五年级数学教案(精选15篇)
在教学工作者开展教学活动前,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?下面是小编帮大家整理的五年级数学教案,希望对大家有所帮助。
五年级数学教案1
教材分析
一、主要教学内容
(一)数与代数
1、第一单元“小数除法”
本单元学生已掌握了整数混合运算顺序及运算律、整数乘除法、小数加减法、小数乘法的计算方法,并能利用这些知识解决生活中的实际问题,除数是整数的小数除法是学习小数除法的基础,它是根据整数除法迁移过来的,利用商不变的规律可将其转化为整数除法,体现了转化的思想。通过这部分内容的学习,学生需要掌握小数小除法的计算方法,同时增进对相关运算律的理解,提高运用四则运算解决简单实际问题的能力,包括用“四舍五入”法求积、商的近似值,了解除数大于1(或小于1、接近1)时,商和被除数的关系。学生要能用估算判断计算结果的正确性,并能举例说明估算在现实生活和数学学习的重要性。
2、第三单元“倍数与因数”
本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,
理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决生活中一些简单问题。
通过本单元的学习,学生将经历探索数的`有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。
3、第四单元“分数的意义”
在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过
具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。
通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
(二)空间与图形
1、第二单元“轴对称和平移”
学生在第一学段已初步感知生活中的对称、平移和旋转现象,初步认识了轴对称图形。本单元教科书编写的基本特点主要体现在一下几个方面:1.重视结合已有知识和折纸、画图等经验,进一步学习轴
五年级数学教案2
教学目标:
1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。
2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。
3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。
4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。
教学重点:
初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。
教学难点:
通过探索,自主推算出相邻体积单位间的进率。
教学准备:
多媒体课件、体积单位模型、彩泥、魔方等。
教学过程:
一、创设情境,引发思考
师:上一节课,我们认识了体积,什么是物体的体积?
问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)
师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。
二、合作学习,探究新知
(一)探寻学生已有知识:
问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)
(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)
【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】
(二)建立1cm3、1dm3、1m3的空间观念
1、建立1立方厘米的空间观念:
(1)初步感知1cm3有多大:
问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)
【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】
<<<123>>>
(2)触类旁通,定义1 cm3的大小:
师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)
【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】
(3)进一步感知1cm3的大小:
做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。
(4)想一想,填一填:
师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)
2、建立1立方分米、1立方米的空间观念:
(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)
【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】
(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)
【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】
(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。
【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】
3、练习(用合适的体积单位表示下面物体):
一块橡皮的体积约是8( )。
一台录音机的体积约是10( )。
运货集装箱的体积约是40( )。
一本新华字典的体积约是0.4( )。
一个西瓜的体积约是5( )。
一间教室的体积约是180( )。
(三)继续类比,探究相邻体积单位间的进率:
1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)
2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)
【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的`,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】
3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)
【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】
4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)
5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)
【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】
三、动手操作,质疑反思:(机动,也可作为课后拓展)
学生活动:用一些棱长为1厘米的小正方体,做下面的活动。
1、用4个小正方体可以摆成一个大正方体吗?
2、最少要用多少个小正方体才可以摆成一个大正方体?
3、你能再摆一个大一些的正方体吗?用了多少个小正方体?
【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】
四、总结全课,感悟学习方法:
师:通过今天的学习,你有哪些新的收获?(生生互动)
小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。
五年级数学教案3
教学目标:
1、使学生能根据要求正确地运用“四舍五入”法求一个小数的近似数。
2、能正确的按需要用“四舍五入”法保留一定的小数数位。
3、会把较大的整整改写成以“万”或“亿”作单位的小数,再求近似值。
教学重点:
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数。
教学难点:
使学生能够区别求近似数与改写求准确数的方法。
教具准备:
多媒体课件。
教学过程:
一、情境导入
师:我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它.的近似数就可以了。如在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元5角。平常不需要说得那么精确,只要知道它的近似数即可,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题川、数的近似数) 。
二、自主控究
1.求一个小数的近似数。
(课件出示豆豆测量身高的情景图)
师:读情景.图,你能找出已知信息和所求的问题吗? .
生1:要解决的问题是如何得出豆豆身高的近似数。
生2:已知信息是豆豆的身高是0.984m,亮亮说:“豆豆身高约是0.98m。”红红说:“豆豆身高约1m”。
师:对于上面的已知信息,你是怎样理解的?
生b“豆豆的身高是O.984m”,这里的0.984m,是测量时精确到毫米得到的。
生2:“豆豆高约0.98m”,这里的0.98是精确到厘米得到的。
生3:“豆豆高约1m”,这里的l是精确到米得到的。
师:为什么会出现上面不同韵结果呢?
生:0.98和1都是0.984按不同要求取的近似数。
师:取一个整数的近似数用到的方法是什么?
生:我们取一个整数的近似数时,用到的方法是“四舍五入”法。
师:对,“四舍五入”的方法同样适用于小数取近似数。
师:下面同学们以小组为单位,讨论一下,0.984m是如何得到0.98的?
(小组讨论,全班交流)
生:“豆豆高约是0.98m”,这里的0.98m是把豆豆身高0.984m保留两位小数得到酌结果。
师:它是如何取的两位小数?
生:按要求把一个小数保留两位小数时,一般要看到千分位,如果千分位上的数大于或等于5就要向百分位进1,如果千分位上的数小于5,就舍去。
0.984≈O.98(保留两位小数),因为千分位上的4小于5,所以舍去。
师:“豆豆高约lm”,这里的lm是把0.984m保留整数得到的结果。一个小数怎样才能保留整数呢?
生:一个小数,如果保留整数,就要看这个小数的十分位,然后按照“四舍五入”法取近似值,0.984m-≈lm。
师:如果0.984m保留一位小数,结果又是什么呢?
生:把0.984m保留一位小数,就要看到百分位,百分位上是8,大于5,就要向十分位进1,十分位上是9,9+1=10,接着向个位进1,个位上0+1=1,所以0.984m保留一位小数是1.0m。
0.984≈1.0(保留一位小数),百分位上8大于5,向前一位迸1。
师:后面的0可以省略不写吗? ,
生:不能,因为要是省略就变成精确到整数部分的个位了。
2、把较大的整数改写成以“万”或“亿”作单位的小数。
师:读图,你能读出什么信息?
生:地球与月球的距离是384400km。
师:384400km,数据比较大,书写起来也不方面,你能把它改成以“万”为单位的数吗?
(小组讨论,全班交流)
生:改写成“万”作单位的数,就是把这个数缩小到原数的1/10000,也就是把小数点向左移动四位,然后点上小数点。
师:你会表示吗?
生:384400km=38.44km
师:上面的改写方法正确吗?
生:不正确,因为384400和38.44根本就不相等。
师:那怎么办呢?谁有办法解决这个问题?
生:在38.44的后面加上一个“万”字即可,因为把384400变为38.44缩小到了原数的而1/10000。
师:好,上面的这一过程可以表示为384400千米=38.44万千米。
师生共同总结:小数点向左移动四位,在万位的右边点上小数点,在数的后面加上“万”字。
师:读情景图,你发现了哪些数学信息?
生1:已知木星距离太阳778330000km。
生2:所要解答的问题是木星离太阳的距离是多少亿千米?(保留一位小数)
师:这个问题和上面的问题有哪些相同和不同的地方?
生:上面是把一个数改写成用“万”作单位的数,这个问题是把一个数改写成用“亿”作单位的数,并且还要求保留一位小数。
师:把一个数改写成用“亿”作单位和改写成用“万”作单位有什么相同之处?
生:都是把大数改写成一个用小数表示的数,所以都应该是把小数点向左移动。
师:改成以“万”为单位的数,小数点向左移动四位,那么改成以“亿”为单位的数,小数点向左移动几位呢?
生:应该是八位,然后加“亿”字。
师:好!同学们真聪明,用自己的思维,类推了把一个数改成用“亿”作单位的数。你能写出改写过程吗?
(学生独立尝试,全班投影展示)
778330000千米=7.7833亿千米
师生总结方法:小数点向左移动八位,在亿位的右边,点上小数点,在数的后面加上“亿”字。
师;如果保留一位小数,你会吗?
生:7.7833亿千米≈7.8亿千米
三、控究结果汇报
师:用“四舍五入”法,求一个数的近似数时,有哪些需要注意的地方?
(小组讨论,汇报交流).
生:用“四舍五入”法求一个小数的近似数时,保留整数,表示精确到个位,看到十分位;保留一位小数,表示精确到十分位,要看到百分位;保留两位小数,表示精确到百分位,要看到千分位……
师:表示近似数时,小数末尾的0怎么办呢?
生:表示近似数时,小数末尾的.0是不能省略的。
师:如何把一个较大的数改成以“万”或者“亿”为单位的数?
(小组讨论,全班交流)
师生总结:把一个大数改写成以“万”为单位的数时小数点向左移动四位,加上“万”字。把一个大数改写成以“亿”为单位的数时小数点向左移动八位,加上“亿”字。
师:改写时,需要注意什么?
生:在改写的过程中,不要把单位“万”“亿”丢掉。
四、师生总结收获
师:同学们,通过本节课的学习,你有哪些收获?
生1:求小数的近似数的方法和求整数的近似数的方法类似,都是采用“四舍五入”法。
生2:把大数改写成用“万”或“亿”作单位的数,写起数来就简单多了,这体现了数学的简洁思想。
师:小数的近似数在我们的生活中应用非常广泛,我们的身边就有很多类似的数,你们课下去找一找,看看它们都存在于我们生活中的哪些地方。让我们在发现中学习数学,体会数学与我们的密切联系,做生活中的有心人!
【设计意图:在教学过程中,学生能够在知识、能力、数学思想方法以及学习方法上有所收获】
板字设计:
例1:0.984保留两位小数 0.984保留一位小数 0.984保留整数
0.984≈0.98 0.984≈1.0 0.984≈1
↑ ↑ ↑
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
例2 例3
142800千米=14.28万千米 778330000=7.7833亿千米≈7.8亿千米↑
五年级数学教案4
教学内容:小数四则混合运算和简便算。
教学目标:
通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。
教学过程:
一、挂出小黑板视算。
4.8÷81.6÷0.412.12÷120.32÷0.4
4÷0.51÷250.25×400.13×5
2.5×4÷40.1×0.8÷1004.2÷0.6÷7
0.125×1.5×88.4÷8.4+61-0.25÷0.5
二、先说出运算顺序,再计算。
课本第34页的第7题,请4个学生板演后,师讲评。
比一比,看谁算得又对又快。把得数直接填在课本第35页的第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。
三、简便计算。
引导学生看课本第34页的第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)
整数的运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。
四、幻灯演示课本第36页的'第7题。
这是一张不完整的发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。
五、独立作业
第35--36页的第5、6题。
五年级数学教案5
课型:新授
教学内容:教材P5~6例3、例4及练习二第1、9题。
教学目标:
知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。
过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。
教学方法:观察、分析、比较。
教学准备:多媒体。
教学过程
一、复习引入
1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3
口算后提问:从14×3和1.4×3的口算中,你有什么发现?
2.列竖式计算。26×7 1.36×12 30.8×25
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。出示教材第5页例3的主题情境图。
师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)
师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。
师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:×0.8
生2:也可以把它们可作整数来计算(下左)。
师:那么如何求一共需要多少油漆呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)
所以一共需要1.728千克油漆。
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的`两个因数中一共有几位小数?积呢?
生:两个因数中一共有2位小数,积也有2位小数。
2.探究小数乘法的计算方法。完成P6例4上面的填空。
(l)组织学生尝试完成教材第5页的“做一做”。
(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
(3)教学例4。 0.56×0.04
师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?
学生讨论,教师板书。
师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
师:观察黑板上各题,小组讨论。(出示讨论提纲。)
讨论提纲:①小数乘小数,我们首先怎样想?
(把两个因数的小数点去掉,转化为整数乘法。)
②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)
③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?
(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)
3.根据上面的分析,想想小数乘法是怎样计算的?
学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。
生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。
教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.4 0.08×0.9 7.3×0.06
9.1×0. 03 0.25×0.23 45.9×3.5
提问:怎样判断积有几位小数?
2.用竖式计算。(教材第6页“做一做”的第1题)
提问:你是怎样计算0.29×0.07的?
3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。
师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。
师:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(O除外)乘小于1的数,积比原来的数小。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
作业:教材第8~10页练习二第1、9题。
板书设计:
小数乘小数
2.4×0.8=1.92 0.56×0.04=0.0224
1看、2算、3数、4点
五年级数学教案6
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
(2)认识负数的应用
教学内容:p.3、4的例3、例4,完成第5页的`练一练和练习一的第7~10题
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。
学生举例(可能有的情况):
1、收入和支出:如果老师上个月的10日拿到1500元工资,为了强调“收入”,我可以这么记“+1500”,买衣服花了300元,可以怎么记?为什么?吃饭花了500元,怎么记?……
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
3、上车与下车:(第10题),依次写出每一站的情况,让学生说说每一站是什么意思?特别是“0”;还可以结合某一站,让学生说说“—3,+8”其实人数有什么变化?……
4、上楼与下楼:……
补充楼层,第下室的表示方法等。补充:楼房有正的几楼,也有可能会有负的几楼,会不会有0楼?为什么?
5、向东走、向右走:常见的方向有4个,东和西是相反的方向,南和被也是一对相反的方向。如果把想东走5米,记作+5米,那么向西走10米,可以怎么记?你是怎么想的?+10米表示什么呢?为什么?
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
比较这个话题与前面话题的不同:前面的正负数一般都有增加或是减少的意思,而这个正负数,只表示相反的意思。……
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动面积是多少
教学内容:p.10~11
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
二、分一分、数一数:
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。
1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
取图3,交流数的方法:说说在数格子的时候你遇到了什么困难?是怎么解决的?最后结果是多少?
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
(1)、出示池塘图。观察该池塘边的特点,说说你想怎么求它的面积?有什么困难?有什么好办法吗?
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。
学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。
交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
五年级数学教案7
教学要求:
使学生进一步掌握平行四边形、三角形、梯形面积的计算公式,能正确地计算它们的面积。
教学重点:
熟悉所学实际测量的知识,能正确应用所学的知识,解决一些实际问题。
教学过程:
一、基本练习
1.口算。P.145页口算(四)。
3.5+7.6 12-6.2-3.8 7÷0.25 5.6×1.01
1.7+0.4 3+3.3 5.4-2.5-1.47 2.8÷0.8
(1.25+0.36)×0.2 0.99+1.8 2.56-0.37
500×0.001 3.2÷1.6 3.9+2.03 7.5×2.5×4
0.36÷12 0.75×4 4.9÷3.5 1.2×0.4+1.3×0.4
2.14-0.9 6.25×0.8
二、复习指导
1.实际测量的有关知识
(1)同学们已经知道在测量地面上较远的两点间的距离时,应先测定一条直线。怎样做才能测定这条直线呢?
在学生回答的基础上再让学生看P.86页的插图及怎样做的步骤。
(2)在进行步测时,首先要知道自己走一步的长度。怎样做才能知道自己走一步的长度是多少呢?
在学生回答的基础上,让学生看P.87页怎样算出自己走一步的平均长度。
(3)学生独立做练习二十第7题。集体订正时让学生讲自己是怎样想的。
2.平行四边形、三角形、梯形面积的计算。
练习二十第5题。
(1)明确各是什么图形?再动手量出计算它们面积所需的数据,并算出它们各自的面积。
(2)比较它们的面积,你发现了什么?
(3)在学生发言的基础上说明,这四个图形的形状虽然不同,但面积相等。它们的高都等于2厘米,长方形和平行四边形的底1.5厘米,所以它们的面积相等;而梯形上底与下底的和以及三角形的底都是3厘米,比长方形、平行四边形的底扩大了2倍,但按照它们面积的计算公式底和高相乘后还要除以2,所以它们的面积与长方形、平行四边形的面积相等。
三、课堂练习
1.练习二十第6题。
学生独立计算,集体订正。
2.练习二十第9题。
在学生说出自己的看法后,教师再强调:三角形的面积是由它的高和底确定的。如果两个三角形等底、等高,它们的面积就相等;如果两个三角形的.高相等,而底不相等,那么它们的面积就不会相等。
四、作业
1.练习二十第8题。
2.学有余力的学生可做练习二十第11题及思考题。
教学内容:
根据测量的有关内容,自行设计的综合实践活动
教学目标:
1、学会步测、目测等测量方法,了解光侧、影测、绳测等测量方法,进行实际测量。
2、在解决生活中的实际问题中发展空间观念和抽象概括能力。
3、提高运用所学知识解决实际问题的能力和计算能力。
4、体会数学在现实生活中的应用。
教学准备:
课件、米尺、卷尺、等
教学过程:
一、提出问题
师:我们认识了长度单位米、分米和厘米,并且知道了它们大概的长度,那么今天我们就用我们所学的知识来进行实际测量。在进行测量前,我们要了解哪些测量知识呢?例如:测量工具、测量单位、测量对象、测量方法等等。
(学生提到了进行测量的时候,要使用尺子,记录测量结果的时候要用到米、分米、厘米等长度单位。)
二、活动程序
1、准备活动:展示人们测量一些建筑物的课件。
2、布置活动
师:我们已经掌握了测量的相关知识,下面就请同学们结合实际生活,选择一个你想测量的对象,选用适当的测量方法进行实际测量。
测量要求:
(1)以小组为单位,进行实际测量。
(2)每小组要在活动卡片上做好记录。
3、提供给学生“实际测量活动”卡片
教学内容:
教材第21页例1、22页做一做及练习五1-3题。
教学目标:
1、让学生经历观察、比划、测量等学习活动,明确毫米产生的实际意义,使他们初步认识新的长度单位毫米,建立1毫米的概念,会用毫米作单位进行测量,并能掌握毫米与厘米间的关系,进行简单的换算。
2、借助具体的测量活动,进一步培养学生的动手操作能力,能估计一些物体的长度,进一步发展估测意识。
3、感受数学与生活的密切联系,学会与他人合作,从而获得积极的学习数学的情感。
教学重点:
建立较为准确的“1毫米”的概念。
教学难点:
理解厘米与毫米之间的进率。
教学准备:
教师准备课件、米尺;学生准备书、直尺一把、一枚1分硬币、一张银行借记卡、小棒等。
教学过程:
一、创设情境,揭示课题。
1、复习米和厘米,引导学生用手势来表示1米和1厘米各有多长。
2、估计数学书的宽和厚大约是多少,动手测量验证。
3、组织交流测量结果,引出毫米产生的意义。
4、揭示课题“毫米的认识”。
二、自主探究,学习新知。
1、建立“1毫米”的表象。
①毫米可以用字母mm来表示。设疑:关于毫米,你已经知道了哪些知识?(学生思考、交流)
②在学生交流的基础上,重点探讨“1毫米”有多长,请学生在尺上相互指指,从哪里到哪里是1毫米。再请持有不同意见的同学向全班汇报、交流。
揭示:为了看得更清楚些,我们把尺子用放大镜放大,把1厘米平均分成10份,其中的任何一份也就是每一小格的长度,就是1毫米(边介绍边用课件演示)然后,请学生在自己的尺子上再指一指1毫米有多长。
③思考:现在你觉得毫米与厘米之间有什么关系?
1厘米=10毫米
④请学生想一想哪些物体的长度大约是1毫米。(教师准备1分硬币、电话卡和银行借记卡,请学生量一量厚度,加深对“1毫米”的体验。)
⑤引导学生用手势来表示1毫米有多长,并谈谈自己的感受。
⑥说一说,生活中还有哪些地方用到“毫米”作单位。(学生举例,教师提供一些资料)
⑦学生填写数学书的厚和宽并反馈。
2、画线段。(3厘米7毫米长的线段。)
提问:用直尺画线段时需要注意什么?如何画出3厘米7毫米长的线段?
学生可能有以下几种画法
A、利用刻度尺先画出3厘米的线段,再接着画出7毫米。
B、在刻度尺上输出37毫米(3厘米=30毫米),然后画线段。
学生操作,教师巡视引导,注意线段从“0”刻度开始画和不从“0”刻度开始画的画法区别。
三、实践应用,巩固新知
1、学生根据本课的新内容完成“做一做”第1、2、题。
第1题让学生根据图示读出刻度尺所测量的物体长度。明确先1厘米1厘米地鼠,不满1厘米的再1毫米1毫米地数,这样的方法更加的快捷方便。学生读数,再指名汇报。
第2题让学生先估算,再测量,然后集体订正,指名说说理由。
2、完成“练习五”第2题。
以毫米为单位测量出每条边的长度,学生独立完成后集体订正。
四、课堂小结,课外延伸。
这节课我们学习了什么?你学会了什么?请你用手势表示1毫米大约有多长。米不是的长度单位,毫米也不是最小的长度单位,如果你们有兴趣,希望你们到书中或网上查查看。
板书设计:
毫米的认识
1厘米=10毫米
10毫米=1厘米
五年级数学教案8
教学目标
1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养中国学习联盟胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270÷(50+40).
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于“求相遇时间”应用题还有什么问题?
4.教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的.隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣.
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59.
活动过程
1.教师进行表演
2.学生探讨其中的奥妙
3.学生自己设计这样的几个游戏.
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.
六、板书设计
五年级数学教案9
教学目标
整理和复习
教学内容
本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。
平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。
组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。
本单元具体的教学内容分析如下:
1.平行四边形的面积。
通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。
2.三角形的面积。
为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。
3.梯形的面积。
这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。
4.组合图形的面积。
教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的'组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。
5.整理和复习
这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。
五年级数学教案10
教学目标
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
教学重点
理解和掌握循环小数等概念.
教学难点
理解和掌握循环小数等概念.
教学过程
一、铺垫孕伏
(一)口算
0.8times;0.5= 4times;0.25= 1.6+0.38=
0.15divide;0.5= 1-0.75= 0.48+0.03=
(二)计算
21divide;3= 15divide;3= 12divide;3= 10divide;3=
教师提问:通过计算,你发现了什么?
二、探究新知
(一)教学例7
例7 10divide;3
1.列竖式计算
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……
(二)教学例 8
例8 计算58.6divide;11
1.学生独立计算
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……
3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法
3.33……可以写作 ;
5.32727……可以写作
6.练习
把下面各数中的循环小数用括起来
1.5353…… 0.19292…… 8.4666……
(三)教学例9
例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)
1.学生独立列式计算
130divide;6=21.666……
asymp;21.67(十克)
答:小汽车大约装21.67千克汽油.
2.集体订正
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.
28divide;18 2.29divide;1.1 153divide;7.2
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的'位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
三、课堂练习
(一)计算下面各题,哪些商是循环小数?
5.7divide;9 14.2divide;11 5divide;8 10divide;7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090…… 0.0183838……
0.4444…… 7.275275……
四、布置作业
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)
五年级数学教案11
一、教学目标
1、通过直观的折纸操作活动,理解异分母分数加减法的算理,能正确计算异分母分数的加减法
2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。
3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。
二、教学重、难点
1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。
2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。
三、教学设计
(一)动手操作,明确目标
1.谈话导入,开门见山板书课题:
异分母分数加减法,出示学习目标,生齐读
(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的
加减法。
(2)通过直观的操作活动,理解异分母分数加减法的算理。
师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折
纸研究解决解决异分母分数加减法的.相关知识,有信心吗?
2.请看要求
①折一折:平均折出你喜欢的份数。②画一画:用斜线画上你想画的份数。③说一说:画斜线部分是正方形纸片的几分之几?
3.动手操作
师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)
4.学生汇报展示。
师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)
5.提出问题,明确目标
师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)
想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)
还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)
师:从学生汇报的异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。
(二)自主探索,理解算理
1、自主探索进行算理探究。
师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:
结论1:(1/2+1/4=1/6)
结论2:(二分之一加上四分之一等于四分之三)
结论3:(二分之一加上四分之一等于六分之二)
2、讨论验证
师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?
生:在全班范围内展开讨论,充分发表各自的意见。
3、理解算理。
师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。
注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。
师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?
出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。
师:可不可以将百分位上的1加上十分位上的3?
生1:不可以。因为相同的数位没有对齐。
生2:小数点没对齐。
师:小数点没对齐也就是什么没对齐?——数位没对齐
师:数位不同也就是什么不同?(计数单位)
师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)
师:通过大家的交流,现在大家明白在做异分母分数加减时为什么不能直接将分子、分母相加、减的原因了吗?
4、小结算理
谁来说究竟该怎样计算异分母分数的加法呢?
生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。
(三)迁移应用,巩固提高
1.迁移应用,解决减法问题:
1/2-1/4=
2.完成“试一试”
出示试一试的+与-,再次为学生提供尝试机会。
(学生练习后全班回馈交流,并规范书写格式。)
四、总结规律,内化提升
师:通过刚才的学习,你发现异分母分数加减法应怎样计算?
生:异分母分数加减法要先通分,化成同分母分数加减法,再加减。(随着学生汇报教师板书):异分母分数通分转化同分母分数
五、作业布置
五年级数学教案12
(一)、实践操作
1、组织谈话
师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。
生:两组对边分别平行的四边形叫平行四边形。
生:认识了平行四边形的高。
2、媒体演示
(出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)
师:现在你能发现什么问题呢?
生:为什么会变成平行四边形呢?面积是否变了呢?
师:小山羊到底发现了什么问题?你们想不想知道呢?
(出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)
生:一样大。
生:我认为长方形面积大,平行四边形面积小。
师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?
师:有什么方法验证一下它们的面积是否一样大呢?
生:可以算一算它们的面积的大小。
师:怎样算呢?
生: 长方形的面积 =长×宽(板书)
平行四边形的面积 =底×高
师:你是怎样知道的'?
生:我是看书知道的。
生:我是家长告诉的。
师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?
师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。
(小组合作,4人一组,然后在全班汇报)
(二)交流汇报
师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。
生:是长方形,我是沿着高剪的。
师:你为什么这样剪,不沿着高剪开行不行?
生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。
师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。
师::长方形和原来的平行四边形有什么关系?
生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。
师:谁再来完整的说一遍。
师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。
师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)
生:公式是s=ah
师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。
(三)巩固发展
1.口算下列各题。
生:第一个平行四边形的面积是12平方厘米。
生:第二个平行四边形的面积是20平方分米。
生:第三个平行四边形的面积是8平方米。
2.辨析性练习:
师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)
生:是54平方厘米。
生:我不同意,因为……
师:为什么说面积不是54平方厘米?
生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。
师:谁再来说说。
师:让我们来看看。下面你能计算了吗?(课件出示)
生:2×9=18;3×6=18
五年级数学教案13
第1题
先让学生找15的因数和倍数,交流找因数和倍数的方法。在此基础上,还可以引导学生观察15最大的因数是几,15最小的倍数是几。
第2题
可以让学生先列出9的倍数(54以内):9,18,27,36,45,54。再列出54的所有因数:1,2,3,6,9,18,27,54。然后,再回答问题。答案:这个数有四种可能:9、18、27、54,对不同的'学生可以有不同的要求,不一定要所有学生把四种全部找出来。
第3题
主要要引导学生交流一下判断的方法。如果学生有困难,可以分层次进行,可以先填奇数和偶数,再填质数和合数。
第4题
本题是对本单元所学概念的理解巩固与综合运用。第1题结论是5,第2题结论是13和2,第3题的结论是36或92。在完成本题基础上,教师还可以引导学生运用本单元知识自己编一些这样的题,促进学生对概念的理解。
第5题
先让学生解决第一个问题,并交流是如何思考的,一般可以从每盒瓶数是不是90的因数考虑,也可以用除法来解决,6、5、3都是90的因数,能正好装完,8不是90的因数,不能正好装完。第二个问题是引导学生思考90还有哪些因数,同时还要注意联系生活实际,如每盒2瓶,9瓶,10瓶等都较合理,每盒90瓶就不太合理。
第6题
本题为思考题,主要是引导学生探索、研究“三个连续自然数组成的数一定是3的倍数”的规律。教学时,可以提出问题,引导学生根据3的倍数自主探索,交流研究结果,最后得出结论。
〖你知道吗〗
教师可以结合史料详细介绍哥德巴赫猜想和陈景润的研究成果,激发学生研究数学的兴趣和民族自豪感。帮助学生理解“猜想”时,可以让学生自己再举一些例子,例10=3+7,18=11+7,42=31+11等。
五年级数学教案14
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
容积与体积的关系。
教具:
量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3)
②1升=1立方分米
1000毫升=1000立方厘米
1毫升(mL)=1立方厘米(cm3)
练一练:
1、8L=()mL3500mL=()L15000cm3=()mL=()L
1、5dm3=()L
(4)小组活动:
a、将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
b、估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的.里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2=40(立方分米)40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1、4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的`3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2、5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五年级数学教案15
教学内容:分数与除法
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6 = 6 4÷5=0.8 80÷5=16
3÷7= 5÷10=0.5 4÷9=
然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个47 40÷47
饮料39瓶47 39÷47
花生8千克47 8÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的`几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= (b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13= =()÷()
()÷9= ()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b= (b≠0)
3÷4=(张)
答:每人分得张饼。
【五年级数学教案】相关文章:
五年级数学教案01-06
五年级数学教案01-29
五年级教案数学教案12-27
五年级数学教案10-24
五年级下册数学教案03-09
五年级数学教案(集合)06-25
五年级数学教案【荐】01-24
【推荐】五年级数学教案01-24
【精】五年级数学教案01-25
小学五年级下数学教案02-15