圆的面积教案

时间:2024-10-19 06:26:44 教案 我要投稿

圆的面积教案15篇

  在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?下面是小编帮大家整理的圆的面积教案,仅供参考,希望能够帮助到大家。

圆的面积教案15篇

圆的面积教案1

  教学目标:

  1.理解圆柱表面积的含义。

  2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。

  3.能灵活运用求表面积的有关知识解决一些简单的实际问题。

  教学重点:理解求圆柱的表面积的计算方法并能正确计算。

  教学难点:灵活运用表面积的有关知识解决实际问题。

  教学方法:探索发现,归纳总结,实际应用

  学法指导:小组合作,探究发现

  教学准备:

  课件

  圆柱模型

  教学过程:

  一、激情导思(5分)

  1、填空

  (1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。

  (2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。

  (3)圆柱的侧面积=

  2、求下面各圆柱的侧面积。(只列式,不计算)

  ①c=9.42厘米,h=5厘米。

  ②d=8米,h=3米。

  ③r=2分米,h=6分米。

  二、探究新知(15分)

  小组交流:

  1、圆柱的表面积怎么计算?

  2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?

  3、归纳总结:

  (1)s表面积=s侧面积+2s底面积

  (2)烟囱表面积=侧面积

  (3)水桶表面积=侧面积+一个底面积

  (4)油桶表面积=侧面积+两个底面积

  4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?

  (1)学生独立尝试解决

  (2)全班交流:

  油桶的侧面积:3.14×4×6=75.36(平方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

  油桶的表面积:75.36+25.12=100.48(平方分米)

  答:做这个油桶至少需要100.48平方分米的铁皮。

  三、课内练习:

  1、数学书33页第2题求表面积并填表

  2、计算下现各圆柱的表面积。(图中单位:厘米)

  四、拓展应用

  3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?

  4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?

  5、数学书33页第6题

  四:总结:

  1、圆柱表面积的.有关知识,在实际应用时要注意什么呢?

  应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。

  五、布置作业(8分)

  数学书33页第3、4、5题

  板书设计: 圆柱的表面积

  例2:油桶的侧面积:3.14×4×6=75.36(平方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

  油桶的表面积:75.36+25.12=100.48(平方分米)

  答:做这个油桶至少需要100.48平方分米的铁皮。

圆的面积教案2

  教学目标

  1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

  2.能正确地计算圆柱的表面积。

  3会解决简单的实际问题。

  4.初步培养学生抽象的逻辑思维能力。

  教学重点

  理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

  教学难点

  能充分运用圆柱表面积的相关知识灵活的解决实际问题。

  教学过程

  一复习旧知。

  1计算下面圆柱的侧面积。

  (1)底面周长2.5米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  2求出下面长方体、正方体的表面积。

  (1)长方体的长为4厘米,宽为7厘米,高为9厘米。

  (2)正方体的棱长为6分米。

  3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

  学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

  学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

  二新课导入。

  1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的'表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

  2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

  (1)学生分组讨论。

  (2)学生汇报讨论结果。

  3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

  4教师进行圆柱模型表面展开演示。

  (1)学生说说展开的侧面是什么图形。

  学生:圆柱展开的侧面是一个长方形。

  (2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

  学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

  (3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

  (3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

  5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

  学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

  教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

  三新课教学。

  1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

  2学生尝试练习,教师巡回检查、指导。

  3反馈评价:

  (1)侧面积:2×2×3.14=56.52(平方分米)

  (2)底面积:3.14×2×2=12.56(平方分米)

  (3)表面积:56.52+12.56=81.64(平方分米)

  答:它的表面积是81.64平方分米。

  4学生质疑。

  5教师强调答题过程的清楚完整和计算的正确。

  6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

  四反馈练习:试一试。

  1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  2学生交流练习结果(注意计算结果的要求)。

  3教师评议。

  教师:在实际运用中四舍五入法和进一法有什么不同?

  学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

  五拓展练习

  1教师发给学生教具,学生分组进行数据测量。

  2学生自行计算所需的材料。

  3计算结果汇报。

  教师:同学们的答案为什么会有不同?哪里出现偏差了?

  学生甲:可能是数据的测量不准确。

  学生乙:可能是计算出现错误。

  教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

  六巩固练习。

  1计算下面图形的表面积(单位:厘米)(略)

  2计算下面各圆柱的表面积。

  (1)底面周长是21.52厘米,高2.5分米。

  (2)底面半径0.6米,高2米。

  (3)底面直径10分米,高80厘米。

  3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

  4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

圆的面积教案3

  教材分析

  教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

  学情分析:

  1、充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

  2、要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

  教学目标

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的`面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点和难点

  教学重点: 圆的面积公式的推导及应用公式计算

  教学难点:探究圆的面积公式的推导过程

圆的面积教案4

  【教学目标】

  知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。

  数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。

  问题解决:培养学生发现和提出问题,分析和解决问题的能力。

  情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。

  【教学重点】

  掌握圆的面积计算公式,能够正确地计算圆的面积。

  【教学难点】

  理解圆的面积计算公式的推导过程。

  【教学准备】

  (1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端。

  (2)教具:圆纸片、不同等分的圆卡片

  (3)学具:剪刀、圆纸片、不同等分的圆卡片。

  【教学过程】

  学生课前完成课前导学案(后附课前导学案的内容)

  一、课前互动:

  师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?

  生:越来越接近圆形。

  生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。

  师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了

  师:哪一个图形最特别。

  生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。

  师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?

  生:想。

  师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。

  二、创设情境,引发问题

  师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)

  师:看到课题你最想研究什么问题?

  (预设)生:什么是圆的面积?

  (预设)生:如何求圆的面积?

  师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)

  【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。

  师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?

  (预设)生:圆的大小就是它的面积,师:说的对,是这一部分的大小吗?(课件把圆填充颜色)

  师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。

  (课件出示)

  师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4

  r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?

  (预设)生:2个小正方形的面积

  (预设)生:3个小正方形的面积

  师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。

  (预设)生:等于两个正方形的面积之和,也就是2r2,。

  师:那么这个圆的面积呢?还要重叠过来吗?

  师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?

  (预设)生:大约是3r2

  师:能确定?为什么不估2r2和4r2

  (预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.

  师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。

  (课件出示)两个正方形的面积<圆的面积<4个正方形的面积

  2r2<S圆<4r2

  师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。

  (平板电脑出示题目和选项:那么圆的面积与它的'r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?

  A:圆的面积是它的r2的3倍

  B:圆的面积是它的r2的3.5倍

  C:圆的面积是它的r2的π倍

  D:圆的面积是它的r2存在其他的倍数关系

  D:圆的面积与它的r2不存在固定的倍数关系)

  师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)

  师:有30%的同学认为圆的面积是它的r2的3倍

  ,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!

  【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2

  r2与4

  r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。

  三、启发探究,尝试验证

  (一)数格子验证

  师:谁来说说你的想法?

  (预设)生:可以利用数格子的方法。

  (学生的课前研究单上有一个半径是3厘米的圆)

  (预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。

  师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?

  (预设)生:有,这些不满格的要估算。

  师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。

  (预设)生:会,因为这样需要估算的面积就会越少,所以更准确。

  (课件展示)

  师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。

  师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子

  极限思想)

  师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?

  【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。

  (二)“对折”验证

  (预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。

  师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?

  (预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。

  师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?

  (预设)生:再对折。

  师:折一折,看一看,这条边是不是更直了,再对折看看

  (预设)生:太小了,折不了,师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)

  师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。

  (预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。

  师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)

  师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。

  【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。

  (三)等积转化验证

  师:还有其他的思路吗?

  (预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。

  师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化

  、推导)

  师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索

  活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。

  2.比一比,拼成的图形中哪一个更接近于我们学过的图形。

  (学生在小组内操作的画面在讲台的一体机中流动显示)

  师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)

  (预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。

  师:为什么会最直呢?

  (预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。

  师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)

  师:谁来讲讲发现。

  (预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。

  师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)

  我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)

  【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。

  师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。

  (预设)生:自己来。

  师:真的,我就站在旁边,有困难就举手。

  四、寻找联系、推导公式

  要求:

  想一想:近似长方形的长和宽与圆的什么有关呢?

  试一试:把推导的过程写下来。

  师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。

  学生分享:

  (预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?

  (预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。

  【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。

  师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。

  师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  (板书)

  S长方形=长×宽

  S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2

  师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技

  “割圆术”请看。

  五、感受数学文化的魅力

  (展示魏晋数学家刘徽割圆术视频)

  师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。

  【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】

  六、巩固知识,实际应用

  师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)

  1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?

  2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?

  七、全课总结,课堂延伸

  师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)

  (预设)生:S圆=πr2

  、转化、化曲为直、极限……

  师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)

  师:对于圆的面积你有什么新的思考。

  (预设)生:圆的面积还有其他的推导方法吗?

  师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。

  八、布置作业

  书本第68页做一做的第一题。

  (题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)

  2、书本71页第4题。

  (题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)

  3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。

  九、板书设计

  附录:《课前导学案》

  《圆的面积》课前小研究工作纸

  班别:

  学号:

  姓名:

  同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……

  同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)

  2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?

  圆的面积小于于()个小正方形的面积

  我们可以这样分析:

  圆的面积大于()个小正方形的面积

  ()<圆的面积<()

  3、我们还可以通过数格子的办法数出圆的面积,试试看吧!

  图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。

  (为了方便数数,你可以在格子中写数字或作记号)

  4、圆可以转化成我们学过的图形吗?

  (1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?

  (2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。

圆的面积教案5

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的'平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

圆的面积教案6

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的'。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案7

  一、教学目标:

  1、首先带动课堂气氛

  2、教会学生什么是面积。

  3、学习圆柱体侧面积和表面积的含义。

  4、能够求圆柱的侧面积和表面积的方法。

  二、教学重点:

  动手操作展开圆柱的侧面积

  三、教学难点:

  圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  四、教具准备:

  圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

  五、教学过程:

  (一)、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说)

  师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:.......

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  (二)、探索交流,解决问题。

  圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)

  1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

  2.操作活动:

  (1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长×宽

  ↓↓↓

  圆柱的侧面积=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧=C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的`结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  (四)、练习

  求圆柱的侧面积(只列式不计算)

  1。底面周长是1.6米,高是0.7米

  2。底面直径是2分米,高是45分米

  3。底面半径是3.2厘米,高是5分米

  (五)研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

  (六),巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

  六、教学结束:

  布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

圆的面积教案8

  学材分析

  教学重点:

  面积计算公式的正确运用。

  教学难点:

  面积公式的推导过程。

  学情分析

  学生对圆面积公式的推导过程理解有一定的难度。

  学习目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.会用圆面积的计算公式,正确计算圆的`面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  圆的面积模型、圆规、投影仪、投影片

  教师活动

  学生活动

  一.引入

  1.什么叫做圆面积?

  2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

  3.引出课题。

  二.推导

  1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

  2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

  3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

  4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

  板书:图形面积=等腰三角形面积n=底高2n=Cr2n

  =2rn

  圆的面积=r2

  边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

  5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

  三.巩固

  试一试。

  四.总结

  五.作业

  学生口答

  师生共同操作

  师生共同操作

  教学反思

  已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

圆的面积教案9

  教学内容:

  教科书第67-68页。

  教学目标:

  1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。

  2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。

  德育目标:

  渗透极限思想,进行辩证唯物主义观念的启蒙教育。

  教学重点:

  正确计算圆的面积

  教学难点:

  圆面积公式的推导

  学具准备:

  水彩笔、剪刀、附页1

  教具准备:

  多媒体课件

  教学过程:

  一、 导入新课

  请看一幅图,从图中你发现了什么信息?

  只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。

  二、新授

  1、什么是圆的面积?

  (1)涂出一个圆的面积

  (2)用自己的话说什么是圆的面积?

  2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

  3、能不能用剪、拼的方法把圆转换成我们学过的图形?

  4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

  5、学生汇报后,课件演示。

  6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

  7、转化后的长方形的长和宽与原来的圆有什么关系?

  小组合作学习,讨论以下两个问题:

  1) 转化后长方形的长相当于什么?宽相当于什么?

  2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

  8、汇报讨论结果,师板书

  圆的面积=长方形的面积

  =长×宽

  =πr×r

  =πr2

  9、运用新知识,解决问题。

  1)r=5cm,求圆的面积

  2)课始主体图中的问题

  3)书P703.

  三、总结:

  小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的.更多问题。

  板书设计:

  圆的面积

  剪、拼==》转化

  圆的面积=长方形的面积

  =长×宽

  =πr×r

  =πr2

  S圆=πr2

  教后反思:

  本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。

圆的面积教案10

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的.价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  S=πr×r

  =πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教案11

  一、教学目标

  【知识与技能】

  掌握圆的面积计算公式,并能利用公式正确解决简单问题。

  【过程与方法】

  通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

  【情感、态度与价值观】

  感受数学与生活的联系,激发学习兴趣。

  二、教学重难点

  【教学重点】

  圆的面积计算公式。

  【教学难点】

  圆的面积计算公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

  (二)讲解新知

  提出问题:之前的图形面积公式是如何推导的?

  学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

  追问:能否将圆的图形转换成之前的图形?

  组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

  预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;

  预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;

  预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

  老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。

  学生能够发现圆平均分的`份数越多,拼成的图形越接近于长方形。

  进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?

  预设1:长方形的面积等于圆的面积;

  预设2:长方形的长近似等于圆周长的一半;

  预设3:长方形的宽近似等于圆的半径。

圆的面积教案12

  教学目标

  1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.

  2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。

  3、通过圆的`面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。

  教学重点

  圆面积的公式推导的过程。

  教学难点

  理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。

  教具、学具准备

  有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。

  教学过程

  一、创设情境,提出问题

  【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?

  揭示课题:圆的面积

  二、充分感知,理解圆的面积的意义。

  提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?

  课件显示:圆所占平面的大小叫做圆的面积。

  你认为圆面积的大小和什么有关?

  三、自主探究,合作交流。

  1、引导转化:

  回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?

  2、动手尝试探索。

  (1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?

  (2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?

  如果我们再继续等分下去,拼成的图形会怎么样?

  小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。

  你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?

  3、学生合作探究,推导公式

圆的面积教案13

  教学内容:

  国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题

  教学目标:

  1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。

  2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。

  教学重点:

  探索圆面积的计算

  教学难点:

  理解面积的意义,推导圆的面积计算公式

  教学过程

  一、导入新课。

  (一)关于圆你已经知道了什么?你还想知道什么?

  (二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)

  (三)你觉得圆的面积可能和什么有关?

  (四)出示下图

  (五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2

  和3r2的)关系。

  (六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?

  小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。

  二、探索圆积的'计算公式

  (一)让学生试着将圆剪拼成长方形。

  (二)阅读课本P104页

  (三)让学生再操作

  (四)课件演示

  (五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

  (六)引导观察讨论:这个拼成的长方形和圆有什么关系?

  (七)汇报讨论结果。

  这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。

  因为长方形面积=长×宽

  所以圆的面积=πr×r=πr2

  用S表示圆的面积,那么圆的面积计算公式就是:

  S=πr2

  (八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)

  (九)教学例9

  1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?

  2、让学生尝试解答。

  3、集体评议

  4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)

  三、知识运用

  (一)求出下列各个图形的面积。(P105页的练一练)

  (二)根据下面所给的条件,求圆的面积。

  1)半径2分米2)直径10厘米3)周长12.56

  (生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)

  四、本课小结。

  通过本课的学习你有什么收获?有什么体会?

圆的面积教案14

  教材分析

  1、《圆的面积》是人教版小学数学六年级上册第五单元中的一节课,本节内容包括教材67-71页例1、例2及69页“做一做”。

  2、本节课是在学习了圆的周长以后进行教学的,为后面学习求阴影部分面积做了铺垫。

  学情分析

  小学六年级学生在学习空间图形方面,已经具有一定的想象能力,并有了一定程度的计算能力,在学习方法上也有了一定的积淀,同时他们也具备一定的逻辑思维、抽象推理能力,他们能够自主、合作、探究地进行学习,对学习数学的兴趣浓厚。但是作为十来岁的'学生,他们对事物的认识是十分有限的,加上他们的个人表现欲望十分强烈,自我控制能力差等因素的影响。因此 在教学时我凭借课件 结合学生的实际情况, 联系学生已有的知识点 设计教学环节确定教学方法, 确立教学重点、难点和目标 减少盲目性 注意培养学生的动手动脑能力,让学生通过动手把圆等分成16等份和32等份,学会用转化的思想找到圆的面积计算公式,让学生在动脑动手中掌握知识。

  教学目标

  一、知识与技能

  1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能够利用公式进行简单的面积计算。

  3、培养学生空间概念和逻辑思维能力。

  二、过程与方法

  经历从未知转化已知过程,体验自主探究,合作交流的方法。

  三、情感态度与价值观

  渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重点和难点

  重点:正确计算圆的面积。

  难点:圆的面积公式推导过程。

圆的面积教案15

  设计说明

  1.利用圆内知识间的内在联系,解决实际问题。

  学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。

  2.重视图示的作用。

  结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。

  课前准备

  教师准备 PPT课件

  学生准备 圆片 剪刀

  教学过程

  一、创设情境,激发兴趣

  师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)

  师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)

  师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]

  设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。

  二、探究新知,建构模型

  1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。

  师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)

  教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。

  2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)

  (1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)

  (2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)

  (3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]

  3.探究推导圆的面积计算公式的其他方法。

  (1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的.周长,拼成的三角形的高相当于圆的半径)

  (2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。

  圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2

  设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。

【圆的面积教案】相关文章:

圆的面积教案07-19

圆的面积教案02-10

圆的面积教案07-01

人教版圆的面积教案11-27

圆的面积教案最新05-30

数学圆的面积教案02-15

小学数学圆的面积教案03-13

圆的面积教案(精选20篇)11-07

圆扇形弓形的面积教案09-19