,掌握了一些常见的数量关系的基础上来学习的,为学生接下来学习正比例、反比例以及比例的应用打下了良好的基础。

  (2)教学目标

  1、知识与技能目标:掌握比例各部分的名称,并理解比例的基本性质。

  2、过程与方法目标:通过自主探究、小组合作,培养学生的参与、体验意识,发展学生的运算能力及数感;

  3、情感态度与价值观目标:激发学生读书热情,并且喜欢学习数学。

  (3)重点、难点

  理解比例的基本性质,根据乘法算式写出正确的比例。

  二、说学情

  学生已经初步认识了比和比例的意义,具备一定的数感和运算能力。六年级的学生思维活跃、好奇心强,正从具体形象思维向抽象逻辑思维过渡。

  三、说教法和学法

  在教学中我将采用实践探究法为主,提问法和讲授法为辅的教学方法,引导学生自主探究、同桌交流和小组合作。

  四、说教学过程

  (一)图片导入,引入新课(5分钟)

  首先投影出示不同长宽比的故事书、科学书,请学生根据书本下方的长宽比数据写出比例,顺势揭题。

  (二)交流讨论,探求新知(20分钟)

  1、教师讲授,认识比例各部分名称

  多媒体课件出示比例:2、4:1、6=60:40,然后向学生讲解:组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内向。

  2、小组合作,探究比例的基本性质

  先独立思考,再小组合作,探究问题“你能发现内项和外项之间的关系吗?”,在比例里,两个外项的积等于两个内项的积。进一步帮助学生明确:这就是比例的性质。

  3、同桌交流,掌握比例的基本性质的字母表示形式

  思考:如果用字母表示比例的四个项即a:b=c:d,比例的'基本性质可以表示成什么?

  (三)巩固提升,深化知识(7分钟)

  基础题:判断课件显现的数据中哪组可以组成比例。

  提高题:根据乘法算式:2*4=1*8写出尽可能多的比例。

  (四)课堂小结,体验收获(5分钟)

  师生互动共同总结,培养学生的核心素养。

  (五)布置作业,拓展延伸(3分钟)

  为了帮助学生巩固所学知识,密切课程内容与日常生活的联系,我将布置以下两项作业:

  1、分层作业

  2、实践作业

  五、说板书设计

  比例的基本性质

  2、4:1、6 = 60 : 40

  外项 内项 内项 外项

  写成分数形式:2、4/1、6=60/40

  比例的基本性质:在比例里,两个外项的积等于两个内项的积。

  ad=cd或cd=ad

  图文搜集网络,如有侵权请联系删除。

  比的基本性质说课稿2

  一、教学内容分析

  《函数的增减性》是中职数学第二章第三节内容,是函数这一章的重要组成部分,函数这一章是中职数学的重点,并且有一定的难度,因此学好函数的性质显得十分重要。

  二、学生情况分析

  知识结构

  学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。

  能力结构

  通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。

  学习心理

  函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。

  本班学生特点

  本班为苹果园中学高一1班,为理科实验班,学生数学素养较好。

  三、教学目标分析

  根据本课教材特点、课程标准对本节课的`教学要求以及学生的认知水平,教学目标确定为:

  1.知识与技能:

  (1)从形与数两方面理解单调性的概念。

  (2)初步掌握利用函数图象和单调性定义判断。

  (3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。

  2.过程与方法:

  (1)通过对函数单调性定义的探究,渗透数形结合思想方法

  (2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。

  3.情感态度价值观:

  通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法。

  四、教学重难点分析

  根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性描述性概念的形成。

  五、教学方法分析

  因此,根据教学内容和学生的认知、能力水平,本节课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。

  六、教学过程

  1.创设情境、引入新课

  上山与下山的路线分析(上升、下降)

  学生:分析路线曲线的特点(学生描述)

  展示函数图象

  学生:观察图像、描述图像特征。

  教师:总结学生答案,纠正错误。

  据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数?

  结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。

  学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导。

  (二)初步探索、形成概念

  学生在老师的指导下得出:

  表征变化性态上的这种区别,是函数增减性.设函数y=f(x)在[a,b]上有定义.若随着在[a,b]上的x增加时函数值y也增加,那么把y=f(x)叫做是[a,b]上单调增加函数;反之,若随着在[a,b]上的x增加时函数值y反而减小,那么把y=f(x)叫做是[a,b]上单调减小函数.

  在[a,b]上单调增加函数或单调减小函数,通称[a,b]上的单调函数,区间[a,b]叫做单调区间.

  在此过程中要复习一下之前学习的区间的知识。

  求函数的单调区间,主要通过观察描述。

  我们来看图表示的函数.在整个区间[0,2]上函数并不是单调的,但在[0,π/2],[π/2,3π/2],[3π/2,2π]上,函数却依次是单调增加、单调减小、单调增加的,即这三个区间是图给函数的单调区间.

  在例题一的处理上要强调第三幅图函数在定义域内不是单调的,但是在“小区间”内是单调的。注意部分与整体的关系。同时在此回顾区间的概念。

  在有些问题上可以适当降低难度,比如例二的第三小题:

  y=1/x2.学生对于这一题的解决有很大的难度,本着从学生实际出发这一点,我们可以对它适当删减。其他题目注意区间的“闭”与“开”,以及与图像对应的关系。

  在学生板书是应该注意促进学习成绩稍差的学生学习积极性,这样还能是大家更好的发现不足,及时弥补,不再犯同样的错误。

  课堂小结可以让学生来完成,同时板书设计不宜太过复杂,要简洁明了,这样更有利于学生记忆,掌握所学知识。作业要尽量简单基础,不能让学生对于作业有种负担感,这样才能促使学生独立完成,减少学生抄袭作业的情况。

  总之这节课主要还是以学生的认知结构,和学习现况出发,坚持“学生为主题、教师为主导、训练为主线”的思想。

  比的基本性质说课稿3

  《分数的基本性质》一课是学生在充分认识了分数的意义和简单应用的基础上进行教学的。本课的教学目标是:学生通过自己的观察、操作等手段,理解并掌握分数的基本性质,并能根据分数的基本性质对分数进行正确改写。同时,理解分数与除法的内在联系,并能用除法中商不变规律来解释分数的基本性质又是本课教学的一个难点。为了使学生能更好地理解并掌握分数的基本性质,达到本课的教学目标。同时又能为后面的约分、通分和分数的加减法等知识的学习打下扎实的基础。我能根据教材的实际需要,按照新课程的要求精心设计。在实际教学中,我能努力做到以下几点:

  第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。为此,我设计了一个阿凡提的故事,让阿凡提给三个儿子分田地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的兴趣必然提高,学习的积极性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的田地实际上是一样多的,只不过是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二、发挥集体优势,培养学生的合作能力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,形成良好的人际关系,促进学生的`全面发展。为此,在观察等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。另外,在故事导入时,我也充分让学生进行讨论,看看三个儿子有没有吃亏。活跃了课堂气氛,提高了学生学习数学的兴趣,取得了不错的教学效果。

  第三、精心设计练习题,提高学生解题能力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅做累了学生同时也做怕了学生,消磨了学生学习的积极性。所以如何使学生愿做、乐做,同时又能达到教学目标,提高学生的数学综合能力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

  最新的小学数学五年级下册说课稿《分数的基本性质》:总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

  比的基本性质说课稿4

  各位评委、老师:

  你们好!我是尚市镇中心小学的王方。我说课的课题是《分数的基本性质》,接下来我将从说学生、说教材、说教法学法、说教学程序、说板书设计、说反思等几个方面来进行说课。

  一、说学生

  学生在学习本内容之前已经理解了分数的意义,明确了分数与除法之间的关系、商不变的性质等知识,这些为本课学习作了铺垫。而五年级的学生已具有一定的分析和解决问题的能力,能在教师的引导下完成“质疑—探索—释疑—应用”这一完整的学习过程。

  二、说教材

  1、教材分析:

  《分数的基本性质》是人教版小学数学五年级下册第四单元中的内容,在小学数学中起着承前启后的作用。它既与整数除法商不变的性质有着内在联系,也是后面学习约分、通分、分数计算的基础,在整个分数教学中也占有非常重要的地位。

  2、教学目标:

  结合对教材的分析,我确定了以下教学目标:

  知识与技能目标:

  理解和掌握分数的基本性质,能运用分数的基本性质改变分数的分母与分子,而使分数的大小不变。

  过程与方法目标:

  让学生经历分数基本性质的发现、归纳过程,培养学生小组合作的意识和能力,渗透迁移的教学思想。

  情感态度与价值观目标:

  让学生在主动探索新知识的过程中获得成功的体验,体会分数的基本性质在生活中的应用。

  3、教学重点和难点:

  重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  难点:学生通过猜想和动手验证,抽象概括出分数的基本性质。

  4、教学准备:

  学生准备三张形状大小一样的纸片、彩笔,老师准备课件、分数卡片。

  三、说教法学法

  教法:

  本着 “以学定教”的思想,我以自主探究为主线,以发展创新为宗旨,主要采用创设情境、引导探究、引导发现、组织讨论、组织练习等教法,让学生全程、全面、全心地参与到每一个教学环节中。

  学法:

  新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。当然,由于学生思维方式的.不同,教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。

  四、说教学过程

  为实现教学目标,我将本课的教学程序设计了以下四个环节:

  (一)创设情境,引发猜想

  首先我为学生带来一个《猴王分饼》的故事:猴王做了三个大小一样的饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同学们,哪只小猴分的饼最多?”来引发学生的猜想。

  设计意图:“疑是思之始,学之端”。这样设计,旨在把枯燥的数学知识贯穿于学生喜爱的故事情境中。引发学生的学习兴趣,激发他们学习的欲望。

  (二)自主探究,寻找规律

  活动一:动手实践,验证猜想

  让学生动手折一折(将每张纸分别平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(比较涂色部分的大小),发现三只小猴分的饼是一样多的。同时得到三个相等的分数: = =

  活动二:观察比较,发现规律

  引导学生带着问题观察这三个分数,并在小组内展开讨论:这三个分数的分子和分母都不相同,他们的大小却相等,你们能找出它们的变化规律吗?

  活动三:对比归纳,提示规律

  1、运用课件引导学生分别从左往右看,从右往左看:分数的分子和分母是怎样变化的?

  2、小组合作,归纳出分数的基本性质。

  3、自学教材,对比分析,并举例说明,着重理解为什么要“0除外”?

  活动四:应用巩固,体会规律

  我以学生为主角,把全班学生平均分成了两大组,请其中一组起立。站起来的学生人数占全班人数的几分之几?引导学生用不同的分数来表示。

  设计意图:通过四组活动,使学生养成自主学习的习惯和分析问题的能力。在活动中,通过多种评价方式,及时肯定并促进学生的学习。

  (三)多层练习,巩固深化

  1、例2:让学生运用分数的基本性质把 和 化成分母是12而大小不变的分数。

  2、明确《猴王分饼》的道理,并拓展延伸:如果小猴子要五块、六块、十块……又该怎么分呢?

  3、考虑到学生素质的差异,我设计了四组分层闯关训练。

  我的设计意图是:让学生运用所学的知识解决实际问题,实现预定的目标。还能使学有余力的学生有所提高,从而达到拔尖和减负的目的。

  (四)课堂小结,加深理解

  让学生畅谈收获,并用分数来表示本节课所体验到的收获与快乐。这样设计,不仅是对自己在课堂上知识获取的一个回顾,同时也评价了自己在课堂上的表现,对教师的教学行为与课堂的教学效果也给出了评价。

  五、说板书设计:

  板书设计突出了重点,有助于学生归纳、整理知识,形成知识网络。

  六、说反思

  反思本节课的教学,我认为教学设计体现了“趣”、“实”、“活”三个特点。故事引入,激发了学生的学习兴趣;通过折、涂、比等多种活动,为学生搭建了一个自主探究的活动平台;课上得富有实效,学生体验到了成功的乐趣。

  各位领导、老师们,我的说课到此结束,谢谢大家!

  比的基本性质说课稿5

  各位评委:大家好,今天我说课的内容是人教版小学六年级数学下册第三单元第一课时《比例的意义和基本性质》。下面我将自己的设计理念、对教材的解读、对目标的预设以及教学流程和板书设计向大家作简要的阐述。

  [设计理念]

  这是一节概念课,但我并不是对知识简单的复述,而是通过学生的探究活动,展现学生“活生生”的思维过程。让学生通过观察比较,发现规律,从特殊到一般抽象概括出意义和性质,培养了学生主动探索知识和概括知识的能力。

  [说教材]

  《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

  [说教学目标]

  1、知识技能目标:使学生了解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  2、教学思考与解决问题目标:充分发挥多媒体教学的优势,启发学生的创造性思维,培养他们探索和解决问题的能力。

  3、情感态度目标:激发学生的学习兴趣,引导学生自主参与知识探究全过程,培养学生初步的观察,分析,比较,判断,概括的能力,发展学生的思维。

  [说教学重点、难点]

  重点:理解比例的意义,探究比例的基本性质。

  难点:探究比例的基本性质和应用意义,判断两个比能否组成比例。

  [说教法、学法]

  说教法

  我采用”自主探究”的教学模式,贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验,组织,指导并参与学生的探究活动,允许学生对所学知识有不同的理解和体验,提高学生的科学文化素质和技能素质。

  说学法

  根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

  [说教学过程]

  一、创设情境引发思考

  通过多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的制作有特定的制作标准,然后让学生去思考,猜测。

  二、探究新知主动参与

  这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:比例的意义

  1、根据学生的发现,让学生任意地选择其中的.两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。

  2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义——表示两个比相等的式子,叫做比例。

  3、揭示了比例的意义后及时进行练习(p33的做一做)。判断几组比能否组成比例,为什么?让学生说理巩固概念。

  4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,也可以是每两面国旗长之比,宽之比)在这里的时候适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。

  第二部分:比例的基本性质

  1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。

  2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果?再让学生归纳出比例的基本性质——在比例里,两个外项的积等于两个内项的积,然后探讨写分数形式,归纳“交叉相乘”积相等。

  3、揭示了比例的基本性质后及时进行练习(p34的做一做)。应用比例的基本性质,判断下面两个比能不能组成比例,为什么?让学生说理巩固概念。

  4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。

  三、巩固练习形成技能

  基础练习

  1、写两个比值是4的比,并组成比例;写出两个比值是1/4的比,并组成比例;这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)

  2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。

  发展练习:

  1、把乘积相等的式子改写成比例。(6×16=8×123×40=8×15)这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。

  2、如果5a=3b,那么a:b=():()这个练习意图是让学生在有未知数的方程中学会运用比例的基本性质解决问题。

  四、课堂小结回归目标

  这堂课我们学习了什么,你有什么收获?

  [说板书设计]

  通过简单明了的数学式子反应出比例的意义和比例的基本性质。

  比的基本性质说课稿6

各位老师:

  大家好!我今天说课的内容是人教版五年级上册第五单元第64-65页“简易方程”的《等式的性质》。我将从教材分析、学情分析、教学方法、教具准备、教学过程、板书设计几个方面来进行说课。

  一、教材分析:

  在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。

  本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的.性质解简单的方程”。根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:

  知识与技能:通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

  过程与方法:利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。

  情感、态度与价值观:培养学生观察与概括、比较与分析的能力。

  教学重点:掌握等式的基本性质。

  教学难点:理解并掌握等式的性质,能根据具体情境列出相应的方程。

  教学方法:启发式教学;自主探索、观察、归纳、合作学习新知。

  教学准备:天平、砝码、多媒体课件。

  二、学情分析

  新课标强调学生是数学学习的主人。而简易方程是新课标“数与代数”中一个重要部分。学生已经了解了方程的意义并且初步学会了列简单方程,而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。

  三、教学方法

  《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法我采用了观察法、讨论法、探究法和问答法,让学生通过实验观察和分组讨论探究学习。并且通过大量的练习问答来巩固知识点的掌握运用。

  四、教学过程

  我把教学过程分为以下四个环节:情景引入,激发兴趣—引导探究、合作交流—巩固练习、运用新知—课堂小结。

  (一)情景引入,激发兴趣

  以观察天平图激发学生学习兴趣,引入天平并通过天平中的平衡引入课题。

  (二)引导探究、合作交流

  1.具体情境,感受天平平衡

  通过课件展示情境图引导学生小结出等式并用字母表示。

  2.猜想假设、小结规律

  先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。

  3.观察思考、总结发现

  通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。

  4.假设数据、验证规律得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。

  5.口算练习、应用规律

  通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。

  (三)巩固练习、运用新知

  通过填空练习巩固由浅入深的运用等式的性质解决实际问题。

  (四)课堂总结

  在课结束前让学生分别谈谈自己的收获以强化巩固所学知识。并且布置作业。

  比的基本性质说课稿7

尊敬的评委、老师们:

  大家好!

  我今天说课的内容是:苏教版小学数学六年级下册第三单元例4《比例的基本性质》,下面我将从教材、教法、学法、教学过程、板书设计几个方面进行分析。

  一、教材

  本节教材是在初步理解了比的意义和性质、比例意义的基础上进行教学的.,同时又是后面解比例的基础。根据以上分析,我把本课教学目标设计为:

  (1)知识和技能目标:使学生认识比例的各部分名称,理解并掌握比例的基本性质。

  (2)过程和方法目标:使学生主动经历自主探索、合作交流的过程,通过观察、分析、推理等思维活动来探究比例的基本性质;培养学生的归纳、概括和探究能力。

  (3)情感和价值观目标:使学生在探索比例的基本性质的过程中,进一步体会不同领域数学内容知识之间的联系。

  由此,我确定本节的教学重难点是理解并掌握比例的基本性质。

  教具准备:多媒体

  二、教法、学法

  “教师是学生学习的组织者、引导者、合作者”根据这一理念,我遵循了“激—导—探—放”的原则,引导学生利于已有的知识基础,采用观察分析、猜测验证、运用迁移等教学方法组织教学。

  自主探索与合作交流是学生学习数学的重要方式。因此我引导学生通过操作、观察、思考等方式促使学生多种感官参加,激发学生兴趣。

  三、教学过程

  立足于学生的学及本节课的教学目标,我将教学过程设计为四个环节:

  (一)复习旧知,导入新课。

  (二)自主探究、合作交流。

  (三)巩固练习,拓展应用。

  (四)总结反思,提升认识。

  比的基本性质说课稿8

  《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

  知识与技能:

  1. 感受生活中存在的不等关系,了解不等式的意义。

  2. 掌握不等式的基本性质。

  过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

  情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

  教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

  教法与学法:

  1. 教学理念: “ 人人学有用的数学”

  2. 教学方法:观察法、引导发现法、讨论法.

  3. 教学手段:多媒体应用教学

  4. 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

  下面我将具体的教学过程阐述一下:

  一、创设情境,导入新课

  上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

  世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

  (此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

  紧接着进一步提问:若人数是x时,又当如何买票划算?

  二、探求新知,讲授新课

  引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

  接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

  (1)a是负数;

  (2)a是非负数;

  (3) a与b的和小于5;

  (4) x与2的差大于-1;

  (5) x的4倍不大于7;

  (6) 的一半不小于3

  关键词:非负数,非正数,不大于,不小于,不超过,至少

  回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的`取植

  难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  反馈练习:用一个小练习巩固三条性质。

  如果a>b,那么

  (1) a-3 b-3 (2) 2a 2b (3) -3a -3b

  提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

  引出让学生归纳,等式与不等式的区别与联系

  三、拓展训练

  根据不等式基本性质,将下列不等式化为“<”或“>”的形式

  (1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3

  再次回到开头的门票问题,让学生解出相应的x的取值范围

  四、小结

  1.新知识

  一个数学概念;两种数学思想;三条基本性质

  2.与旧知识的联系

  等式性质与不等式性质的异同

  五、作业的布置

  以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

  “让学生主动参与数学教学的全过程,真正成为学习的主人”

  比的基本性质说课稿9

  我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。

  本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。

  本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。

  以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。

  根据以上分析。我认为本节课的教学目标有以下几点:

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。

  3、培养学生在合作中逐步形成评价与反思的意识。

  4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

  我认为本节课的教学重点是:理解、掌握分数的基本性质。

  难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。

  下面说说我的教学过程:

  我将本课的教学设计以下几个环节,

  一、设疑激趣,引入新课

  教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。

  首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

  这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

  二、自主探索,学习新知

  新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

  1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

  2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

  学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)

  3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

  师:谁能用一句话把这个变化规律叙述出来呢?

  生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。

  师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的`见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

  5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

  结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

  6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。

  教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

  三、分层练习,巩固深化

  只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

  1、涂一涂练习14,第1、7题。

  因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

  2、说一说完成练习14,第8题

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  3、想一想:第5、9、10题(选择一题做为作业)

  在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

  四、畅谈收获,小结全课

  让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

  整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

  比的基本性质说课稿10

  今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。

  一、本课的教学理念有:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。

  二、说教材

  《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:

  1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。

  2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。

  本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。

  三、说教法

  树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。

  四、说学法

  1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。

  五、说教学程序

  一、设疑激趣,引入新课

  教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。

  首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

  这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

  二、自主探索,学习新知

  新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

  1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

  2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?

  学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。

  3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

  师:谁能用一句话把这个变化规律叙述出来呢?

  生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。

  师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

  5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

  结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的.注意。

  6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。

  教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

  三、分层练习,巩固深化

  只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

  1、涂一涂练习14,第1、7题。

  因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

  2、说一说完成练习14,第8题

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  3、想一想:第5、9、10题(选择一题做为作业)

  在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

  四、畅谈收获,小结全课

  让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

  整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

  比的基本性质说课稿11

  各位老师:

  大家好!我今天说课的题目是《比的基本性质》。

  一、教材结构与内容简析

  本章是九年义务教育数学六年级第一册第三章比和比例,之前已经学习了分数,通过本章的继续探讨将为今后学习正比例函数和反比例函数等打下必要的基础。我讲的是第三章第二节比的基本性质,这一节分两课时,我主要说的是第一课。这一课是在学生已经掌握了比的意义,比和分数、比和除法的关系以及分数的基本性质和除法的商不变性质的基础上进行教学的,因此在比和比例这章中起承上启下的作用。

  二、教学目标:

  根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:

  知识与能力:

  1、让学生经历发现、总结比的基本性质的过程,在感受和理解比的基本性质的发生和发展的过程中培养学生的创新精神;

  2、使学生在小组探究中掌握运用比的基本性质把一个比化成最简单的整数比的方法,培养学生解决简单实际问题的能力;

  3、尊重学生的个性,注重算法多样化,使学生在交流、争论中培养学生的独立思考能力和创造能力。

  过程与方法:

  1、经历比的基本性质的探索过程,引导学生初步认识从“特殊”到“一般”的规律,将未知转化为已知,合理运用归纳思想、整体思想,发展学生的逆向思维,渗透探索问题的思想与方法;

  2、在形成猜想与作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。

  情感态度与价值观:

  1、本节课突出学生的主体地位,让学生高高兴兴地进入数学世界,在探索中激发兴趣,从发现中寻找快乐;

  2、培养学生做事、待人应具体问题具体分析的良好习惯;

  3、由旧知识引入新知识,培养学生应用数学的意识,并激发学生学习数学的兴趣;

  4、通过由旧到新、由新到旧的训练发展学生主动探索,合作交流的意识。

  三、教学重点、难点:

  重点:比的基本性质及运用比的基本性质进行化简,通过同学们自主探究,突出重点;

  难点:运用比的基本性质计算,通过师生交流互动突破难点。

  四、教法与学法:

  教法:在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:有分数的基本性质作为基础,我采用自主探究,合作交流的教学方法。

  学法:从猜想——合作交流验证——发现,即在教学过程中创设教学情景,注重教师的导向作用和学生的主体作用。

  五、教学过程与设计意图:

  1.创设生活情境,以激发学生的探索欲望

  上课开始,我询问学生:“同学们喜欢喝菓珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的菓珍,这不小明的妈妈给小明准备了三杯菓珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克菓珍;第二杯200毫升的水,20克菓珍;第三杯400毫升的水,40克菓珍.同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。

  (这样的设计意图是因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)

  2.引导学生发现规律,总结比的基本性质

  同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。屏幕出示文字内容。我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。

  (这样的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)

  接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的.基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。

  (这样的设计意图是让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)

  3.理解最简整数比

  通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互素。

  (这样的设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)

  4.教学例题,加深对知识的理解

  例1 化简下列各比:

  (1)(2) 0.65:1.3 (3) :(4)1.25升:375毫升

  化简之后让学生小结(1)分数的化简,用约分方法就可以;

  (2)两个小数的比,通常先化成整数,再化简;

  (3)带分数与分数的比,先将带分数化成假分数,然后再化简;

  (4)两个同类量的比,单位不统一时,先化单位一致,再化简。

  (这样的设计意图是试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力。)

  5.实践练习,巩固知识

  练习1 小蜗牛找家(口答)

  六个家分别是6:30, 0.1:0.4, 2:6, 2:8, :1, 16:20

  五个蜗牛分别是4:5, 1:3, 1:4, 1:5, 2:3找到后连接起来。

  (这样的设计意图是使原来枯燥乏味的数学题有了“趣味性”,使学生对数学产生浓厚的兴趣和亲切感,从而调动课堂气氛。)

  练习2 填空

  1、3:8=(3×2):(8×□)

  2、15:10=(15÷□):(10÷5)

  3、5:3=(5×□):(3×□)

  (这一部分的设计意图是使学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。)

  练习3判断下列各题

  (1) 16 ︰4的最简比是4。 ( )

  (2) 5︰2.5 的比值是2。 ( )

  (3) 6 ︰0.3 的最简比是20 ︰1。 ( )

  (4)比的前项和后项都乘或都除以相同的数,比值不变。 ( )

  (这一部分的设计意图是题目的多样性使学生更加深刻的理解比的基本性质的概念。)

  练习4化简下列各比

  (1)48:64 ; (2)4.6:6.9 ; (3)220cm:1.1m ; (4)1.5升:720毫升

  (这一部分的设计意图是进一步巩固知识,使学生清楚化简比它是为了得到一个最简单的整数比,结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数或整数的形式。求比值是为了得到一个数,结果可以写成分数、小数,也可以是整数。)

  拓展练习:

  为迎世博完成一批纪念品制作,甲单独作20天完成,乙单独作30天完成。

  (1)写出甲、乙完成这批纪念品制作所用的时间比,并化简。

  (2)写出甲、乙完成这批纪念品制作的工作效率比,并化简。

  (这一部分的设计意图是让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。)

  6.课堂小结,回顾所学知识

  比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。

  (这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。)

  以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。

  比的基本性质说课稿12

  分数的基本性质

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。

  2.培养学生观察、分析、思考和抽象、概括的能力。

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。

  教学过程

  一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

  二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的.大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

  (2)观察 例2.比较 的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质

  1、观察前面两道例题,你们从中发现了什么变化规律? “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”

  2、为什么要“零除外”?

  3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质” (板书:“基本性质”)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

  (1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在里填上适当的数。

  4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。

  六、课堂总结

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

  比的基本性质说课稿13

  一、说教材

  《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?

  4.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的.基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

  三、说教法

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、3/6、 4/8这些分数有什么关系?

  (学生会说这四个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=3/6=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/5 1/6 4/9 4/6 12/16

  3/4 2/3 20/25 6/36 8/18

  比的基本性质说课稿14

  我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。

  一、教材分析:

  1.教材的地位和作用

  本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

  2.教学目标的确定

  教学目标分为三个层次的目标:

  ⑴知识目标:主要是理解并掌握不等式的三个基本性质。

  ⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的'性质的能力。

  ⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。

  3.教学重点和难点

  不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。

  二、教学方法、教学手段的选择:

  本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。

  三、学法指导:

  鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。

  例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

  四、(主要环节)教学流程:

  1.创设情境,复习引入

  等式的基本性质是什么?

  学生活动:独立思考,指名回答.

  教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

  请同学们继续观察习题:

  观察:用“”或“”填空,并找一找其中的规律.

  (1)55+2____3+2,5-2____3-2

  (2)–1,-1+2____3+2,-1-3____3-3

  (3)6>2,6×5____2×5,6×(-5)____2×(-5)

  (4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

  学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

  五、教法说明

  设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

  不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

  学生活动:观察思考,猜想出不等式的性质.

  教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

  师生活动:师生共同叙述不等式的性质,同时教师板书.

  不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

  对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

  学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.

  六、教法说明

  观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?

  师生活动:由学生概括总结不等式的其他性质,同时教师板书.

  不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

  不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

  师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

  学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.

  强调:要特别注意不等式基本性质3.

  实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

  学生活动:思考、同桌讨论.

  归纳:只有乘(或除以)负数时不同,此外都类似.

  (1)如果x-54,那么两边都可得到x9

  (2)如果在-78的两边都加上9可得到

  (3)如果在5-2的两边都加上a+2可得到

  (4)如果在-3-4的两边都乘以7可得到

  (5)如果在80的两边都乘以8可得到

  师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.

  2.尝试反馈,巩固知识

  请学生先根据自己的理解,解答下面习题.

  例1 利用不等式的性质解下列不等式并用数轴表示解集.

  (1)x-7>26(2)-4x≥3

  学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

  教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

  七、教法说明

  解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

  (四)总结、扩展

  本节重点:

  (1)掌握不等式的三条基本性质,尤其是性质3.

  (2)能正确应用性质对不等式进行变形.

  (五)课外思考

  对比不等式性质与等式性质的异同点.

  八、布置作业

  比的基本性质说课稿15

  一、教学内容的说明

  《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

  二、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

  三、教学目标

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

  2.培养学生观察、比较、分析、概括等方面的能力。

  3、通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

  四、教学重点、难点

  教学重点:

  理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  教学难点

  学生通过猜想和动手验证,抽象概括出分数的基本性质。

  五、教法学法的选择

  教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、教学过程的设计

  为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“1.创设情境——引发思考2.引出新知——动手实践3.初步感知——引导观察4.发现规律——巩固练习5.课堂小结——加深理解 ”五个环节。

  一、创设情境,引发思考

  1、上课开始我引入了故事:有一天妈妈给淘气做了一个香喷喷的大蛋糕,蓝猫看见了也想吃。淘气说:我只有一个蛋糕,要不我分给你一些吧,我有三种分法,请你选择一种:

  第一种:把蛋糕平均分成2份,送给你其中的一份,也就是这个蛋糕的1/2;

  第二种:把蛋糕平均分成4份,送给你其中的2份,也就是这个蛋糕的2/4;

  第三种:把蛋糕平均分成8份,送给你其中的4份,也就是这个蛋糕的4/8。

  选择哪一种分法吃到的蛋糕最多呢?

  同学们,如果你是蓝猫,你会选择哪一种呢?

  先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

  二、对于分数基本性质的理解

  分为3个层次 借助长方形纸条来理解。通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)——总结完善分数的基本性质。

  1、借助长方形纸条理解

  这里分成两份层次(1)借助直观图理解(2)分析分数理解

  (1)借助直观图理解。

  首先,引导学生在同样大的长方形纸条上分别表示出、、想一想为什么为什么分的份数不一样,取的份数也不一样可他们最后分的大小却会相同呢?

  (2)借助分数理解

  在学生清楚的知道了三个分数为什么会相等后,从图在回到抽象的三个分数上,说一说, 他们的分子、分母是怎样变化的。说明白后,明确分的份数就是分母,取得分数就是分子,在板书上改为“分母扩大了两倍、四倍,分子也相应扩大了两倍、四倍,分数大小不变”

  2、通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)

  总结规律是在大量的直观的数据或练习的`基础上实现的。为了给学生便于学生总结,我设计了“你还能举出一个和3/6大小相等的分数吗?你是怎样想的?如果想让分子是9,分母是? 想让分母是18,分子呢?”一方面学生利用了分数的基本性质做了一些基础的题,另一方面在叙述你是怎样想的时候,其实也是对分数基本性质的概括。这样当“用一句话总结你的发现”的时候,在语言叙述上就没有什么障碍了。

  3、关于“同时”“相同的数““0除外”的理解

  两种预设,在总结出“分数的分子、分母同时乘或除以相同的数,分数的大小不变。”让学生说说自己的理解,如果有有学生提出就上提出的学生说一说,如果没有主动提出,就通过做个练习题,“2/3哪样列式行吗?为什么?”。让学生说一说通过做这两个题你有什么想提醒大家的。

  四、巩固练习

  根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。其次是稍有变动的,需要结合分数与除法关系完成的变式练习。

  最后为了满足优等生的需要还涉及了以下练习

  5/9的分母加9,分子加几,分数的大小不变。

  板书: 分数的基本性质

  1/2==2/4=4/8

  分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。

  比的基本性质说课稿16

  下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的'学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式 中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  六、教学设计说明

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  比的基本性质说课稿17

  今天我向大家介绍的是数学六年级新教材第一章“分数”中的第二课时“分数的基本性质”。在本堂课的教学设计中,试图突出以下两个特点:

  (1)逐步引导学生实现学习方式的转变:由学生习惯于课堂上听教师讲授为主的学习方式,转变为学生自主学习探究的学习方式。教师为学生提供一个发展的空间,引导学生自己通过动手操作、观察猜测、说理验证等学习环节,运用自主探索、合作交流等学习方式,去探索,去发现,去体验,教师作为指导者给予启发、点拨。希望通过这样的设计,能逐步引导学生形成并且正在逐步形成积极思考、自主探索、相互合作、严谨求实的品质。

  (2)强调知识发生的过程,加强数学思想方法的渗透:由学生熟悉的给定理、做练习的数学课模式,转变为突出知识发生过程,强调数学思想方法的数学学习过程。通过给学生设置一个具体的情境问题,激起学生的求知欲望,教师引导学生探索发现其中的数学规律,并用已经学过的知识和方法去尝试说理验证。通过这样的数学学习过程,学生能亲身体验科学研究的一般过程,并从中体会科学探索的严谨品质,同时在要求学生说理验证的过程中可以启发学生建立新旧知识之间的联系,实现知识点的增长和迁移的特点。

  在前一年我曾执教过六年级数学,通过这次的备课,我发现:在“分数的基本性质”这一课的教学安排中,新老教材对知识的发生和形成过程的处理方法有较大的区别。据我个人的观点,老教材在引入时有针对性的复习分数与除法的关系和除法中商不变的性质,之后通过类比来实现知识点的迁移和增长,这样的设计安排学生能较好的体会到各知识点之间的内在联系,学习的数学概念有较强的系统性;新教材则更强调学生通过自身的努力,经过动手操作实践的过程,来获得亲身探究的直观感受和体验,之后再设法把感性认识上升到理性思考的高度,这样的设计安排突出的特点是学生有更多的动手操作机会,能留下强烈的直观感受,对培养学生逐步形成自主探究的良好的学习方式有很大的帮助。教学目标:在理解分数意义的基础上,通过操作、观察,探索分数的基本性质,体验分数性质的“探究发现——说理检验”的学习过程,并会运用分数的基本性质将一个分数变化为分母(或分子)不同而大小保持不变的'分数。学会面对新问题时,敢于面对、积极探索、发现规律,并能从原有知识中找到理论依据,体会新旧知识间的内在联系,通过自身的努力,实现知识点的迁移和增长。通过数学课的学习活动,尽快熟悉新同学,逐步养成认真倾听同学意见、相互合作、相互交流、积极探索的品质。

  教学过程:

  一创设情境,引出问题,引导探索,猜测规律提出问题:一张涂色的纸,涂色部分占这张纸的3/4。请同学们分别用这样的纸折成不同等分的图案,看看你们能发现什么结论呢?通过教师的引导,学生们可以发现:在这些大小相同、不同等分的纸中,涂色部分分别占纸的3/4、6/8、9/12、12/16,这些分数的大小是相等的,即:3/4=6/8=9/12=12/16。由分数3/4的分子、分母分别同乘以2、3、4可得分数6/8、9/12、12/16。而分数12/16、9/12、6/8的分子、分母分别同除以4、3、2可得分数3/4。鼓励学生大胆猜测。由折纸这样具体的情境问题来引发学生的思考,既能激发学生的学习兴趣,学生又能真切的体会到数学就在我们身边;安排动手操作的学习环节,之后通过观察和找规律来进行探究性学习,符合六年级学生的认知程度,能让他们体会到数学学习的乐趣。折纸这样的操作虽然看似简单,其实能反映出很多数学问题,例如通过折纸可以帮助学生体会图形的翻折对称中隐含的图形特征和边角的数量关系。我们应该尽量挖掘类似的简单有效的方法,让学生的数学学习过程手脑并用、轻松有趣。在探索过程中,教师的引导是非常重要的一个的环节,尤其是如何设问。

  在此,我就提出几个设问仅供大家参考。双色纸上有几个小长方形?绿色部分占这张纸的几分之几?你能将它折成几个大小相同的小长方形?绿色部分分别占了几分之几?这些分数有什么关系?这些分数之间有什么规律?在本节课之前,学生对分数的意义、分数与除法的关系已经有了初步的认识,在说理过程中,会很自然的运用到分数和除法的关系,以及除法中商不变的性质。分数和除法的关系就是前一节课的学习内容,学生印象还比较深刻,较易联想起来;除法中商不变的性质可能学生一时之间不容易回想起来,但它和分数的基本性质相似性极高。安排这样的说理环节,可以使学生体会到新旧知识之间的内在联系,体会到学习的过程就是知识点的迁移和增长过程。三运用性质,巩固提高例题1试举出几个与分数18/48大小相等的分数。教材上是“试举出三个与分数2/5相等的分数”。做改动的目的有两个:一是学生可以从中体会分子、分母不但可以同乘一个数而且可以同除一个数;二是不明确写几个,来引发学生思考这样的分数可以写几个?例题2把2/5和8/60分别化成分母是15且与原分数大小相等的分数。练习1在括号内填上适当的数,使等式成立:

  (1)9/15=3×()/5×()

  (2)2×()/9×()=8/()

  (3)5×()/2×()=()/14

  (4)15÷()/20÷()=()/42

  试各写出三个与下列分数分母不同而大小相等的分数:

  (1)1/4

  (2)5/7

  (3)4/6

  (4)10/43

  分别用数轴上的点表示分数1/2,2/4,4/8,你能得到什么结论?4把2/3和8/30分别化成分母是15且大小相等的分数。5在括号中填上适当的数:

  (1)1/4=()/12

  (2)3/7=()/56

  (3)6/5=30/()

  (4)()/10=4/20

  (5)36/24=()/8

  (6)7/35=1/()

  (7)18/()=6/12

  (8)20/16=5/()

  四、课堂小结

  比的基本性质说课稿18

  一、说设计理念

  1、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  2、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容:

  《分数的基本性质》一课是苏教版五年级下册第六单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变规律等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。要注意加强整数商不变规律的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、教学目标:

  (1)理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变规律的关系。

  (2)能运用分数的基本性质把一个分数化成指定分母或分子而大小不变的分数。

  (3)经历探索分数基本性质的过程,感受“变与不变”数学思想方法。培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。

  3、教学重点:

  理解和掌握分数的基本性质。

  4、教学难点:

  学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

  1、实际操作法:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、启发式教学法:运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  3、直观演示法:验证时,先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  四、说学法

  学生在学习分数的基本性质时,引导学生采用猜想验证法、操作体验法,从学生已有的知识经验出发,复习商不变的规律及分数与除法之间的关系,学生自然就想到分数中是否也存在类似的规律,然后让学生提出,进行验证。

  古人云:“授之以鱼,不如授之以渔。”教师只是学生的组织者、合作者和引导者,学生才是学习的小主人。新课程提倡:过程重于结果。在探索和操作中我采用了观察、归纳和引导发现法。

  五、教学过程:

  本节课我打算采用“创设情境,感知规律--研究素材,猜测规律--讨论交流,验证规律--巩固拓展,应用规律”的教学模式进行教学。

  1.创设情境,感知规律。

  首先创设了动手操作的情境:让学生折一折纸条。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.研究素材,猜测规律。指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的'理解,促使学生的感性认识逐步理性化。

  3、讨论交流,验证规律

  我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、3/6、4/8这些分数有什么关系?

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (3)从"1/2=2/4=3/6=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  最后,让学生完整地概括出分数的基本性质。这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  4.巩固拓展,应用规律。为了加深学生对分数基本性质的理解,激发学生的学习兴趣,我设计了一些练习让学生强化训练,巩固教学效果。

  比的基本性质说课稿19

  一、教材简析和教材处理

  1.教材简析

  《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

  2.教材处理

  以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。

  二、教学课件设计意图

  场景一:故事引人,揭示课题。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。

  一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

  场景二:发现问题,突出质疑。

  既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  3.引入新课:下面算式有什么共同的特点?学生回答后

  它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。

  (2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

  (3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

  (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

  (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的'大小不变。

  (6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

  3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。

  思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?

  通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

  如:

  [有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]

  场景四:多层练习,巩固深化。

  1.口答。

  学生口答后,要求说出是怎样想的?

  2.判断对错,并说明理由。

  运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。

  3.在下面()内填上合适的数。

  练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。

  比的基本性质说课稿20

  教材分析:

  比例的知识在工农业生产和日常生活中有着广泛的应用。《比例和比例的基本性质》是一节概念课,这部分知识是在学习了比的知识和除法、分数等的基础上进行教学的,而本节课内容是第二单元的第三课时,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,是利用比例知识解决实际问题的先决条件。

  教学目标:

  1、体会国旗中隐含的数学规律,丰富学生关于国旗的知识,培养学生爱国旗,爱祖国的情感;

  2、结合不同规格的国旗的典型事例,经历认识比例和比例的基本性质的过程;

  3、认识比例,知道比例的内项和外项。理解并掌握比例的基本性质,会判断两个比是否成比例。

  教学重点:

  理解比例的意义,会运用比例的基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学理念:

  1、让学生在具体情境中学习数学,理解数学概念;

  2、让学生经历知识的发生、发展过程,自主构建数学知识;

  3、注重解决实际问题,培养学生的应用意识。

  一、创设情境,提出问题

  三、巩固练习,加强应用

  二、合作交流,自主建构

  (重点)

  教学设计三环节

  二、合作交流,自主建构

  活动一,教学比例的意义;

  活动二,教学比例的基本性质;

  兔博士网站中提供的关于国旗通用的五种规格:

  (1)长288cm,宽192cm;

  (2)长240cm,宽160cm;

  (3)长192cm,宽128cm;

  (4)长144cm,宽96cm;

  (5)长9 6cm,宽6 4cm;

  请你任选两种规格的国旗,计算一下它们长和宽或宽和长的比值,小组说说你发现了什么?

  初步感知比例的意义:

  把比值相等的两个比写成一个等式,像这样

  240:160=144:96

  240/160=144/96

  像这样,表示两个比相等的式子,叫做比例;

  组成比例的四个数,叫做比例的项;

  中间的两项叫做比例的内项;

  两端的两项叫做比例的'外项。

  总结归纳比例的概念

  探索比例的基本性质:

  合作交流:

  试着把上面比例中的两个外项,两个内项分别相乘,你发现了什么?

  在比例里,两个内项的积等于两个外项的积这叫做比例的基本性质。

  240:160=144:96

  160X144

  240 X 96

  内项积=外项积

  师生共同总结:

  基础练习一:

  判断下面哪组中的两个比可以

  组成比例。

  (1)7:3和21:9

  (2)0.5:24和1.5:3.6

  (3)8:6和1/6:3/4

  (4)3/10:1/4和6/25:1/5

  基础练习二:

  上午10时整,在空地上直立了6根不同长度的竹竿。测得这些竹竿的高度和影子的长度如下表:

  竹竿高度与影长的比

  3

  2.5

  2

  1.5

  1

  0.5

  影子长度(米)

  6

  5

  4

  3

  2

  1

  竹竿高度(米)

  (1)写出竹竿高度以与影子长度的比,填在上表中。

  (2)根据上面的结果写出三个比例。

  拓展练习:

  试着利用8的四个因数组成四个比例。

  利用比例的基本性质填空:

  3:2=( ): 6

  ( ):12=2:6

  课后反思,教学相长:

  今后教学中,我还要注意以下几点:

  一、是注意学生数学语言表达的完整性。

  二、是对学生要及时给予评价,全面了解学生的数学学习过程。要关注他们在数学学习活动中表现出来的情感与态度,让学生建立数学学习的信心。

  三、是灵活驾驭课堂的即时生成,要善于捕捉学生们的闪光点。

  表示两个比相等的式子叫做比例。

  240:160=144:96

  160X144

  240 X 96

  比例的基本性质:内项积=外项积

  板书:

  比例和比例的基本性质

  不妥之处,敬请各位领导、老师批评指正。

  谢谢!

【比的基本性质说课稿】相关文章:

比的基本性质说课稿12-17

比的基本性质说课稿11-11

分数的基本性质说课稿07-16

分数基本性质说课稿07-06

比例的基本性质说课稿01-14

分数的基本性质说课稿03-08

《分数的基本性质》说课稿06-09

《比例的基本性质》说课稿01-05

等式的基本性质说课稿09-22

比的基本性质说课稿推荐10-12