
【推荐】数学说课稿范文六篇
在教学工作者开展教学活动前,时常需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿要怎么写呢?下面是小编收集整理的数学说课稿6篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿 篇1
一、教材分析:
苏霍姆林斯基曾说过:"教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少".可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
(一)教材的地位与作用。
《运用公式法——平方差公式》是北师大版义务教育课程标准实验教科书《数学》八年级(下)第二章分解因式的第三节内容。分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。分解因式的变形不仅体现了一种"化归"的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
(二)教学重难点、关键:
1、重点:掌握公式法中的平方差公式进行分解因式。
2、难点:灵活地运用公式法或已学过的提公因式法进行分解因式,正确判断因式分解的彻底性。
3、关键:把握住分解因式的方法如提公因式、公式法等,在对多项式进行分解因式时,首先应考虑提公因式,而且应该提取彻底。
二、目标分析:
参照《数学课程标准》的要求及教材的特点和学生的认知水平与数学思维特征,确定本节课的教学目标如下:
(一)知识与技能目标:
会用平方差公式进行因式分解,并进一步感受整式乘法与分解因式的互逆关系。
(二)过程与方法目标:
经历通过平方差公式逆向运算的推导得出用公式分解因式的方法的过程,发展学生的逆向思维和推理能力。
(三)情感与态度目标:
学生通过自己的实践去领悟、分析、总结技能技巧,树立学习的自信心;通过独立思考和交流讨论发现问题情境中的变形关系,培养学生逆向思考问题的习惯与应用意识,并渗透转化的思想和矛盾的对立统一观点。
三、教学过程:
根据新的教育理念和教学原则,我以学生为中心,设计教学流程如下:
(一)创设情境,激发兴趣;(二)分析问题,发现新知;
(三)合作交流,探索新知;(四)例题探究,体验新知;
(五)随堂练习,巩固新知;(六)归纳小结,形成体系。
教学过程 设计意图
(一)创设情境,激发兴趣
活动1:你知道下列算式的结果吗?
(1) 6782-3782 (2) 852-842
你想知道怎样才能算的快吗?
活动2:将边长为a的正方形四角各剪去一个边长为b的小正方形,观察你剪剩下的部分,并思考:怎样计算剪剩下部分的面积?
如果a=3.6 b=0.6呢? 学起于思,思起于疑,无疑则无知。教育家托尔斯泰说过:成功的教学所需要的不是强制,而是唤起学生强烈的求知欲望,激发学生的兴趣。充分利用媒体教学的直观性,动画显示学生熟悉的剪纸操作,创设问题情境引发学生思考。使学生把学习当成一种自我需要,为学生营造一种轻松、和谐的学习氛围,从而自然导入新课。
教学过程 设计意图
(二)分析问题,发现新知
问题:我们知道,(a+b)(a-b)=a2-b2,能否将它反过来得到a2-b2=(a+b)(a-b)呢?
活动3:(1)观察多项式X2-25,9X2-y2,它们有什么共同特征?(2)尝试将它们分别写成两个因式的乘积,并与同伴交流。 "有效的教学一定要从学生已经知道了什么开始".通过设问,引起全体学生注意,与教师一起进行积极的思维,尽快进入学习状态,所设问题用于复习相关知识与技能进行诊断检测,并针对所存在的缺陷进行补偿教学,为学生学习新知识奠定基础。
(三)合作交流,探索新知
问题:(1)用语言叙述公式(体现合作)。
(2)公式有什么特点?
(3)公式中的字母a、b可以表示什么?
活动4:根据你对公式的理解,请举出几个用平方差公式分解的例子,并指出多项式中谁相当于公式中的字母a,谁相当于公式中的字母b?(尽可能地让学生探索、发现)。
x2-25=x2-52=(x+5)(x-5)
a2-b2=(a+b)(a-b)
9x2-y2=(3x)2-y2=(3x+y)(3x-y) 问题是知识、能力的生长点,富有挑战性的问题能激发原有认知,促使学生主动地进行探索和思考。通过引导学生对问题情境循序渐进的探讨,让学生猜一猜、想一想,使他们体会了知识的发生、发展过程及怎样从复杂情境中分离、抽象出数学模型,培养了学生从特殊到一般的认知方法。
(四)例题探究,体验新知:
例1 填空:(1)25m2=( )2 (2)0.49b2=( )2 (3) c2=( )2
例2:把下列各式分解因式
(1)25-16x2 (2)9a2- b2
例3:把下列各式分解因式
(1)9(m+n)2-(m-n)2 (2)2x3-8x
例4:计算(1)6782-3782 (2)852-842 "实践出真知".教师通过引导、启发,让学生分4人小组,进行合作学习、讨论、交流,使学生在解决问题的过程中,不断获得成功的体验,增强他们的创新意识和能力。
(五)随堂练习,巩固新知:
1、判断正误:
(1)x2+y2=(x+y)(x+y)( ) (2)x2-y2=(x+y)(x-y)( )
(3)-x2+y2=(-x+y)(-x+y)( ) (4)-x2-y2=-(x+y)(x-y)( )
2、把下列各式分解因式:
(1)a2b2-m2 (2)(m-a)2-(n+b)2
(3)x2-(a+b-c)2 (4)-16x4+81y4
3、解决(一)活动2所提出的问题。 "学生思维的水平高低与基本技能是密切相关的,只有通过强化训练,才能提高学生的思维起点。"1、2题的目的,是巩固新知,对学习中有困难的学生,给予适当的点拨和鼓励,及时发现学生出现的问题。而第3题,增强了知识的运用性,使学生学以致用,形成能力。同时,体现数学活动是学生自己构建数学知识的活动,教师起到引导学生进行有效地构建数学知识的活动。
(六)归纳小结,形成体系
1、因式分解与乘法公式的关系。
2、平方差公式的特点。
3、应用平方差公式分解因式的多项式应满足的条件。
4、公式中字母a、b可以是任意数、单项式或多项式。 归纳是一种推理的方法,由一系列具体的事例概括出原理(跟"演绎"相对)。能使学生的感性认识升华到理性认识,既可锻炼学生由具体到抽象的思维能力,培养学生数学语言的表达能力,严谨的'逻辑思维品质。先引导学生自由发言、互相补充,教师进行修正、精炼阐述。这样的小结既梳理了知识,又点明了本节课的学习要点,同时使学生对本节知识体系有一个清晰的认识,为下节的学习打下良好基础,起到画龙点晴的作用。
(七)布置作业,反思提炼。P56 习题2.4 1、2、3
四、教学方法
通过对新课程标准及新教材研究,我认为数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学应从学生实际出发,创设有利于学生自主学习的问题情境,引导学生通过实践、探索、交流获得知识,形成技能,发展思维,进而达到学会学习,促使学生在教师指导下,生动活泼的、主动和富有个性的学习,在教学活动中,教师应该发挥民主、成为学生数学活动的组织者、引导者和合作者。而我校所开发的省级课题《课程实施与教学改革——数学思维方法与应用性问题教学的实践研究》中,明确提出预期目标:
(1)培养兴趣,促进思维;(2)适当分段,分散难点,创造条件让学生乐于思维;(3)在数学学习中要使学生思维活跃,就要教会学生
分析问题的基本方法,培养学生正确的思维方式;(4)重视基本方法和基本解题思想的渗透与训练。基于以上的理念和目标,我确立了以下的教法和学法。
(一)教学方法
依据本课特点,从学生已有实际经验出发,遵循新课程的理念,根据教学原则,变被动学习为主动学习,使课堂教学生动,有趣,高效。因此在教学中,以自主探索为主,启发、诱导贯穿教学始终,师生以愉快对话形式共同探索、步步深入,合作交流展开教学,下面我谈谈为什么使用这些方法?
1、自主探索法
苏霍姆林斯基曾说:"在人的心灵深处,都有一种根深蒂固的超大规模需要,这就是 希望感到让自己是一个发现者,研究者。教师作用是要发现、强化这种探索精神".通过巧设问题情境,把要学习的知识,置于具体鲜活的问题情境和嵌于一定活动背景中,使学生对知识多角度的丰富的理解,并能结合自己原有的经验探索新知,从而建构自己所坚持的判断和信念。如教学中,通过活动1~4,让学生思考、探索判断,在学生迷惑之际,用活动3导航,让学生自己体验猜想,这样不仅点燃学生思维的火花,还激发学生的信心和勇气,自己去分析、自己去解决,使他们体验探索知识奥秘的乐趣,真正体现了"教是为了不教"的教育的最终目标。
2、愉快教学法
"如果我们能做到百分之百的使孩子们兴致勃勃地学习,不仅是孩子们的幸福,并且也是教师的幸福。这就是当代教育和教育思想家的旋律。"在教学中利用例题让学生讨论,不失时机地启发学生质疑、问难,让学生有疑必质、有难必问、有感必发,让每个学生积极发言,变"厌学"为"好学",变"苦学"为"乐学",变"要我学"为"我要学",从而让每个学生喜欢数学,把学习作为一种快乐的活动,从中享受学习数学的乐趣。
(二)教学手段
根据教学直观性原则,考虑到学生仍处在以直观、形象思维为主要思维方式的时期。在教学中采用针对性强的相应措施,创设具体的问题情境,运用电教手段进行必要的动态演示,用活动紧扣对平方差公式的感知,让学生动脑、动手、动口,积极参与教学全过程,逐步由图形的直观,语言的直观向抽象思维过渡,增大教学容量和直观性,提高教学效率和教学质量。
(三)学法指导
当今时代是人类知识和信息量以几何级数递增的时代,现代教育所面临的最严峻的挑战,已不是如何使受教育者学到知识,而是如何使他们"学会学习".正如埃德加?富尔所说:"未来的文盲,不再是不识字的人,而是没有学会怎样学习的人。"我们古人也说:"授人以鱼,不如授人以渔".因此在教学中我始终把学生推到学习的前沿,引导他们"动眼看、动脑想、动口说、动手练",让他们在生活中感受数学,在合作交流中理解数学,在实验操作中探索数学,在做数学的过程中,学会数学,充分体现了新课程标准中所强调的自主探索,合作互动,创造性学习这样的有效 的学习方式。
五、教学评价
教学评价是教学活动的重要环节,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展。同时也是教师反思和改进教学的有力手段。史密斯一泰勒报告指出:"评价教育效果,不能只是测定学生的某些能力和特征,而更应评价受教育者向着教育目标成长发展的过程".为此这节课我作了如下的评价:
1、评价学生的学习过程
课标指出:"对学生数学学习过程的评价,包括参与教学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、数学思考的发展水平等方面".从这个理论出发,我废除了过去只注重结果的评价。在本节课上,注意观察学生是否乐于与他人合作,愿意与同伴交流自己的想法?哪些问题是大多数学生独立思考能达到,哪些问题是学生通过合作交流才能完成;学生思考的是否有条理?学生的符号表达是否较以前有所发展?及时发现学生的点滴进步并给予鼓励。
2、评价学生发现问题、解决问题的能力
思维总是从问题开始的,本节课试图让学生在不断解决问题、发现问题中学习。如活动1~4等实际问题的解决,使他们知识得到掌握,能力得到训练,情感得到体验,各方面都能取得全面和谐的发展。虽然有的学生不能把每一道题都做完整,但他们积极思考、交流,对这样的学生应给予表扬肯定,帮助他们积极向上。
总之,本课力求达到:"凡是能由学生提出的问题就不要由教师给出;凡是能由学生解的例题就不要由教师解答:凡是能由学生完成的表述就不要由教师写".本节课自始至终,体现学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。让学生感知数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
教学设计说明
1、本节课根据新课程标准的教育理念和学生实际,结合具体内容,从培养学生学习数学的兴趣入手,采用"问题情景——数学抽象建立数学模型——应用解释"的形式展开,让学生理解数学知识的产生就是人类对实际问题抽象、构建的过程,让学生经历同化新知识,构建新知识意义的过程。
2、设置问题导入新课,从直观的图形及其有关计算出发,帮助学生尽快找到问题的切入点。
3、给学生提供探索和交流的空间。设置有现实意义的、具有挑战性的问题,激发学生积极思考,引导学生自主探索与合作交流,提高解决问题的能力,发展创新意识和实践能力。
4、内容上挖掘课本资源,设计有弹性,设置了不同层次的学习要求,尊重学生个体差异,满足多样化的学习需要。实现"不同的人在数学上得到不同的发展".
5、在学生从事数学活动时,不仅关注学生的学习水平,而且关注他们在活动中表现出来的情感与态度。比如:是否主动与同学合作,是否愿意与同学交流自己的看法,是否表现出了兴趣,能否用数学语言表达以及是否尊重他人等进行评价。
(北师大版)八年级下册第三章第一节《分式》(P58---60)
我们知道,分式是表示数量关系的工具,是解决实际问题的一种模型。本节课的内容是分式的起始课。下面我将从教学背景、教法学法、教学过程、设计说明四个方面来具体阐述我对这节课的理解和设计。
一、教学背景
1.教学内容分析
(1)地位与作用:《分式》是北师大版新教材八年级下册第三章第一节,本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、意义和用分式表示数量关系。分式是继整式之后,又一代数学习的基本内容,是小学所学分数的延伸和扩展,学好本节课,是今后继续学习分式的性质、运算以及解分式方程的前提。
(2)重点:分式的概念
(3)难点:识别分式有无意义;用分式描述数量关系
分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式表示数量关系是教学的难点。
2.教学目标
(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
经过七年级一年的学习,学生初步养成了自主探究意识。一方面,在七年级下册中,学生已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,"分式"是"分数"的"代数化",学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以上3个方面为本节课的教学目标。
二、教法与学法
基于以上教材特点和学生情况的分析,我在本节课主要采用"引导—发现教学法",借助于计算机课件,通过"问题情境—建立模型—解释、应用与拓展"的模式展开教学。
三、教学过程
《数学课程标准》明确指出:"数学教学是数学活动的教学,学生是数学学习的主人。"为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
(一) 发现新知
在这儿我对教材进行了处理,课本引例是 "土地沙化、固沙造林"问题,设问是"这一问题中有哪些等量关系?"我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境:
1.创设情境:
师生共同欣赏画面,教师给出探究要求:
"代数式"庄园的果树上挂满了"整式"的果子:t,300,s,n,a-x,0,180(n-2),请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有新的一类代数式吗?请说一说。
作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。
"好的教师不是在教数学而是激发学生自己去学数学".用已给的7个整式进行代数式的构造时,学生可以写出多种多样的式子,里面既有单项式,()也有多项式,还有分式。通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。
2.探索交流 :
(1)议一议:你们所发现的这一类新代数式: , ,??它们有什么共同特征?它们与整式有什么不同?
(2)类比分数,概括分式的概念及表达形式
被除数÷除数=商数 被除式÷除式=商式
3 ÷ 4 = n ÷ (a-x) =
整数 整数 分数 整式 整式 分式
(3)小组内互举例子,判定是否分式的分母可以为零
(二)讲解新课
这一环节是整个教学活动的中心环节,为了充分体现学生在整个教学活动中的主体地位,我将在学生已有知识经验的基础上组织学生进行学习,探究分式的概念、意义以及简单应用,加深他们度知识的理解,为此,我将新课的讲解过程细分为如下四个步骤:
1.分式的定义
为了使学生能够准确区分"分式"与"整式",加深他们对分式的理解,我打破了在传统教学中直接给出定义的常规,设计了想一想,引导学生在上一环节对所列代数死与分数进行比较的基础上,再将其与整式相比较,找出二者的异同,从而类比整式归纳总结出分式的定义。
2.分式的意义
分式的分母不能为零,即只有当分式的分母不为零时,该分式才有意义。对于这一问题的讲解,我将让学生类比分数以及结合前边的实际问题加以理解。
3.分式的基本性质
为了使学生更容易理解和接受分式的基本性质,在讲解分式的基本性质之前,我安排了议一议活动,设计了如下两道题目,引导学生对所示问题进行充分讨论,共同探索分式基本性质,然后,我将以课堂提问的方式,逐一板书讨论结果,综合学生的回答,归纳总结出分式的基本性质,即:分式的分子与分母同乘以(或除以)同一个不等于零的正式,分式的值不变。
4.例题讲解
通过具体的例题,给学生演示本节所学知识的具体应用,讲解完毕后,挑选学生上台板演,在规范学生讲解步骤的同时,加深他们对本节所学知识的理解和记忆。
至此,我完成了对本节课所有理论知识的教学。
(三)课堂练习
众所周知,理论是用来指导实践的,为了使学生能够将所学的理论知识很好的应用于实践,实现理论与实践的完美结合,我将教学程序中的第三个环节设计为课堂练习。
在这一环节中,我为学生精心挑选了课本中的两道习题,并进行了适当的改编,作为随堂练习,要求学生在本节所学知识的基础上,结合具体的题目亲自动手练一练,以便在检验本节课教学效果的同时,针对学生在练习中出现的问题进行及时的查漏补缺。
(四)课堂小结
以课堂提问的方式对本节课进行小结,结合学生的回答,教师最后给出规范总结,以重申本节课所学习的重点及难点。
(五)布置作业
针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。
必做题是教材第10页习题中的4,5,6题;
选做题是教材第10页习题中的8,9,12,13题。
五、板书设计
为了使本节课达到更好的教学效果,这就是我针对本节课的所有内容进行的板书设计,在板书设计的过程中,我的指导思想是尽可能使
得版面结构合理,简明扼要,使学生一目了然,易于抓住重点、难点和关键。
我的说课到此完毕,谢谢各位老师!
数学说课稿 篇2
教材分析
教科书《花园》这一情景中蕴含着与“倍”有关的数学信息,既可以提出来乘法问题,也可以提出除法问题,目的是培养学生的数学应用意识。通过绘图,让学生体会几何直观对于解决问题的意义与价值。
学情分析
学生已经熟练掌握乘法,对于除法,有一小部分学生不会熟练应用。通过前几节课的分物以及上节课的逆向思维能力的培养等等,为本节课的学习打下了基础。
教学目标
1、结合具体情境,让学生理解“倍”的意义,以及它与乘除法之间的联系。
2、体会借助几何直观分析数量关系、寻找解题思路的重要性。
3、体会生活中处处有数学,激发学生学习数学的兴趣。
教学重难点
重点:体会“倍”的意义。
难点:解决实际问题。
课时安排
1课时
教学过程
一、创设情境,导入新课
同学们,花园里的花儿开了,你看,蜜蜂、蝴蝶、蜻蜓、小鸟都来了,花园里可热闹了!
出示
说说你从图中了解到哪些数学信息?
二、自主探究,构建新知
(一)蜻蜓的只数是蝴蝶的几倍?
根据这些数学信息,你能提出哪些数学问题呢?
教师引导学生提出“蜻蜓的只数是蝴蝶的几倍?”
你选用自己喜欢的方式画一画,再列式解答。
学生尝试自己解决、并展示汇报
这里有两幅图,你能看懂什么意思吗?
第一幅图:学生看图讲解
第二幅图:教师一点而过
(二)有多少只蜜蜂?
同学们,老师想知道有多少只蜜蜂,你能从图中找出有关小蜜蜂的数学信息吗(引导学生发现数学信息)?
注意小蜜蜂的话“我们的只数是小鸟的3倍”,你自己尝试画一画,算一算。
学生交流汇报
这是淘气和笑笑画的示意图,你能理解吗?
生:淘气用一个圆表示9只小鸟,蜜蜂的只数是小鸟的.3倍,所以用3个圆表示蜜蜂的只数。
生:笑笑用一段直条表示9只小鸟,用3段直条表示3个9只,也就是蜜蜂的只数。
同学们,笑笑说了,9的3倍就是3个9相加,列成乘法算式是怎么样的?
生:3×9=27(只)
9×3=27(只)
(三)什么是“2倍”,深化对“倍”的意义的理解
同学们,圣诞老人现在有一个疑问,什么是“2倍”,你能帮圣诞老人解答一下吗?
你看这是淘气的解释,你能看懂吗?
引导学生读图
引导(同学们,如果把5个Δ看成1份,那么用几个Ο表示这样的2份。)
总结:同学们,其实每一份画几个图形没有关系,关键是画出这样的2份。
你看,笑笑说
我用表示,淘气的是一份我画一个,笑笑的是2份我画2个,所以表示出笑笑收集的画片数是淘气的2倍。
同学们,现在你可以举出例子了吧?在生活中你还能发现哪些事物有“2倍”关系呢?
拓展:那什么是“3倍”呢?“4倍”
三、巩固练习,拓展延伸
处理习题1、2、3、4,加深学生对倍数关系的理解。
四、课堂小结,学会反思
数学说课稿 篇3
一、全面分析单元知识结构,准确把握学习标准
本单元教材分为“数数和数的组成”、“读数和写数”、“数的顺序和比较大小”、“整十数加一位数和相应的减法”等四个部分,这四个部分按照知识间的逻辑顺序和儿童学习的认识顺序,经过适当的扩充和有序的编排,构成了如下相对完整的单元知识结构:
(附图{图})
从上述结构图不难发现,前面三部分可概括为100以内数的认识,它是全单元教学内容的主体和核心,也是教学的重点。第四部分虽是100以内简单的加减法计算,但实际上可看成100以内数的概念的进一步巩固,因为整十数加一位数的不进位加法和相应的减法,就其本质而言刚好反映了100以内数的组成和分解的特征。
上述结构图还从另一个侧面向我们全面展示了学生在本单元学习中,只有达到以下学习标准,才算是对100以内数的概念的真正掌握。
①熟练地数数。既要能熟练地结合买物数数,又要会准确地抽象数数,特别是接近整十数时能连续正确地数数。在数数时,不仅要能一个一个地数,还要能十个十个地数。
②掌握100以内数的组成。既要知道一个两位数是由几个十和几个一组成的,又要明确几个十和几个一合起来组成几十几。
③正确理解数位概念。数位概念在本单元学习中特别重要,它包括知道100以内数的数位名称及排列顺序,了解100以内数的计数单位,知道相邻两个计数单位之间的进率是10等内容。
④正确理解“读数和写数,都从高位起”的基本规则,并能根据这一规则熟练地读写100以内各数。
⑤掌握100以内数的顺序,能正确地进行大小比较。
上述学习标准告诉我们:本单元教学不只是单纯地引导学生掌握100以内数的读法和写法问题,而是要帮助学生全面建立100以内数的概念,形成完整的认知结构。在教学中我们要充分发挥这些学习标准的导向作用,引导学生系统掌握100以内数的概念所包括的内容,确保他们对100以内数的`概念的掌握真正落到实处。
二、抓好数位概念的建立,通过数位概念促进学生掌握100以内数的读写方法
数位是指数中各个数字所占的特定位置,一个数的数值意义就在于这种数字和数位的有机结合。任何数学,都只有赋于具体的位置值后才有大小的意义,也只有在此基础上我们才有可能从数值意义上对其进行读数和写数。显然,正确理解数位意义,切实建立数位概念,是正确读、写数的必要前提。因此,在本单元教学中应把数位概念和读数写数看作一个有机的整体,引导学生通过建立数位概念去促进读数、写数基本规则的理解和掌握。
1.突出“数位”教学、帮助学生切实建立个位、十位等数位概念。
在“数位”教学中,首先应利用学生熟悉的100以内数的组成的有关概念,引导他们按照数的组成方式去观察、认识排列的小棒或小棒图,为数位概念的建立提供感性材料。其次要充分利用计数器,特别是计数器珠子下面数位表的中介作用,让学生主动从小棒和珠子中抽象出数,并突出各个数学所占的具体位置,从而帮助学生在头脑里建立起个位、十位、百位等数位概念的表象。在此基础上,引导学生初步读出抽象出来的各个具体的数,让他们在读数中初步体会数学与数位的有机结合,并从中了解每位数位上的计数单位。(如十位上的计数单位是“十”)为了帮助学生更好地感知自然数是数字和数位的高度统一,还应引导学生对照数位表对“11”等特殊数作深入观察和思考,使他们进一步认识同一个数字由于所在数位不同所表示的大小也就不同的道理,由此让学生对数位概念有更深刻的理解。最后对照数位表帮助学生了解每个数位的具体名称,并熟练地掌握其排列规律。这样,学生从具体到抽象获得对100以内数的数位的完整认识,他们头脑里关于个位、十位、百位等数位的概念也就比较清晰了。
2.正确理解读数和写数的基本规则,较熟练地掌握100以内数读写的一般方法。
教材在帮助学生初步建立数位概念以后,明确给出了“读数和写数,都从高位起”的结论,这一结论概括了整数(甚至小数)读数和写数的基本规则。由于这一规则是直接建立在数位概念基础上的,所以教学中要充分利用学生原有认知基础,引导他们用已获得的数位概念去正确理解这一规则的含义,然后用规则去指导读数和写数。
①正确理解“高位”的含义。“高位”是一个相对的概念,对三位数来说百位是高位,对两位数来说,则十位就是高位。在教学中要引导学生通过具体的读数和写数理解这种相对意义,要防止他们用静止的观点去片面理解它的含义。
②引导学生在读数和写数的活动中主动概括其规则,并在理解的基础上记住这一规则。
③引导学生及时将概括出来的基本规则广泛运用于读数和写数的活动中去,促进其读数、写数水平的不断提高。
三、以数的组成为中介、实现认数和计算的有机统一
在本单元教学中,数的组成和数位概念是处于同等地位的核心内容,它不仅是理解100以内数的大小和数位意义的重要基础,同时又是计算整十数加一位数的加法和相应减法最直接的理论根据。在教学中要充分利用它在知识结构中的这种中介作用,进一步密切100以内数的概念和计算之间的关系,促进学生对100以内数的概念及其计算的整体把握。
1.在数的组成教学中适当渗透整十数加一位数和相应减法的计算思路。
学生在数数基础上对两位数有了初步认识以后,教师应适当注意引导他们按照整十数加一位数和相应减法的计算思路去观察和分析数的组成与分解。如教学数“35”的组成时,除要求学生“35由3个十和5个一组成”的思路去思考和表述外,还可引导他们按照“3个十和5个一合起来组成35”的思路进行叙述。这样,不仅可以促进学生对数的组成有较全面的理解,而且可以从计算方法上为后面的计算作必要的孕状。
2.在计算中突出数的组成算理的指导作用。
在教学整十数加一位数和相应减法的复习题之前,要高度重视教材所安排的题的准备作用,通过复习题引导学生从数的组成的角度去认识整十数加一位数和相应减法的计算,使他们对其计算过程与方法有实质性的理解。如在“405”的教学中,可引导学生按照45的组成的思路计算出结果。这样,使学生在计算中既明确意识到数的组成算理的指导作用,又把数的概念和计算两者高度结合起来,实现数的概念和计算知识内容的整体掌握。
数学说课稿 篇4
一、说教材
1、教学内容:六年制小学数学第八册P100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的'形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.20xx.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
数学说课稿 篇5
教材分析
这是本章的第一节,研究对象是函数,目标是怎样通过函数的解析式求其定义域,其学习以函数的概念为基础,在学习过程中借助于求代数式的值的方法,确定研究的方向,因势利导,在整个过程中注重让学生自己探索发现,培养学生猜想,归纳等独立思考的能力,可为后阶段的学习打下良好的基础。
学情分析
去年带的毕业班上的老教材,今年接的初二是第一届二期课改的新教材。对于我来说,本身也和学生一样有一个学习和适应的过程。这两个班的学生的情况是完全不同的,(3)班学生非常活跃,到了初二学生有这样的热情是难能可贵的,确实值得我去珍惜和正确引导,(4)班就是另一个极端,他们比较冷漠,上课不会呼应你,时常让我感觉到是在唱独角戏。两个班中都有一部分学习比较困难的学生,基本计算能力和技能较差,因此在教学时为学生创设自主探索合作交流的环境,以直观,操作观察,概括和交流作为重要的活动方式,通过课前准备和课中交流去引导学生,发现求函数的定义域的方法,提高学生的感知,认知水平和知识归纳能力。
学生在第一节中已经学习过"函数的概念",对函数已经有了初步的认识,在此基础上研究函数的定义域对后继的学习产生了积极的影响。
教学目标
知道函数的定义域。
掌握根据函数的解析式求函数的定义域的方法。
掌握复合函数的函数求定义域的方法,并正确求出不等式组的公共部分,特别强调"且"字的使用。
教学重点与难点
教学重点:根据函数的解析式求函数的定义域的方法。
教学难点:正确求出不等式组的公共部分,特别强调"且"字的使用。
教学分析和学法指导
本课教学采用发现法,启发引导,讲练结合,其依据是:
遵循教材的结构特点和学生的认知能力。
教学方法改革发展的新趋势:注重启发式,加强对学生学法的研究和指导。
教师的主导作用和学生的主体参与有机的结合。
教学过程
(一)创设问题情境,引入新课
师:同学们还记得我们学过的函数吗 什么是函数呢 其三要素是什么
生:(略)。
设计意图:回顾函数的概念以及三要素,为学习函数的定义域做准备。
(二)提出问题,探究新知
师:请同学们把预习的表格拿出来,小组进行讨论一下。
1,操作(学生事先已经准备好)
已知函数y=2x+5和y=x ,按要求分别进行以下操作:
输入x →y=2x+5→输出y
对变量x取一些数值,分别代入式子2x+5中,把x每次所取的值与计算结果填入下表中:
x
y
输入x →y=x →输出y
对变量x取一些数值,分别代入式子x 中,把x每次所取的值与计算结果填入下表中:
x
y
2,思考:
师:对于函数y=2x+5,自变量x可以取任意一个实数 函数y=x 呢
生:(略)。
设计意图:通过操作活动引导学生已函数的观点重新认识学过的求代数式的值,让学生知道由函数y=x 说明函数中自变量的取值常会有限制,用数学式子表示函数y=f(x)要考虑自变量的取值使f(x)有意义。
3,通过学生操作,讨论引出函数的定义域的概念
使函数解析式或实际问题有意义的自变量x 的取值范围叫做函数的定义域。
由函数解析式求函数的定义域
1,当函数是简单表达式时
例1:求下列函数的定义域
y=5x—3(2)y=(3)y=x—1 (4)y=3x—2 (5)y=
设计意图:说明"求函数的`定义域"的思考方法。在知道函数解析式和对定义域未加说明的情况下,函数的定义域由确保解析式有意义来确定,引导学生思考的方向和解题的方法。
学生练习1:求下列函数的定义域
y=2x+5 (2)y=(3)y=3x—4 (4)y=
设计意图:乘热打铁,通过练习指导学生如何根据函数解析式的特征列出不等式来确定函数的定义域,使学生在模仿中对知识加以巩固。
想一想:根据函数解析式的特征求这个函数的定义域,一般应怎样思考
由函数解析式来确定定义域大致有以下几种情况:
整式——x取一切实数
分式——x取分母≠0的实数
偶次根式(例如:二次根式)——x取被开方数≥0的实数
齐次根式(例如:立方根)——x取一切实数
设计意图:在教师讲解和学生练习的基础上,由学生总结:如何根据函数解析式的特征确定函数的定义域时,一般按解析式中的表示函数的式子是整式,分式或根式(偶次,齐次)等不同归类,培养学生归纳能力。
2,当函数是复合表达式时
例2:求下列函数的定义域
(1)y=(2)y=
设计意图:当解析式为复合表达式时,引导学生运用新知寻求解决方法,首先逐个列出不等式,求出各部分的允许取值范围,再使用数轴求其公共部分。
学生练习2:求下列函数的解析式
(1)y=(2)y=(3)y=(4)y=
设计意图:当函数解析式为复合表达式时,因为初中的函数不会很难,因此我认为学生最困难的不是列出不等式组,而是取公共部分,特别是"且"字,往往有许多学生乱用,看到不等号就用"且"连,因此通过学生练习2,指出学生的弊病,加强"且"字的训练。
拓展练习:求下列函数的解析式
(1)y=x+(2)y=—x +3x (3)y=2x—1 +2—3x (4)y=2x—1 +
设计意图:对于大多数学生只要求掌握例1和例2,而对数学基础较好的学生,要求他们掌握得难度深一点,以拓展他们的发散思维。
归纳总结,布置作业
师:让学生谈谈这节课的收获(分组讨论后请同学发言)
今天你学到了什么
你还有疑问吗
设计意图:通过学生分组讨论,归纳,总结,使学生进一步了解求函数定义域的方法,体验学习的成功和快乐,培养学习数学的兴趣。
作业:练习册P36习题18。1(2)
反思
平时非常注重学生新课的预习,提前预习能取到事半功倍的作用,当然也要预防学生懂了之后上课不听的状况出现。
由于本节课内容较多,而且引出新课前还有一个操作,因此我提前把这个操作安排到学生的预习工作中,在课堂上可以节约许多的时间,对于计算能力差的同学能给予他们更多的时间去完成。
这两个班是我新接的,只靠一个月的时间去深入的了解他们显然时间是不够的,但现在通过各种途径知道他们层次不一,"贫富悬差很大",特别是两个班都有不小的尾巴,因此我放慢速度,争取一节课能解决一个到两个问题,我想效果可能会好一点。
本节课在最后运用新知拓展训练中,提升了一定的难度,有一部分学生可能不那么容易理解,需要进行适当的点拨,对于取公共部分还需通过数轴加强训练。
数学说课稿 篇6
教学内容:数学第十二册《圆柱的体积》
教材分析:这部分内容包括圆柱体积的推导公式,在教学时,先回忆前面学习过的圆面积的转化,由此推想圆柱的体积能否转化成已经学习过的立体图形,求出它的体积。这部分内容重点是让学生理解圆柱体积公式的推导过程,通过教具演示和学生动手操作弄懂可以将圆柱转化成以前学习过的长方体(近似),再根据长方体的体积等于底面积乘得到圆柱的体积也应该是它的底面积乘高。
教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
教学重点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。
教学难点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学设想:利用教具演示将圆柱进行切割拼凑的方法,让学生理解将圆柱转化成长方体,再依据长方体的体积计算方法推导出圆柱体积的计算方法。通过例题教学让学生进一步掌握圆柱体积的计算公式。
教学过程:
一、复习
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的
计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
三、新课
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?(是。)
教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:
“大家看,这是不是一圆?”(是。)
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。
教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?”
学生:长方形。
教师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
教师:
把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
教师:“而长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。
教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的`底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,s表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=sH
2、教学例4。
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=sH=50×2.1=105
答:它的体积是105立方厘米。
②2.1米;210厘米
V=sH=50×210=10500
答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=sH=0.5×2,1=1.05
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=sH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。
三、练习:
1、做“做一做”的第1题。
让学生独立做在练习本上,做完后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
【数学说课稿】相关文章:
数学说课稿(经典)06-09
数学说课稿01-23
《数学乐园》说课稿07-18
数学《比的应用》说课稿10-13
数学温度说课稿10-23
数学说课稿10-02
数学活动说课稿10-28
小学数学的说课稿07-20
《数学广角》说课稿05-21
数学乐园说课稿10-02