解方程的教学设计

教学设计 时间:2020-06-15 我要投稿

解方程的教学设计范文(精选4篇)

  作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?下面是小编收集整理的解方程的教学设计范文(精选4篇),希望对大家有所帮助。

解方程的教学设计范文(精选4篇)

  解方程的教学设计1

  教学内容:

  义务教育人教版数学五年级上册67页内容。

  教学目标:

  知识目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  能力目标:

  1、提高学生的比较、分析的能力;

  2、培养学生的合作交流的意识。

  情感目标:

  1、感受方程与现实生活的联系。

  2、愿意与别人合作交流。

  教学重点:

  理解方程的解和解方程的含义,会检验方程的解。

  教学难点:

  利用天平平衡的原理来检验方程的解。

  关键:

  天平与方程的联系。

  教具:

  课件

  教学过程:

  一、游戏铺垫,引出课题(出示课件)

  师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!

  师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。

  生:从中你有什么想说的?或者你联想到了什么?

  生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

  师过渡:是的,知识就是这样被有心人所发现的。

  二、探究新知

  师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

  再给你点信息,这幅图谁能用一个方程来表示。

  生列方程,并说说你是怎么想的。

  1、解方程

  师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

  汇报预设:①因为9-3=6②因为6+3=9所以x的值为6所以x的值为6(多少)

  师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

  师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

  师:球在天平不好摆,我们可以用方块来代替它。

  自主尝试:看着天平,如何去寻求x的值?

  请用笔记录下你的想法。

  组织好语言上台汇报你的想法。

  教师统一书写:

  师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

  追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

  为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

  生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

  你学会了吗?赶紧和你的同桌说一说方法。

  2、强调格式:

  师:这个求解的过程和以前递等式有什么区别或相同的地方?

  生:等号对齐;等号两边都要写;最前面要写解字

  3、练习一:

  师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解?解:33+x○()=65○()x=()那么x-4.5=10呢?(学生独立尝试,一个学生板演)

  生完成填空和独立节解方程。(课件中校对)

  4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

  叫“方程的.解”;举例:x=3是方程x+3=9的解??

  而求方程的解的过程,我们叫“解方程”(板书)

  这些知识在数中有介绍,我们找到划一划读一读。(看书)

  两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)

  5、验算:

  师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?

  生:放进去计算一下。

  师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。生活动:尝试验算一个方程的解,另一个放心里代入验算。

  6、小结

  师:你学会了吗?你会解怎样的方程了?(含加法或减法)

  解方程的步骤?(结合板书和课件)

  生:解方程的步骤:

  a)先写“解:”。

  b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

  c)求出X的值。

  d)验算。

  四、巩固练习

  练习二:解方程比赛(书P67)

  (1)100+x=250(2)x+12=31※(3)x-63=36

  练习三:我是小法官:

  1.X=10是方程5+x=15的解()。

  2.X=10是方程x-5=15的解()。

  3.X=3是方程5x=15的解()。

  4.下面两位同学谁对谁错?

  X-1.2=4X+2.4=4.6

  解:X-1.2+1.2=4-1.2=4.6-2.4

  X=2.8=2.2

  师:谈谈你觉得解方程过程中有什么要提醒大家注意的?

  生:注意等式性质的正确运用!注意解方程时的格式!

  练习四:看图列方程并求解

  五、课堂总结

  师:我们这节课学习了什么?和大家来分享下!

  板书设计:

  解方程(含有加法或减法)等式性质解:X+3-3=9-解方程(过程)

  X=6?解(值)检验:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以,x=6是方程的解。

  解方程的教学设计2

  教学目标:

  1、学会利用等式性质1解方程;

  2、理解移项的概念;

  3、学会移项,数学教案-解方程。

  教学重点:利用等式性质1解方程及移项法则;

  教学难点:利用等式性质1来解释方程的变形。

  教学准备

  1、投影仪、投影片。

  2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

  教学过程:

  (一)引入新课:

  1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

  方程是等式,但必须含有未知数;

  等式不一定含有未知数,它不一定是方程。

  2、下面的一些式子是否为方程?这些方程又有何特点?

  ①5x+6=9x②3x+5③7+5×3=22④4x+3y=2

  由学生小议后回答:①、④是方程。

  分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

  我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

  3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

  注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

  4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

  5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

  ①2x+3=11

  ②y2=16

  ③x+y=2

  ④3y-1=4y

  6、什么叫方程的解?怎样解方程?

  关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

  (二)讲解新课:

  1、等式性质1:

  出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

  强调关键词:"两边"、"都"、"同"、"等式"。

  2、利用等式性质1解方程:

  x+2=5

  分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

  注意:解题格式。

  例1解方程5x=7+4x

  分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

  解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

  只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

  观察前面两个方程的求解过程:

  x+2=55x=7+4x

  x=5-25x-4x=7

  思考:

  ⑴把+2从方程的一边移到另一边,发生了什么变化?

  ⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

  3、移项:

  从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

  注意:

  ①移项要变号;

  ②移项的实质:利用等式性质1对方程进行变形。

  例2解方程:3x+4=2x+7

  解:移项,得3x-2x=7-4,合并同类项,得x=3。

  ∴x=3是原方程的解。

  归纳:

  ①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

  ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

  ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

  (三)课堂小结:

  ①什么是一次方程,一元一次方程?

  ②等式性质1(找关键词);

  ③移项法则;

  ④应用等式性质1的注意点(例2归纳的三条)。

  (四)布置作业:见作业本。

  解方程的教学设计3

  教学目标:

  1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

  2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

  4、培养学生规范书写和自觉检验的好习惯。

  教学重点:

  1、对等式的基本性质一的理解和运用。

  2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

  3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学难点:

  1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

  2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学过程:

  教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

  在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

  这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

  教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

  最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

  模式方法:观察——实验——讨论——交流——概括结论。

  作业设计:自主练习1-3题。

  讨论要点

  1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

  2、教学时,要关注学生的算术思维向方程思维的转变。

  3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

  4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

  活动总结

  本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

  解方程的教学设计4

  用含有两个相同字母的式子表示数量关系及解方程

  一、教学内容:

  课本105页-106页的内容及相应练习。

  二、教学目标:

  教养目标:使学生通过实例,根据运算的意义,掌握两个相同字母相加减的运算;学会解带有两个相同字母的方程,为用方程解应用题打下基础。

  教育目标:通过学习,从而拥有热爱科学,不畏困难、学好基础知识的精神。

  发展目标:学会在讨论和交流中探究掌握知识,学会初步的集合、对应等数学思想。

  三、教学重点、教学难点:

  重点:借助插图,从直观上理解ax±bx=(a±b)x的计算方法及方程的解法。

  难点:熟练计算ax±bx,尤其是当b=1时的计算方法。

  四、教学准备:

  多媒体课件

  五、教学过程:

  一、导入。

  情景:2003年10月15,中国航天飞行第一人杨利伟带来了成功回归的信息,你的心情怎么样?你也想到太空去看看吗?今天我们就一起出发到太空遨游!

  1、出示:一个工地用汽车运土,每辆车运5吨,一天上午运4车,下午运3车,这一天共运土多少吨?

  分析题意,学生解答后出示两种解法:5×(4+3)5×4+5×3

  2、导入新课。

  情景:飞船升空,布置任务1。

  出示学习目标1:学习用含有两个相同的字母的式子表示的数量关系及解简易方程。板书课题。

  二、探究新知:

  1、教学例5。

  出示例5改编题:本次任务需要用太空车运送外星泥土,每辆车运x吨,一天上午运4车,下午运3车,这一天共运土多少吨?

  (1)小组合作交流:(出示讨论提纲)

  A、每车运土x吨,怎样求上午运土多少吨?下午运土多少吨?

  B、怎样求运土的总吨数?还可以怎样求?

  课件出示:4x+3x(4+3)x

  个别提问:为什么可以列出(4+3)x?先求4+3,求出什么?

  (2)4x+3x和(4+3)x有什么关系?这实际应用了什么运算定律?4x表示几个x,3x表示几个x?(4+3)x实际就是几个x?所以这个式子的结果就是7x。

  (3)想一想,如果把问题改成上午比下午多运多少吨?应怎样列式?

  同位讨论:4x-3x的结果是多少,为什么?1x通常怎样表示?

  (4)师小结:当碰到有两个相同字母的式子,我们可以根据乘法分配律把公因数提取,并把不是公因数的数字相加减,从而算出结果。

  (5)完成105页做一做。

  3、教学例6。

  情景:出示任务2。出示例6。

  (1)小组讨论:这是个含有两个相同字母的方程。第一步你你该怎样解答?

  (2)你能把它转化为简单的方程吗?

  (3)学生发表意见后板书解题过程,提醒学生注意格式,全班口头检验。

  (4)完成106页做一做。

  (5)小结:解带有两个相同字母的方程,我们可以根据乘法分配律,将相同因数提取,不同因数相加减,从而转化成最简单的方程解答。

  (6)反馈练习:判断题:b+0.1b=0.1b吗?5x-x=5吗?

  三、巩固练习。

  情景:看到同伴被外星人抓去,你能闯三关把他们救出来吗?

  练习1:书本第107页第3题。

  练习2:书本第107页第4题。

  读题,分析题意:

  成人有多少人?(x人)儿童有多少个x个人?共80人是什么意思?

  练习3:书本第108页第6题(2)

  题目要求列方程解答,第一步要先怎样做?解设什么是x?

  四、小组竞赛。

  情景:你们所掌握的数学知识真让我佩服,欢迎地球的朋友们一起来探索宇宙的奥秘,宇宙中含有无数美丽的恒星,如果谁最快能帮助我解决下面的题目,我就把其中的一颗星星送给你们,努力呀!

  1、小组合作完成书本108页第7题,先思考应怎样做?让最快想到方法的同学先讲讲解题方法。最快完成的同学切换成投影方式奖星星。

  2、小组合作完成108页第10题。把答案贴到展示板上,如时间不够可下课时让同学自己评评哪一组的方程列得快、列得好。能答对的小组老师也每人送他一颗星星。

  五、总结。

  1、这节课你有什么收获?你还想利用方程来解决什么问题呢?

  2、你为什么能看到这美好的太空画面,如果人类科技落后,能看到吗?你知道吗,数学中的方程是解决科学难题的基本工具,你想把这工具掌握在手里吗?希望同学们在五彩缤纷的未来中能亲眼看到真正的太空,到时候再给虞老师讲讲你的感受,可以吗?有信心吗?

【解方程的教学设计范文(精选4篇)】相关文章:

1.解方程的教学设计

2.关于父亲和鸟的教学设计范文(精选3篇)

3.课文《示儿》的教学设计范文(精选3篇)

4.追求理解的教学设计读书心得范文(精选3篇)

5.《济南的冬天》的教学设计范文(精选3篇)

6.展开与折叠的教学设计范文(精选3篇)

7.《品德与社会》的教学设计范文(精选3篇)

8.《我选我》的教学设计范文(精选3篇)