五年级数学教案

时间:2024-08-18 18:58:18 教案 我要投稿

五年级数学教案合集15篇

  作为一名老师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么写教案需要注意哪些问题呢?下面是小编精心整理的五年级数学教案,欢迎阅读与收藏。

五年级数学教案合集15篇

五年级数学教案1

  教学目标:

  1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

  2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

  3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

  教学重点:

  除数是整数,商是小数的小数除法的计算方法。

  教学难点:

  除得的结果有余数,补“0”继续除。

  教学过程:

  一、复习导入

  课件出示情境主题图

  开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

  引导学生列出算式并独立计算:18.6÷6 24÷4

  计算后说一说整数除法与小数除法的`异同。

  二、对比中探索,交流中生成

  师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

  教师把情境题中的18.6改成18.9,把24改成26.

  1、初步尝试,发现问题。

  请你尝试计算这两题,你发现了什么?

  2、独立思考,尝试解决。

  师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

  3、讨论交流,异中求同。

  (1)在小组内汇报自己的计算方法。

  (2)展示汇报。(可能出现第4页中几种不同的方法)

  (3)对比这几种方法:有什么相同的地方?

  引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。

  4、应用方法,归纳总结。

  竖式计算26÷4

  (1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

  (2)尝试总结除数是整数的小数除法的计算方法。

  三、巩固练习。

  1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

  2、错题诊所。

  209÷5=418   10÷25 =4   1.26÷18=0.7

  3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

  32÷8   12÷25   2.45÷3

  4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

  四、课堂总结

  本节课你有哪些收获?

五年级数学教案2

  教学内容:

  教科书第18页例4和做一做

  教学目标:

  1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

  2、能根据乘除法之间的关系进行验算,提高计算的正确率;

  3、养成良好的计算、验算习惯。

  教学重点:

  掌握小数除以整数的计算方法,你能正确计算

  教学难点:

  特殊情况的小数除以整数的算法

  教学过程:

  一、复习引入

  1、口算

  2。4÷2 4。8÷6 9。09÷9

  8。24÷8 6÷5 1÷5

  2、填空,并说出为什么?

  (复习乘除法之间的关系,为下面学习验算做好准备)

  3、列竖式计算(生板演)

  (1)7。44÷4(2)7。44÷8

  (3)102÷24(4)4。551÷5

  四道逐渐变难

  二、探究新知

  1、在评价学生的计算结果中帮助学生学会归纳和总结。

  师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

  学情预设:学生有的会把步骤在说一遍,有的.会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

  师:做小数除以整数还有什么要提醒大家的?

  四人小组讨论并归纳

  学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

  课件出示补充。

  2、在暴露计算错误的过程中引导学生学会验算。

  (1)师:为了保证我们的计算正确,怎么办?——验算

  验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

  学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

  师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

  (2)门诊台

  课件出示。

  小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

  三、巩固练习

  1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

  37。8÷6=63 7。4÷5=1。4……4

  2、计算并验算

  43。5÷29 18。9÷27

  1。35÷15 207÷45

  3、书第20页:7、8题

  四、课堂小结

  说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案3

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的`建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级数学教案4

  教学目标:

  1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

  2.让学生经历猜想、验证等过程,体验数学研究的`方法;

  3.培养逻辑推理能力,渗透一定的数学思维方法。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学过程:

  一、创设情境激趣揭题

  1.出示我国古代哲学著作的情景。

  2.出示复习题

  3×2/54/5×2

  二、扶放结合探究新知

  1.画图引导学生理解1/21/2的算例。

  2.出示3/41/4引导学生验证上面的计算方法,岩石推理过程。

  3.出示2/31/5,5/62/3写出计算过程,

  小结计算方法:

  分子乘分子,分母乘分母。

  三、反馈矫正落实双基

  1.出示教材第8页试一试1-3题。

  2.引导学生发现规律。

  四、小结评价布置预习

  1.引导学生进行课堂小结。

  2.布置预习:教材10-11页练习一。

  板书

  意义:

  求一个数的几分之几是多少?

  计算法则:

  分子乘分子作分子,分母乘分母作分母。

五年级数学教案5

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的.感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学教案6

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的'面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

五年级数学教案7

  (一)导入

  提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?

  学生回忆并回答。

  (二)教学实施

  1.出示例3中的插图。

  提问:从图中你知道了哪些分数信息?其中一个同学说:“我吃了一个半”,怎样用分数表示一个半?

  老师随着提问,出示下图。

  学生观察图,先独立思考,然后指名回答,“一个半”是l+的和。

  老师提示:1+的和可以写成1。(板书:1)

  2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?

  学生试着说一说,老师分另“板书:1,2,。

  3.老师指出:像1,1,...这样的`分数,叫带分数。观察这些带分数都是怎样组成的?你会读出这几个带分数吗?4,请学生独立举出一两个带分数,让学生读一读。

  5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。

  6.指出:有时根据需要,要把假分数化成整数或带分数。

  (三)思维训练

  做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)

  (四)课堂小结

  通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。

五年级数学教案8

  活动目标

  通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

  活动准备

  教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

  活动过程

  一、提出问题,揭示课题?

  1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?

  2.学生根据查询的资料和咨询科学教师得到的知识进行交流。

  3.根据学生的交流,提出:我们也来试一试发豆芽。

  揭示课题:发豆芽。

  二、讨论交流,得出活动步骤

  1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

  结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

  2.学生结合教材了解4个环节应该做什么,并在全班交流。

  教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

  三、学生分组活动

  1.教师演示发豆芽的过程。

  2.教师提出要求:

  (1)发豆芽活动要做的'事情比较多,我们要分组进行,每组5个人。

  (2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

  3.各组学生进行发豆芽实验。

  时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

  四、小组交流,感受价值

  交流发豆芽的具体做法和注意事项。

  五、观察、记录、分析

  1.观察豆芽的生长情况。(大约6天时间)

  2.记录豆芽的生长情况。(每天进行记录)

  3.把豆芽的生长情况制成统计图表。

  4.分析统计图表,写好总结。

  六、总结反思

  小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

  注:五、六两个教学过程在课外进行。

  [简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]

五年级数学教案9

  教学目标:

  1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

  2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

  教学重点:

  1、两位数乘两位数的'估算。

  2、探索并掌握两位数乘两位数(不进位)的乘法计算。

  教学难点:

  掌握两位数乘两位数(不进位)的乘法并能熟练计算。

  教学理念:

  组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

  教学准备:

  课件。

  学生准备:

  预习课前知识。

  教学过程:

  一、实践调查

  课前让学生在汇景新城作实地调查,调查本小区住户情况

  二、课内交流

  1、让同学们根据调查所得的数学信息编一道数学应用题。

  2、根据所编的题目独立列式

  3、探讨和交流如何解决问题。

  (1)尝试通过估算结果解决问题。

  A、分组讨论不同的计算过程

  B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

  (2)讨论算法

  三、习题巩固:

  1、试一试

  11×4324×1244×21

  2、练一练:

  第1、2题

  3、第3题,学生独立思考,理解题意,再进行计算

  四、综合应用:

  陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

  五、课堂总结:今天我们学习了什么知识?你学会了什么?

  六、板书设计:

五年级数学教案10

  教学内容:

  连乘、乘加、乘减和把整数乘法运算定律推广到小数。

  教学目标:

  1、掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。

  2、理解整数乘法的交换律、结合律、分配律对于小数同样适用。

  3、提高学生的类推能力,培养学生知识间存在着内在联系的思想。

  教学过程:

  课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。

  一、复习旧知

  1、出示投影,先回答问题,再计算。

  (1)12×5×60

  (2)30×7+85

  (3)250×4—200

  教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?

  学生回答后,在练习本上计算结果。

  订正:(1)3600(2)295(3)800

  教师说明:小数的这些运算顺序跟整数是一样的。

  教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。

  二、小数连乘、乘加、乘减

  1、初步尝试。

  出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0。18千克,每千克可榨油0。45千克,一共可榨油多少千克?

  全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程

  0。45×0。18×300

  =0。081×300

  =24。3(千克)

  答:一共可榨油24。3千克。

  订正答案后,教师提问

  (1)算式中有几步计算?每个数目都是小数吗?是什么式题?

  (2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)

  2、进行类推。

  计算下列各题。

  (1)72×0。81+10。4(2)7。06×2。4—5。7

  学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。

  订正:(1)68。72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11。244(含有乘法与减法两种运算,先算乘法,再计算减法。)

  3、教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减

  教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。

  三、整数乘法运算定律推广到小数

  1、复习。

  教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?

  教师贴出:a×b=b×a

  (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c

  提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)

  2、观察讨论。

  教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。

  0。7×1。2○1。2×0。7

  (0。8×0。5)×0。4○0。8×(0。5×0。4)

  (2。4+3。6)×0。5○2。4×0。5+3。6×0。5

  让学生观察这三组算式,并讨论以下问题

  (1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?

  (2)等号两边的算式有什么特点?与我们学过的什么知识一样?

  (3)你能得出什么结论?

  学生通过讨论将得出如下结论

  ①三组算式左右两边的结果相等,中间可以用等号连接。

  ②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。

  ③整数乘法运算定律在小数中同样适用。

  教师提问:我们分别比较这三组算式左右两侧的`式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)

  3、教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。

  板书:整数乘法运算定律推广到小数乘法。

  教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。

  四、巩固练习

  1、填空,并说一说应用了哪个运算定律。(填在书上)

  4。2×1。69=□×□

  2。5×(0。77×0。4)=(□×□)×□

  6。1×3。6+3。9×3。6=(□+□)×□

  2、计算下面各题。

  (1)19。4×6。1×2。3

  (2)3。25×4。76—7。8

  (3)18。1×0。92+3。93

  (4)5。67×0。21—0。62

  (5)7。2×0。18×28。5

  (6)0。043×0。24+0。875

  教师巡视,注意学生的运算顺序是否存在问题。

  3、判断对错。

  (1)50。4×1。95—1。9(2)3。76×0。25+25。8

  =50。4×0。05 =0。9776+25。8

  = 25。2 =26。7776

  全体学生用手势判断,并说出错误原因。

  4、应用题。

  玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1。30元计算,一共可收入多少元?

  学生完成练习后,教师及时订正

  2。(1)272。182(2)7。67(3)20。582(4)0。5707(5)36。936(6)0。88532

  3。(1)运算顺序错误。改正:(2)计算错误。改正

  50。4×1。95—1。9 3。76×0。25+25。8

  =98。28—1。9 =0。94+25。8

  =96。38 =26。74

  4。1。30×6×285=2223(元)

  教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。

五年级数学教案11

  教学目标:

  知识与技能目标

  通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用

  过程与方法目标

  能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

  情感态度与价值观目标

  让学生相互交流、合作、体验成功的喜悦

  教学重点:

  探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

  教学难点:

  运用运算定律进行小数乘法的简便计算。

  学情分析:

  五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

  教法学法:

  本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:1、情景创设法。 2、活动探究法。 3、集体讨论法。

  教学流程:

  创设情景,导入新课——自主探索,解决问题——精心选题,多层训练,——质疑总结,反思评价。

  第一环节:创设情境,导入新课。

  上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?

  学生们会回答:乘法交换律、乘法结合律和乘法分配律。

  接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。

  在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究__,让他们有目标的去思考。

  第二环节:自主探索,解决问题。

  本环节我设计了以下几个教学活动。

  (一)小组合作,猜测验证

  1、用幻灯片出示以下题目。

  0。7×1。2○1。2×0。7

  (0。8×0。5)×0。4○0。8×(0。5×0。4)

  (2。4+3。6)×0。5○2。4×0。5+3。6×0。5

  让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)

  2、学生自己探究,验证。

  让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。

  接着我引导学生们仔细观察每一组算式,它们有什么特点?

  学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

  3、举例验证。

  我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

  孩子们可能有两种意见:能或是不能。

  针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

  (给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)

  学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。

  在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

  在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的'关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

  (二)灵活应用,解决问题

  出示例题8

  师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

  0。25×4。78×4 0。65×201

  (1)让学生独立思考,然后尝试写在练习本上。

  (2)指名让学生板演。

  然后我会让孩子们思考:第①题中为什么先让0。25和4相乘?这里运用了什么运算定律呢?

  孩子们会自然而然的答出:运用了乘法交换律

  接着问他们:你们认为第②小题中解题的关键是什么?

  学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)

  然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)

  在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的__,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。

  第三环节:精心选题,多层训练。

  本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。

  练习题组设计如下

  通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

  第四环节:质疑总结,反思评价。

  用幻灯片出示以下两个问题

  让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

  在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。

五年级数学教案12

  一、导引目标,激发兴趣

  师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)

  二、创设条件,主体参与

  1 、创设情境

  投影课本例6主题图,教师讲述故事

  2 、问题质疑。

  师:同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。

  预设:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。

  师:在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。

  3、教学例6。

  (1)呈现信息:人的嗅觉细胞约有0、049亿个,狗的嗅觉细胞个数是人的45倍,狗的嗅觉细胞约有多少亿个?(得数保留一位小数。)根据已知条件与所求问题你认为应该怎样列式呢?并说明理由。

  (2)教师板书:0、049×45

  (3)学生独立完成求积的近似数。

  (4)与你的同桌交流你所求得的结果,互相检验。指名学生板书计算过程,由其讲解保留近似数的依据。

  全体学生对他的板演过程和解释作出评价。

  (5)反馈、评价。引导学生反馈、评价自己的计算过程、结果是否正确,更正自己做错的地方。

  (6)师小结:求2、205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是0,0<5,所以要舍去小数部分的0和5,积的近似数约是2、2。由于求得的结果是近似数,所以在横式中要用约等号“≈”。

  (7)这里追问如果要求得数保留两位小数,应该是多少呢?并说明理由。

  (8)独立完成10页做一做。

  (设计意图:通过引导质疑,引出人和狗的嗅觉细胞的有关信息,让学生提出问题、列式计算,自主探索求积的近似数的方法。通过交流研讨、反馈、评价、更正错误,提升学生的认知能力。同时渗透人类与动物和谐相处的思想教育。)

  三、组织研究,体验发现

  师:同学们,有些应用问题取近似数时,还要联系实际想一想。下面这道题的答案没有要求保留几位小数,应保留几位小数才合理呢?

  出示:小丽家上个月的用水量是16、85吨,每吨水的价格是2、5元。小丽家上个月应付水费多少元?

  (1)学生独立列式计算。16、85×2、5=42、125≈42、13(元)

  (2)讨论交流:这道题为什么要保留两位小数?

  (3)预设:由于是计算钱数,人民币最小的单位是分,应精确到分(百分位),所以将计算结果保留两位小数是合理的。根据“四舍五入”法把百分位后面的数省略,千分位上的数是5,向百分位进1,得到近似数42、13。

  数学源于生活,服务于生活。在解决实际问题时我们要注意数学的灵活性。下面我们来交流提纲中的.第三个问题:你认为在求积的近似数时需要注意什么?

  (设计意图:增强学生应用数学的自觉性,通过总结求积的近似数的方法,促进学生思维的内化,提升迁移、类推能力。)

  四、精讲释疑,应用实践

  1 、选一选

  2、判一判

  下面的计算对吗?把错误的改正过来。

  (1)9、1×0、5=4、6(得数保留一位小数)

  (2)2、34×0、15≈0、36(得数保留两位小数)

  先让学生算一算,再判断计算是否正确,然后把错误的改正过来。

  3、想一想

  4、解决问题我最棒

  学生独立完成列式计算,教师巡视,进行个别辅导,集体订正。

  (设计意图:本环节设计了选择、判断、改错、解决问题等练习,旨在巩固所学知识,形成技能,发展智力。通过练习,不仅可以加深学生对求积的近似数方法的理解和掌握,还能促进学生思维的发展,提高解决问题的能力。)

  五、反思小结,巩固提高

  我们的身边处处有数学,相信聪明的你们通过今天的学习一定是受益匪浅的,下面和同学们共同交流一下你的学习收获吧!

  作业设计:

  13页2、3题。

  板书设计:

  积的近似数

  例6、 0、049×45≈2、2(亿个)

  生板书计算过程

  答:狗约有2、2亿个嗅觉细胞。

五年级数学教案13

  教学目标:

  1、理解除数是小数的除法可以转化成除数是整数的除法来计算的道理

  2、掌握除数是小数除法的计算法则,并能运用法则进行正确的计算。

  3、培养学生的概括能力。

  教学重点:

  把除数转化成整数后,利用除数是整数的除法来计算。

  教学难点:

  小数点的移动。

  教具学具:

  小黑板、卡片、幻灯。

  教学过程:

  一、复习:

  (1)口算:(卡片)

  8.1÷34.84÷40.56÷43÷5

  1÷80.75÷150.25÷50.045÷9

  如果要把一个数扩大10倍,100倍。1000倍小数点应怎样移动呢?出示(1.50.362.3752)

  (3)完成表格:

  ┌————┬——┬——┬——┤

  │被除数│15│150││

  ├————┼——┼——┼——┤

  │除数│5│50│500│

  ├————┼——┼——┼——┤

  │商│││3│

  └————┴——┴——┴——┘

  根据表格,观察被除数、除数和商之间有什么变化规律?

  今天这节课我们就要运用这个规律来计算除数是小数的除法。

  想一想,除数是小数,能不能把它转化成除数是整数的`除法来计算呢?

  二、新授:

  1、出示例4、读题、审题、列式

  56.28÷0.67

  这道算式与前面学过的有什么不同?(除数是小数),能直接计算吗?能不能转化成除数是整数的除法来计算呢?

  方法a把米转化成厘米计算。

  方法b把除数和被除数同时扩大100倍。

  (注:小数点和0要同时划去)

  2、引导学生分组讨论:

  a他们的计算方法有什么不同?

  b哪一种方法更为实用?为什么?

  0.6756.28

  都扩大100倍利用左边的辅助竖式边提问边板书

  讲清除除数转化成整数的过程。

  675628

  3、师生共同完成小林的计算方法后把答案填在课本上。

  4、P20、做一做(1),先说出下面各题中的除数和被除数需同时扩大多少倍,该如何移动小数点?然后再计算。

  5、自学例5

  思考:a除数是0.725变成整数,小数点必须向右移动几位?

  b要使商不变,被除数10.44应怎样?小数点移动时位数不够这么办?

  (生讲,师板书完成例5)

  6、引导学生概括出除数是小数的小数除法计算法则。

  除数是小数的除法,先移动()的小数点,使它变成();除数的小数点向()移动几位,()的小数点也向右移动几位,位数不够的,(),然后按照()进行计算。(生齐读)7、完成P20、做一做

  三、巩固练习:练习五1至4。

五年级数学教案14

  教学内容:

  人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

  教学目的:

  1、使学生理解相遇问题的意义及特点。

  2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

  3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

  教学重点:

  理解相遇问题的数量关系,建立解题思路,掌握解题方法。

  教学难点:

  理解相遇问题中速度和、相遇时间和总路程之间的关系。

  教学准备:

  计算机辅助教学软件一套。

  教学过程:

  一、动画引入,揭示课题

  1、通过电脑演示了解相遇问题中两个物体的运动情况。

  电脑演示一声枪响后,两人相向而行,相遇前停下来。

  提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?

  (板书:同时出发、相向而行)

  如果他们继续走下去,结果可能会怎样?

  (相遇、不相遇就停下来、相遇以后相交而过)

  结果究竟怎么样呢?请同学们继续观察。

  电脑演示两人相遇。

  (板书:结果相遇)

  谁能完整的说说他们是怎样运动的?

  [评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

  2、揭示课题:

  像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。

  (板书课题:相遇问题)

  过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?

  (板书:速度×时间=路程)

  今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。

  二、引导探究,教学新知

  (一)教学准备题。

  1、电脑配音显示准备题。

  我是张华,我的.速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。

  走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分

  讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?

  ②相遇时,两人所走路程的和与两家的距离有什么关系?

  2、观察填表,讨论分析。

  (1)学生填写表格,并讨论屏幕上的两个问题。

  (2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

  (3)学生回答讨论的两个问题。

  小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

  [评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

  (二)教学例5。

  1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?

  2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)

  3、学生自己分析解题思路:

  ①请用第一种方法的同学说说你是怎样想的?

  提问:题中只有一个4,为什么算式中出现了两个4?

  师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。

  ②请用第二种方法的同学说说你的解题思路又是什么?

  [评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]

  4、通过电脑演示强化两种解法的解题思路。

  通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。

  电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。

  [评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]

  5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?

  (板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?

  6、学生看书质疑。

  三、巩固练习,深化提高

  1、根据题意连线。

  两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。

  44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5

  相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。

  (59页做一做第1题)

  2、只列式不计算。(练习十三1、2题)

  学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。

  [评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]

  四、闯关游戏,拓思创新:

  电脑演示闯关画面,配音出示游戏规则。

  1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?

  提问:用速度和乘以时间得到了路程,为什么还要加120?

  2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?

  3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?

  提问:为什么每一种算法都要减90?

  4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。

  [评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]

五年级数学教案15

  一、教学目标

  1、知识目标:使学生在具体情境中理解与掌握方程的意义,认识方程和等式之间的关系,使学生初步理解等式的基本性质。

  2、能力目标:使学生在观察、思考、分析、抽象、概括的过程中,经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展学生思维的灵活性。

  3、情感态度与价值观:使学生在积极参与数学活动的过程中,加强数学知识与现实世界的联系,培养学生认真观察、善于思考的学习习惯与数学应用意识,渗透转化的数学思想。

  二、学情分析

  学生对于利用天平解决实际问题较感兴趣,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

  三、重点难点

  教学重点: 让学生理解并掌握等式与方程的意义,体会方程与等式之间的关系。

  教学难点: 体会方程与等式之间的关系。

  四、教学过程

  活动1【导入】谈话导入 出示,讨论天平的作用及用途,平衡状态和倾斜状态各说明什么情况。平衡状态说明托盘两边质量相等,倾斜状态说明托盘两边质量不相等。

  活动2【讲授】探究授新

  一、 认识等式与方程。

  1、出示(一),天平的两边放上砝码左边20克和30克,右边50克。提问:你看到天平怎样?天平平衡,说明什么?(生:说明两边质量相等。) 你能用式子表示两边物体之间的质量关系吗?(20+30=50)为什么中间用等号? 指出:像这样表示相等关系的式子就是等式。

  2、出示(二),把左边的其中一个20克砝码换成x克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x+30=50)

  3、出示(三),把左边托盘中的一个x克的砝码拿走,右边的50克砝码换成30克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x>30, 30<x)

  4、出示(四)天平图 你能用式子表示两边物体之间的质量关系吗? (X+X =100或 2X=100 )

  5、出示(五)天平图 你能用式子表示两边物体之间的质量关系吗? (10+ X<80或80>10+ X )

  6、出示刚才5道不同的式子。让学生分组讨论对5道式子进行分类。(提示:要按一定的标准进行分类。)指名分类,要求说出分类标准。

  7、对“是等式的”与“含有字母的”式子进行再次分类。 “是等式的”分为“不含有字母的等式”、“含有字母的等式”。 “含有字母的”分为“含有字母的等式”、“ 含有字母的不等式” 观察“是等式的”中“含有字母的等式”与“含有字母的” 中“含有字母的等式”发现了什么?这些式子有什么共同的特征?

  8、师小结:像这样含有未知数的等式是方程。 你能举出一些方程吗?(先指名说,后同桌互说。)

  9、揭示课题:认识方程。

  二、认识等式与方程关系

  1、认真观察刚才的(1)20+30=50 (2) x+30=50(5) 2X=100,问:(1)是等式吗?是方程吗啊?(2)(5)是方程吗?是等式吗?

  2、小结:是方程一定是等式,是等式不一定是方程。

  3、你能不能用图形表示方程和等式之间的.关系吗?

  引入集合圈表示它们之间的关系。

  三、巩固新知

  1、哪些是等式?哪些是方程?为什么?

  ① 35- =12 ( ) ⑥ 0.49÷ =7 ( )

  ② +24 ( ) ⑦35+65=100 ( )

  ③ 5 +32=47 ( ) ⑧-14> 72 ( )

  ④ 28<16+14 ( ) ⑨ 9b-3=60 ( )

  ⑤ 6(a+2)=42 ( ) ⑩+=70 ( )

  2、请同学们自己写出方程与等式各3个。

  3、张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

  4、判断。(正确的打“√”,错误的打“×”。)

  (1)含有未知数的等式是方程( )

  (2)含有未知数的式子是方程( )

  (3)方程是等式,等式也是方程( )

  (4)3=0是方程( )

  (5)4+20含有未知数,所以它是方程( )

  5、列出方程

  (1)x加上42等于56。

  (2)9.6除以x等于8。

  (3)x的5倍减去21,差是14。

  (4)x的6倍加上10,和是20.8。

  6、看图列出方程。

  列方程时,一般不把未知数单独写在等号的一边

  7、先读一读,再列出方程

  (1)一辆汽车的载重是5吨,用这辆汽车运x次,可以运40吨货物?

  (2)一瓶矿泉水的价格是2.5元,一个面包的价格是x元,买2个面包和1瓶矿泉水一共花了11.9元。

  四、 课外小知识,介绍方程的历史,让孩子们体会学习方程的用途。小结,通过今天的学习你有什么收获?你还想学习方程的那些知识?

  板书设计:

  认识方程

  20+30 = 50

  x +30 = 50 含有未知数的等式,叫做方程。

  x > 30 方程一定是等式;

  2 X = 100 等式不一定是方程。

  10 + X < 80

【五年级数学教案】相关文章:

五年级数学教案01-06

五年级数学教案01-29

五年级教案数学教案12-27

五年级数学教案10-24

五年级下册数学教案03-09

五年级数学教案(集合)06-25

五年级数学教案【荐】01-24

【推荐】五年级数学教案01-24

【精】五年级数学教案01-25

小学五年级下数学教案02-15