圆的面积教案

时间:2024-07-19 10:23:27 教案 我要投稿

圆的面积教案

  作为一位兢兢业业的人民教师,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们应该怎么写教案呢?以下是小编为大家整理的圆的面积教案,仅供参考,大家一起来看看吧。

圆的面积教案

  圆的面积教案 篇1

  教学内容:教材第68—69页含有圆的组合图形的面积。

  教学目标:

  1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  2、通过自主合作,培养学生独立思考、合作探究的意识。

  3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

  教学重难点:组合图形的认识及面积计算、图形分析。

  教具学具准备:多媒体课件、各种基本图形纸片。

  教学设计:

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

  (2)剪一剪。

  指导学生先剪下所画的大圆,再剪下所画的小圆。

  问:剩下的部分是什么图形?(环形)

  师:我们也称它为圆环。

  (3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

  生明确:圆环是从外圆中去掉一个内圆得到的。

  (4)借助图示认识圆环的各部分名称。

  你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

  ①外圆:又名大圆,它的半径用R表示。

  ②内圆:又名小圆,它的'半径用r表示。

  ③环宽:指外圆半径和内圆半径相差的宽度。

  2.探究圆环面积的计算方法。

  (1)小组讨论,怎样求圆环的面积?

  (2)汇报讨论结果。

  (3)小结:环形的面积=外圆面积-内圆面积。

  设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

  3.课件出示例2。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生试做,指生板演。

  (3)交流算法,学生将列式板书:

  解法一

  外圆的面积:πR2=3。14×62

  =3。14×36

  =113。04(cm2)

  内圆的面积:πr2=3。14×22

  =3。14×4

  =12。56(cm2)

  圆环的面积:πR2-πr2=113。04-12。56

  =100。48(cm2)

  解法二

  π×(R2-r2)=3。14×(62-22)=100。48(cm2)

  答:圆环的面积是100。48cm2。

  (4)比较两种算法的不同。

  (5)小结:圆环的面积计算公式:S=πR2-πr2或

  S=π×(R2-r2)(板书公式)

  (6)讨论。

  知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

  ①知道内、外圆的面积,可以计算圆环的面积。

  S环=S外圆-S内圆

  ②知道内、外圆的半径,可以计算圆环的面积。

  S环=πR2-πr2或S环=π×(R2-r2)

  ③知道内、外圆的直径,可以计算圆环的面积。

  ④知道内、外圆的周长,也可以计算圆环的面积。

  S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

  或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

  ⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

  S环=π×[(r+环宽)2-r2]

  或S环=π×[R2-(R-环宽)2]

  ……

  设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

  ⊙巩固练习,拓展提高

  1.完成教材68页1题。

  学生独立完成,然后在班内说一说解题思路。

  2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

  3.已知阴影部分的面积是75cm2,求圆环的面积。

  [引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]

  设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

  ⊙反思体验,总结提高

  这节课我们学习了什么?你有哪些收获?还有什么问题?

  ⊙布置作业,巩固应用

  1.完成教材72页8题。

  2.找一些关于环形的资料读一读。

  板书设计

  圆环的面积

  圆环面积=外圆面积-内圆面积

  S环=πR2-πr2或S环=π×(R2-r2)

  圆的面积教案 篇2

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的`面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

  圆的面积教案 篇3

  教学目标

  1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.

  2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。

  3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。

  教学重点

  圆面积的公式推导的'过程。

  教学难点

  理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。

  教具、学具准备

  有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。

  教学过程

  一、创设情境,提出问题

  【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?

  揭示课题:圆的面积

  二、充分感知,理解圆的面积的意义。

  提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?

  课件显示:圆所占平面的大小叫做圆的面积。

  你认为圆面积的大小和什么有关?

  三、自主探究,合作交流。

  1、引导转化:

  回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?

  2、动手尝试探索。

  (1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?

  (2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?

  如果我们再继续等分下去,拼成的图形会怎么样?

  小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。

  你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?

  3、学生合作探究,推导公式

  圆的面积教案 篇4

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的'学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

  圆的面积教案 篇5

  教材分析

  圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的'应用也非常广泛,能够运用所学知识解决实际问题。

  学情分析

  学生对圆的特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:

  教学目标

  1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。

  2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:运用公式正确计算圆的面积。

  教学难点:圆面积计算公式的推导过程。

  圆的面积教案 篇6

  教学目标

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点

  圆面积的计算公式推导和运用。

  课前准备

  一个大圆、剪刀、小正方形。

  课时安排:1课时

  授课人

  授课时间

  教学过程

  一、复习引入,导入新课。

  教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。

  学生说出自己的见解。

  教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎

  样表示?

  学生做出回答。

  教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?

  二、探索尝试,解释交流。

  教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。

  大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?

  全班汇报交流:谁想先来展示一下?(学生回答)

  教师引导交流:你能让平行四边形的底再直一点吗?

  学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。

  学生领悟:多分几份,平行四边形的底就会直一些。

  教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?

  教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?

  教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。

  教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?

  师:这样就把求圆转化成了求长方形。

  教师引导交流:你认为转化成的长方形与圆有什么关系?

  生:他们的.面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  教师引导交流:你能根据它们的关系,推出圆的面积公式吗?

  长方形的面积=长×宽

  圆的面积=c÷2×r=πr×r=πr2

  教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:

  s=πr2

  教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。

  三、巩固练习

  1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。

  建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。

  2、自主练习第1题。

  3、 自主练习第2题。

  给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。

  4、 自主练习第3题。

  总结:通过这节课的学习,你有什么收获?

  课后札记:

  圆的面积教案 篇7

  教学目标:

  1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

  3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

  教学重点:

  探索并掌握圆的面积公式,能正确计算圆的面积。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆的面积公式的推导图。

  一、回顾旧知,引入新知

  1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

  学生回答,教师予以肯定。

  2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

  3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

  (板书:圆的面积)

  设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

  二、合作交流,探究新知

  1、教学例7。

  (l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

  (2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

  (3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

  (4)学生独立完成填空。

  (5)猜测:圆的面积大约是正方形面积的几倍?

  学生回笞后,明确:圆的面积小于正方形面积的'4倍,有可能是3倍多一些。

  (6)出示例7后两幅图,按照同样的方法进行计算并填表。

  正方形的面积/

  圆的半径/

  圆的面积/

  圆面积大约是正方形面积的几倍

  (精确到十分位)

  2、交流归纳:观察上面的表格,你有什么发现?

  通过交流,明确

  (1)圆的面积是它的半径平方的3倍多一些。

  (2)圆的面积可能是半径平方的兀倍。

  3、教学例8。

  (l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

  (2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

  (3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

  初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

  (4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  (5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

  (6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

  (7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

  (8)根据学生的回答,教师板书

  长方形的面积一长×宽

  圆的面积=

  (9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

  4、教学例9。

  (1)出示例9,提问:有没有在生活中见过自动旋转X器?

  (2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。

  (3)学生独立完成计算。

  (4)集体交流。

  5、教学例10。

  (1)请同学读题,解读题意。

  (2)找出题中的已知条件。

  (3)分析解题过程。

  (4)明确各个量之间的转化关系。

  三、巩固练习,加深理解

  1、完成“练一练”。

  (1)学生独立解答。

  (2)集体交流。

  2、完成练习十五第1题。

  (l)学生独立解答。

  (2)集体交流。

  3、完成练习十五第3题。

  (1)学生列式后用计算器计算。

  (2)集体交流。

  4、完成练习十五第4题。

  (1)学生独立解答。

  (2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

  5、作业:练习十五第2、5题。

  四、课堂小结

  师:通过今天的学习,你有什么收获?

  学生发言,教师点评。

  圆的面积

  长方形的面积=长×宽

  圆的面积

  圆的面积教案 篇8

  【教学内容】

  《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

  【教学目标】

  学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的.面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  预设: 引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。

  同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)

  跟圆形有什么关系呢? 预设: 引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设: 学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。

  一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  圆的面积教案 篇9

  教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:理解和掌握圆面积的计算公式的推导过程

  教学难点:圆面积计算公式的推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的.是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

  圆的面积教案 篇10

  学习内容:

  圆的面积(教材16、17、18、页)

  学习目标:

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。

  学习重点:

  经历圆面积计算公式的推导过程,掌握圆面积的计算公式。

  学习难点:

  了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。

  教学准备:

  等分好的圆形纸片

  学习过程:

  一、自主复习

  写出正方形、长方形、平行四边形、三角形、梯形的'面积公式并回忆面积公式的推导过程。

  二、自主预习

  (一)感知圆的面积。

  任意画一个圆,用彩笔涂出它的面积。

  我知道:圆所占平面的( )叫做圆的面积。

  (二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?

  (三)估一估

  请你估计半径为5米的圆面积大约是多大?

  先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。

  三、小组交流自主预习部分

  四、自主探索圆面积公式

  1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)

  2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。

  拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?

  第一步:把圆平均分成8份,拼一拼,拼成了一个近似的( )

  第二步:把圆平均分成16份,拼一拼,拼成了一个近似的( )

  第三步:把圆平均分成32份,拼一拼,拼成了一个近似的( )

  如果分的分数越(),拼成的图形就越接近于( )。)比较剪拼前后的图形,发现()变了,()没变。

  3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的( ),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:()

  4、公式的推导:

  平行四边形面积=底×高

  圆面积=

  1、还可以怎样拼接成长方形动手试一试并完成下面的填空

  把圆转化成长方形后,长方形的长相当于圆的( ),宽相当于圆的()。因为长方形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()

  长方形的面积=长×宽

  圆面积=用字母表示圆面积公式:

  五、小组交流

  1、圆面积公式的推导过程

  2、如何计算圆的面积

  六、全班交流教师总结

  七、学习检测

  1、填空。

  求圆的面积必须知道()利用公式S =()来计算。

  2、解决书16页上面喷水池转一周浇灌草坪面积?

  3、计算,求圆的面积: (1)r=2cm(2)d=10cm

  4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?

  八、交流展示

  九、回顾反思

  通过今天的学习,你学会了什么?还有那些疑惑?

  圆的面积教案 篇11

  教学目标:

  1、通过教学使学生理解并掌握圆的周长和面积计算方法。

  2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

  3、灵活解答几何图形问题。

  教学重点:认真审题,分辨求周长或求面积。

  教学过程:

  一、复习。

  1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

  C=r2

  3.1473.1432

  =21.98(厘米)=3.149

  =28.26(平方厘米)

  2、分辨面积与周长有什么不同?

  (1)概念

  圆的周长是指圆一周的长度

  圆的面积是指圆所围成的平面部分的大小。

  (2)计算公式

  求圆的周长公式:C=d或C=2r

  求圆的面积公式:S=r2

  (3)使用单位

  计算圆的周长用长度单位

  计算圆的面积用面积单位

  二、练习。

  1、判断下面各题是否正确,对的打,错的打3。

  (1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()

  (2)半径为2厘米的圆的周长和面积相等。()

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()

  (4)面积:3.1462=3.1412=37.68()

  2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

  ⑴半圆的'周长是多少厘米?(2)半圆的面积:

  3.14223.142+22

  r=2cm=3.144=6.28+4

  =12.56(平方厘米)=10.28(cm)

  3、一个圆的周长是25.12米,它的面积是多少:

  已知:C=25.12米求:S=?

  r=25.12(23.14)S=r2

  =4(米)=3.1442

  =50.24(平方米)

  4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

  已知:R=7厘米=0.7分米r=0.5分米求:S=?

  S环=(R2-r2)

  3.14(0.72-0.52)

  =3.140.24

  =0.7536(平方分米)

  三、巩固发展.

  1、思考题p71(8)

  一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

  (1)围成长方形:31.42=15.7(m)(长和宽的和)

  长宽=面积

  当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

  (2)围成圆形

  直径:31.43.14=10(m)

  半径:102=5(m)

  面积:3.1452=78.5(m2)

  (3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2

  围成圆的面积最大。

  2、思考题p71(9)、(10)

  四、作业。

  课本P71第6、7题。

  教学追记:

  学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。

  圆的面积教案 篇12

  教材说明

  教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。

  这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力

  。 教学建议

  1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。

  2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。

  3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。

  4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。

  在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的'圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。

  5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。

  6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。

  7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:

  ①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;

  ②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;

  ③计算圆面积用面积单位,计算圆周长用长度单位。

  8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。

  9.关于练习二十四中一些习题的教学建议。

  第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。

  第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。

  第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。

  第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。

  第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。

  第15*题,是求组合图形面积的练习。

  教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。

  圆的面积教案 篇13

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的'什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

  圆的面积教案 篇14

  教材分析

  本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

  学情分析

  学生已经有了一些平面图形面积计算的'经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

  教学目标

  知识与技能:

  1.理解圆的面积的概念。

  2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

  过程与方法:

  经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

  情感态度价值观:

  感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆片、课件。

【圆的面积教案】相关文章:

圆的面积教案02-10

圆的面积教案07-01

圆的面积教案最新05-30

数学圆的面积教案02-15

人教版圆的面积教案11-27

圆的面积教案15篇05-09

小学数学圆的面积教案03-13

圆的面积教案(精选20篇)11-07

圆的面积的数学教案01-21