《小数的意义》教案

时间:2024-09-06 19:20:55 教案 我要投稿

《小数的意义》教案

  作为一位不辞辛劳的人民教师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?以下是小编为大家收集的《小数的意义》教案,欢迎阅读与收藏。

《小数的意义》教案

《小数的意义》教案1

  教学目标

  1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.

  2.提高学生计算能力和估算能力.

  3.培养学生认真计算、自觉检验的好习惯.

  教学重点

  正确、熟练地计算较复杂的小数乘法.

  教学难点

  根据小数乘法的意义正确判断积与被乘数的大小关系.

  教学过程()

  一、检查复习

  (一)口算

  0.9×6 7×0.08 1.87×0 0.3×0.6

  0.24×2 1.4×0.3 1.6×5 4×0.25

  60×0.5 7.8×1

  (二)说出下面各算式表示的意义

  2.4×0.8 1.36×4 2.58×0.2

  二、指导探索

  (一)教学例3 0.056×0.15

  1.学生独立计算,指名板演.

  2.指名说一说计算过程.

  教师提问:乘得的'积的小数位数不够时,该怎么办?

  3.指导学生验算方法

  教师提问:怎样检验小数乘法计算是否正确?

  (运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

  (二)教学例4

  一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?

  1.独立解答.

  2.教师提问:

  (1)你是根据什么列式的?(一倍数×倍数=几倍数)

  (2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

  3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

  4.练习:不计算,说明下面各算式中积与被乘数的关系.

  10.8×0.9 2.4×1.8 50×0.36 0.48×0.75

  讨论:在什么情况下,积小于第一个因数?

  在什么情况下,积等于第一个因数?

  在什么情况下,积大于第一个因数?

  5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;

  当第二个因数等于1时,积等于第一个因数(零除外);

  当第二个因数比1大时,积比第一个因数(零除外)大;

  6.练习:不计算,判断下面各题的结果是否正确.

  0.72×0.15=1.08 0.36×1.8=0.648

  三、质疑小结

  (一)今天你都有什么收获?

  (二)对于今天的学习还有什么问题?

  四、反馈调节

  (一)计算

  0.37×2.9 0.56×0.08 0.072×0.15

  0.18×8.45 4.5×0.002 3.7×0.016

  (二)判断对错.

  1.0.6时等于6分.( )

  2.一个数的1.02倍比原来的数要大.( )

  3.两个因数的小数位数的和是4,积的小数位数也一定是4.( )

  (三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?

  五、课后作业

  (一)计算

  82×0.9 3.4×1.26 0.039+1.75

  2.07×53 20.14-6.87 10-5.29

  6.52+72.98 0.36×0.25 0.015×2.04

  (二)食品店运来350瓶鲜牛奶,运来酸奶的瓶数是鲜牛奶瓶数的1.8倍.食品店运来多少瓶酸奶?

  六、板书设计

  小数乘法

  教学设计点评

  教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。

《小数的意义》教案2

  教学目标:

  1.结合具体的生活情境,使学生体会到生活中存在着大量的小数。

  2.通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.通过练习,使学生进一步体会数学与生活的密切联系,提高学习数学的兴趣。

  教学重点:

  体会十进制分数与小数的关系,初步理解小数的意义。

  教学难点:

  能够正确进行十进制分数与小数的互化。

  教学教具:

  课件、米尺、正方形纸。

  教学过程:

  1.课件播放进入超市购物的情景。

  铅笔:0.1元/个

  圆珠笔:1.11元/个

  西红柿:4.5元/千克

  红豆:5.7元/千克

  教师:上面这些物品的价钱有什么特点?

  学生1:都不是整元数。

  学生2:都是小数。

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数的时候要注意什么呢?

  学生1:0.1读作零点一。

  学生2:1.11读作一点一一。

  学生3:4.5读作四点五。

  学生4:5.7读作五点七。

  学生5:小数点前面的部分按照整数的读法来读,小数点后面的部分要依次读出每一个数。

  【设计意图:这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引起学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力】

  2.教师:上面的物品,你喜欢哪个,又该怎样付钱呢?

  学生1:喜欢铅笔, 0.1元是1角。

  学生2:喜欢圆珠笔,1.11元是1元1角1分。

  学生3:喜欢西红柿,4.5元是4元5角。

  学生4:喜欢红豆, 5.7元是5元7角。

  3.教师:1.11元为什么是1元1角1分呢?以小组形式讨论,把你的'想法先在小组内分享。

  4.多种方法尝试解决。

  (小组活动:学生有的是用元、角、分知识解决,有的是用小数的组成解决,有的完毕,汇报小组结果)

  教师:你们知道原因了吗?哪个小组的同学把你们的方法和全班同学交流一下。

《小数的意义》教案3

  教学目标:

  1.通过练习体会小数所表示的意思,理解小数的意义。

  2.通过练习理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教法学法:

  小组合作交流学习法、练习法

  教学过程:

  一、复习导入新课。(小黑板出示)

  2角5分 = ( )元

  9分米 =( )米

  7分 =( )元

  135克 =( )千克

  3元4角 =( )元

  3分米2厘米 =( )分米

  二、自学后完成下面问题

  1.一个小数整数部分的最低位是( )位,计数单位是( ),小数部分最高位是( ),计数单位是( ),这两个单位间的进率是( )。

  2.0.78的计数单位是( ),它含有( )个这样的计数单位。

  3.由2个十、7个0.1和5个0.001组成的数写作:( ),

  读作:( )

  4.连线题: 0.008 0.8 0.08

  零点八 零点零八 零点零零八

  5.判断

  (1)8.76读作:八点七十六。( )

  (2)4.32是三位小数。( )

  (3)5.961中的6在百分位上,表示6个0.01。( )

  6.一个小数,它的'百位和百分位上都是2,其余各位都是零,这个小数写作( )

  7.0.0302用分数表示是( )

  8.下面几个数字中的9分别表示什么意义?

  9.26 ( )

  0.926( )

  0.296( )

  0.269( )

  三、作业布置。

  1、作业本做练一练2、3题

  2、完成相应配套练习。

  板书设计:

  小数的意义(二)

《小数的意义》教案4

  教学目标:

  1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

  2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

  3、在合作与交流中的过程中,感受数学学习的乐趣。

  教学教法:

  教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的'含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知表象抽象概括形成概念的这一规律。

  1、从生活中了解小数,明确要用小数表示的必要性。

  2、从已有的生活经验中,理解、抽象小数的意义。

  3、 通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

  4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

  教学学法:

  1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

  2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

  3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

  教学过程:

  一、创设情景 导入新课

  创设5.1假期情景 ,使本课内容与学生的现实生活经念相吻合

  1、在假期里你买了什么物品?花了多少钱?

  2、老师买了一本书,同学们猜一猜要多少元?

  从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

  这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  二、明确目标 探索新知

  同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

  我预设学生的提问(预设)

  1、小数是怎么来的。(怎么产生的)

  2、什么叫小数?(小数的意义)

  3、小数是怎么读的,怎么写的?

  根据学生提的问题,师生分析问题

  1、师生小结小数的意义

  (1)象0.1、0.3、0.9这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

  (2)象0.01、0.04、0.18这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

  (3)象0.001、0.015、0.219这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

  2、学习小数的写法

  三、巩固新知

  1、练习考考你;(练一练)第1题

  2、用米做单位测量同桌的高度;

  3、菜市场买菜统计表。

  【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

  四、小结

  1、了解小数的历史。(小资料)

  【了解小数的历史,激发学生的爱国热情。】

  2、学了小数这节课,能谈谈你知道了些什么吗?

  五、作业布置

  1、从生活中记录一些小数,明天同学之间相互交流;

  2、完成《作业本》

  布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

《小数的意义》教案5

  教学目标:

  1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。

  2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。

  3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。

  教学重点:

  理解小数的意义。

  教具准备:

  长方形、正方形的图片,多媒体课件等。

  教法学法:

  根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。

  教学学法:

  动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。

  教学过程:

  为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。

  一、创设情境,提供素材。

  这一环节分两步,第一步观察情境,读写小数。

  课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。

  第二步根据信息,提出问题。

  提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。

  二、分析素材,理解概念。

  这一环节分 两步,第一步认识两位小数的意义。

  这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)

  第2个小环节,出示一张正方形纸片【提问】:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?

  先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。

  (师板书:0.1——1/10 0.01——1/100)

  在正方形纸片上表示出0.25。

  提问:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  先让学生小组讨论,然后小组合作完成,全班交流。

  教师引导学生明确0.25就是25/100,也就是25个1/100。

  板书:0.25 25/100

  第3个小环节,多媒体出示0.05、0.10的方格图,阴影部分表示什么? 板书:0.05 5/100 0.10 10/100

  第4个小环节,小组讨论:这些小数有什么共同特点?

  让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。

  引导学生概括出两位小数表示的意义。

  【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的意义。

  这一步分四个小步,第一个小步【提问】:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?

  直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。

  第二小步,教师多媒体出示大正方体塑料块动态平均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。

  第三小步,多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么? 请同学们看着多媒体的`方块图数一数。

  第四小步,引导学生概括出三位小数表示的意义。

  【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。

  三、借助素材,总结概念

  【提问】:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  学生寻找生活中的小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)

  【设计意图】通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。 第四个环节,巩固拓展,应用概念

  我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。

  第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。

  【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  为直观,简单,适合全班同学完成。

  自主练习12题

  这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。

《小数的意义》教案6

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的.1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

《小数的意义》教案7

  一、复习

  用分数表示下面的数。

  1角=( )元 1分米=( )米 2角=( )元

  1厘米=( )米 1分=( )元 1毫米=( )米

  二、教学例1:

  1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

  指名回答问题。注意学生回答问题时要完整。

  橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。

  2、教学小数的读法:

  你能读出下面的小数吗?鼓励学生大胆尝试。

  0.05 读作: 零点零五 0.48 读作: 零点四八

  引导学生总结读整数部分为0的小数的方法:

  从左往右依次读出各位上的数。

  3、初步感受两位小数的含义。

  想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

  小组讨论交流。

  汇报:0.3元是1元的十分之三。

  思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。

  根据上面的思路,让学生说明0.48元是1元的48/100 。

  引导学生看到0.05和0.48都是两位小数,都表示百分之几。

  4、“试一试”

  A、理解:1厘米是 1/100米, 1/100米可以写成0.01米。

  B、用米为单位的分数和小数分别表示4厘米与9厘米。

  学生回答并说名理由。

  比较:这三个分数都是什么样的分数?(百分之几的分数)

  这三个小数呢?(两位小数)

  我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

  三、数形结合,建立小数的概念。

  1、出示例2:把什么看作“1”?(正方形)

  看着图形将1/10和1/100 写成小数。学生自主填空后回答。

  提问:0.1表示什么?0.01又表示什么?

  2、试一试:学生自主练习,进一步体验小数的意义。

  3、思考:

  观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。

  结论:分母是10、100、……的分数可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几……

  4、想一想:

  1/1000写成小数是多少?29/1000 呢?你能写一写、读一读吗?

  B、 进一步体会读法:0.001 读作 : 零点零零一

  0.029 读作 : 零点零二九

  强调:小数部分的零要一个一个的读,不能只读一个零。

  我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。

  5、练一练:

  学生自主填空,交流时注意让学生根据小数的`意义进行说明。

  四、巩固练习:

  练习五的1—5题。

  练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。

  注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。

《小数的意义》教案8

  教材位置

  人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

  教学目的

  1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

  2、培养学生的迁移、类推能力。

  3、渗透数学“来源于生活,又运用于生活”。

  教具准备

  多媒体课件。

  学具准备

  草稿纸若干

  教学重点

  相同数位对齐

  教学难点

  小数点对齐

  教学方法

  探究式学习法

  学情分析

  学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

  学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

  整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

  学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

  教学过程

  一、复习。

  1、谁的竖式最漂亮,计算更准确。

  4235+5478 3251+438

  7621+37543 4320+317

  小组内完成后,讨论下列问题。

  1列竖式时要注意什么?怎样列竖式更快捷?

  2计算时要注意什么?

  2、整数加法的意义是什么?它的计算法则是什么?

  二、激趣导入。

  1、提问:夏天到了,你最喜欢吃什么水果?

  2、听故事,做数学。

  明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

  3、抽一生列式板演,全班齐练。

  4、继续听,继续算。

  后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

  你还会求出他们一共重多少千克吗?

  5、揭示课题:

  小数加法的意义和计算法则

  三、新授。

  1、小数加法的.意义。

  同整数加法一样,都是把两个数合并成一个数的运算。

  2、小数加法的计算法则。

  刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

  (1)小数与整数比较,有什么特征?

  复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

  为小数加法的意义和法则的类推作理论铺垫。

  设问起疑,引起学生的兴趣,提高学生的注意力。

  体现数学来源于生活,生活中到处存在数学问题。

  进一步复习巩固单位换算的知识,为引出课题作准备。

  类比推理的运用,训练学生知识迁移能力。

  (2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

  目的?

  (3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

  3、指导看书P111。

  4、试练。

  完成P111做一做并回答问题。

  四、延伸拓展。

  1、你会用两种方法计算吗?

  1元8角7分+3角2分

  7角6分+3元4角4分

  2、听故事,列算式:

  小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

  五、巩固训练。

  4235+5748 37251+438

  4.235+5.748 3.7251+4.38

  42.35+5.748 37.251+4.38

  4.235+57.48 372.51+4.38

  六、板书设计。

  小数加法的意义和计算法则

  3 7 3 5克 3. 7 3 5千克

  + 4 0 7 5克 + 4. 0 7 5千克

  7 8 1 07. 8 1 0千克

  7810克=7.81千克 3.735+4.075=7.81(千克)

  在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

  初步学会对加法法则的运用。

  加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

  训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

  加深对计算法则的理解,能运用法则准确计算。

《小数的意义》教案9

  学习目标:

  1.体会小数所表示的意思,理解小数的意义。

  2.理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教学方法:

  小组合作学习交流法

  教学过程:

  一、情景导入,呈现目标

  1.你的身高是多少?你会用小数来描述吗?

  2.你都在哪里见过小数?说一说,并写出几个你见过的小数来。

  二、探究新知(自学后完成下面问题)

  1.把1元平均分成十份,其中一份用分数表示是( )元,用小数表示是( )元。十分之三表示其中( )份,用小数( )表示。

  2.把1元平均分成100份,其中的'一份用分数表示是( )元,其中的37份用分数( )表示,用小数( )表示。

  3. 1.11表示( )元( )角( )分。

  三、合作探究,当堂训练

  1. 用数表示下面各图中得涂色部分?(课本第2页第2题)

  2. 想一想填一填?(学生独立完成)

  3. 自己画一方格纸,并画出0.1、0.5、0.6?

  4.找一找生活中的小数,小组交流,选代表汇报。

  四、精讲点拨(根据学生出现的问题进行精讲。)

  五、学习收获,自我总结

  1.小组评价:你认为第几小组表现最棒,为什么?

  2.自我总结:通过今天的学习,我学会了 ,以后我会在______________ 方面更加努力的。

  板书设计:

  小数的意义

《小数的意义》教案10

  学习目标:

  1、体会小数所表示的意思,理解小数的意义。

  2、理解和掌握小数意义。

  教学重点:通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点通过练习,体会小数的意义,知道小数所表示的含义。

  教学准备:学生、老师准备计数器、小黑板

  教法:小组合作交流法

  学法:小组合作学习

  教学课时:2课时

  学习过程:

  一、情景导入,呈现目标

  1、你的身高是多少?你会用小数来描述吗?

  2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。

  二、探究新知(自学后完成下面问题)

  1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。

  2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。

  3、1、11表示()元()角()分。

  三、合作探究,当堂训练

  1、用数表示下面各图中得涂色部分?(课本第2页第2题)

  2、想一想填一填?(学生独立完成)

  3、自己画一方格纸,并画出0、1、0、5、0、6?

  4、找一找生活中的.小数,小组交流,选代表汇报。

  四、精讲点拨(根据学生出现的问题进行精讲。)

  五、学习收获,自我总结:

  1、小组评价:你认为第几小组表现最棒,为什么?

  2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。

  课后反思:(略)

《小数的意义》教案11

  [教学内容] 小数的意义(第2-5页)

  [教学目标]

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。

  [教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  [教学准备] 学生、老师准备计数器。

  [教学过程]

  一、生活中的小数

  (事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的价格用到小数外,还在哪些地方见到过小数。

  结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。

  二、小数的意义

  1、自学小数的意义(看书第3页)

  2、小组交流

  3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

  4、以1米为例结合具体的数量理解小数

  把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

  5、归纳小数的意义

  通过学生的讨论归纳出小数的意义。

  三、小数部分的数位及读写:

  1、小数部分的`数位及数位间的进率

  先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。

  在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。

  2、小数的读写

  让学生试读,注意提醒学生小数部分的读法与整数部分不同。

  3、写一写、读一读、说一说。

  对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。

  四、数学游戏:

  通过数和形的对应,加深对各数位间关系的理解。

  五、作业:

  第5页1-4

  [板书设计]

  小数的意义

  千 百 十 个 十 百 千

  位 位 位 位 ?分 分 分 数位

  位 位 位

  整数部分 小数点小数部分

《小数的意义》教案12

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的`条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

《小数的意义》教案13

  教学目标

  1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

  2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

  3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

  教学过程

  第1课时

  一、创设情境,复习引入

  1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

  (学生举例回答,师订正。)

  (根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

  教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

  学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

  2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

  [设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

  二、结合情境,探究新知

  1.学习小数的读写。

  谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

  (1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

  (2)全班交流订正。

  (3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

  谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

  下面我们先来研究一下0.25千克中的0.25表示什么意思?

  2.学习两位小数的意义。

  谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

  (1)出示一张正方形纸片。

  谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

  (师板书:0.1——1/10 0.01——1/100)

  (2)在正方形纸片上表示出0.25。

  谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  (小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

  板书:0.25 25/100

  (3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

  板书:0.05 5/100

  0.10 10/100

  (4)小组讨论:这些小数有什么共同特点?

  (全班交流。教师引导学生概括出两位小数表示的意义)

  3.学习三位小数的意义。

  (1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

  (2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

  (3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

  (4)引导学生概括出三位小数表示的意义

  4.总结小数的意义和计数单位。

  (1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  (学生寻找生活中的小数,并结合实际说出它们的意义。)

  (2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

  (集体交流,师引导学生总结出小数的意义。)

  [设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

  三、情境练习,巩固提高

  1.出示自主练习第一题。

  学生分别用分数和小数表示图中的阴影部分。

  2.自主练习第3题。

  学生独立读题,再说一说小数和分数之间的联系。

  [设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的.意义。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  课后反思

  兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

  同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

  数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

《小数的意义》教案14

  教学目标:

  1.进一步理解小数的含义。

  2.学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。

  3.通过收集生活中的小数,体验生活中处处有数学。

  教学重点:

  使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。

  教学难点:

  熟练的进行时间单位单名数与复名数的改写。

  教学过程:

  一、引入新课

  复习引入:

  1千米=( )米 1千克=( )克

  1米=( )厘米 1吨=( )千克

  1时=( )分 1分= ( )秒

  1平方米= ( )平方分米

  1平方分米=( )平方厘米

  在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。

  找一组同学汇报他们收集的数据。

  二、新课学习

  1.名数

  老师也收集了一些生活中的小数,我们一起来看一看:课件出示。

  糖果的质量是0.5千克,小明的身高是1.35米,小红体操得分是9.25分,小丽的体温是38.5度。

  这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?

  在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30.4千克等.通常把量得的数和单位名称合起来叫做名数。

  观察同学们说出的.这些名数,有什么相同点和不同点?

  相同点:都是测量的结果,有数有单位;

  不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。

  带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。

  大家能举出一些单名数和复名数的例子吗?

  3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。

  2.例1

  (1)80厘米= 米

  引导学生观察:从这道算式中你发现了什么?

  低级单位的名数能否转化为高级单位的名数呢?

  应该怎样改写?学生汇报:说一说是怎样想的?

  教师说明:因为100厘米=1米,80厘米=

  米=0.80米,还可以这么算,80厘米=80100米=0.80米,其中的80100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80100=0.80。

  说一说你更喜欢哪种方法?

  讨论:比较转化前后,什么变了,什么没变?

  单位名称变了,数的大小变了,实际的多少没变。

  让学生举出几个由低级单位转化为高级单位的例子。

  归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。

  练一练

  (2)教师出示1米45厘米=( )米

  这道题与上面的题相比有什么不同?(是复名数改写成单名数)

  引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?

  首先把1米45厘米写成1. 米,因为1米等于1米,所以1米再加45厘米就等于1.45米。还可以这么想,1米45厘米是145厘米,145100=1.45米。

  练一练:

  4千米180米=( )千米 7米6厘米=( )米

  3.例2

  0.95米=( )厘米

  可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数.

  想一想:1.32米=( )厘米

  可以这么想:1.32米=1米+0.32米=100厘米+32厘米=132厘米,还可以这么算:1.32米=1.32100厘米=132厘米。

  三、巩固练习

  1.直接写出得数。

  0.4510= 1.6100= 0.0561000= 40.5100=

  7.81000= 0.710= 3.0610= 3.0610=

  2.小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?

  张佳佳:

  体重 3.85千克

  身高 14.3米

  早晨喝 0.005千克牛奶。

  四、课堂总结

  1.这节课的学习内容是什么?

  2.通过这节课的学习你有什么收获和体会?

  3.还有什么疑问?

《小数的意义》教案15

  【教学内容】

  教科书第50~51页。

  【教学目标】

  1.通过对生活中常见小数的探讨,体会小数产生的必要性,感悟小数表示的意义,同时理解、掌握小数的计数单位和进率。

  2.通过学习,培养学生应用数学知识解释新知的能力,培养合作交流与探索的能力,提高自主探究学习的能力。

  【教学过程】

  一、情境引入。

  1.出示信息:

  (1)一盒饼干12.8元。 (2)张叔叔身高1.73米。

  (3)一个苹果质量0.4千克。 (4)百米世界记录9.58秒。

  2.学生说一说这些小数的含义。(学生可能对0.4千克、9.58秒理解的不够清楚)

  3.引入:我们有必要对小数进行更深入的研究。

  二、新知探索。

  1.教师引导学生结合线段图研究“ 0.1米”、“0.3米”等一位小数的具体含义。

  2.师生结合线段图研究“0.01米”、“0.08米”等两位小数的具体含义。

  3.学生自主结合线段图研究“0.001米”、“0.012米”等三位小数的具体含义。

  4.教师引导学生总结:一位小数、两位小数、三位小数、……分别表示十分之几、百分之几、千分之几、……;它们的'计数单位分别为十分之一、百分之一、千分之一、……。

  三、课堂练习。

  1.看图写分数和小数、把对应的分数和小数连一连、说一说每个小数所包含的计数单位的个数。

  2.学生说一说“0.4千克”、“9.58秒”的含义。

  3.学生说一说下面信息中小数的含义。(学生体会有了小数就可以表现出物体细微的特点)

  (5)一颗灰尘的质量大约0.0000007克。 (6)一种细菌的长度大约0.00003米。

  四、课堂总结。

【《小数的意义》教案】相关文章:

小数的意义教案01-11

小数的意义教案07-24

小数的意义教案03-07

小数的意义教案09-19

小数的意义教案通用02-14

人教版小数的意义教案03-27

小数的意义教案范文06-14

数学教案:小数的意义02-05

小数的意义教案模板集合12-23