五年级数学教案

时间:2024-08-23 18:47:56 教案 我要投稿

五年级数学教案【精】

  作为一名教学工作者,有必要进行细致的教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编精心整理的五年级数学教案,仅供参考,欢迎大家阅读。

五年级数学教案【精】

五年级数学教案1

  第1课时分数的意义

  教学内容:

  教材第52页例1和“练一练”,第58页练习八的第1~4题。

  教学目标:

  1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。

  2、使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:

  认识和理解分数的意义。

  教学难点:

  认识和理解单位“1”。

  教学方法:

  探究合作法、讲解分析法、练习法等。

  教学用具:ppt。

  教学过程:

  一、谈话导入,唤醒已知

  在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。

  二、合作探索,理解意义

  1、教学例1

  出示例1中的一组图

  请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

  学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?

  一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

  左起第四个图形与前三个图形有什么不同?

  一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  (1)在这几个图形中,分别把什么看成单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫作分数?

  拿12根小棒自已创造一个分数

  说说你是怎么做的?

  如果老师要表示6根小棒可以用什么分数表示?

  2、完成“练一练”

  第1题,各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。

  每个分数的分数单位是多少?各有几个这样的分数单位?

  第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?

  引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。

  让学生在()里填上合适的`分数。

  交流:你是怎样填的?为什么这样填?

  三、巧妙联系,深化理解

  1、做练习八的第1题

  先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

  同样是三分之二,为什么涂色桃子的个数不同?

  2、做练习第2、3、4题

  第2题先读出每个分数,再说说每个分数的分数单位。

  第3题让学生填,交流时说说是怎样填的。

  第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”

  四、全可总结,延伸拓展

  这节课学习了哪些内容?

五年级数学教案2

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的'公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

五年级数学教案3

  教学目标:

  通过练习提升学生对圆的认识。

  教学过程:

  一、回顾导入。

  学生介绍已经知道的圆的知识,教师有选择地板书:圆心、半径、直径。

  揭示课堂--圆的(再次)认识。

  二、圆的再次认识。

  ⒈感受半径决定圆的大小。

  ⑴按要求画圆。

  出示练习十七第2题。

  自己画;媒体出示画圆的方法;仿照画法规范画圆,提醒学生们在圆中标出半径或直径。

  ⑵快速画圆。

  出示练习十七第3题。

  同桌比较圆的大小;量出两个圆的半径分别是多少,同桌交流。

  ⑶画最大的圆,

  出示练习十七第4题。

  在正方形内快速画圆;同桌比较圆的大小,合作量一量圆的半径;画一个最大的圆,交流半径是20毫米的理由;想一想,圆的大小与什么有关。(教师在“半径”两字的右侧板书:决定圆的'大小)

  ⑷利用数据比较圆的大小(班级交流)。

  出示练习十七第5题。

  ⒉感受圆心决定圆的位置。

  ⑴分步出示练习十七第6题。

  指名回答问题。

  ⑵同桌说说填填第⑵问,班级交流移动的方法。

  ⑶独立完成第⑶问,指名学生在屏幕上指出圆心的位置。

  ⑷问答第⑷问。教师在圆心右侧板书:决定圆的位置。

  ⒊感受直径是圆内最长的线段。

  ⑴出示练习十七第7题。

  ⑵同桌合作完成。

  ⑶班级交流你的发现:直径是圆内最长的线段;图中量直径的方法和道理。

  ⒋欣赏生活中的圆。

  ⑴自然现象中的圆。

  ⑵工艺品和建筑物中的圆。

  ⑶运动现象中的圆。

  三、总结全课,布置作业。

  ⑴看板书,总结全课。

  ⑵布置作业。

  在圆内画一个最大的正方形。

五年级数学教案4

  学习目标

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

  学情分析重点、难点:

  在现实情景中理解正负数及零的意义。

  易混点、易错点:感受用正数和负数来表示一些相反意义的量

  学生认知基础:生活中见到过负数。

  时间分配学20讲10练10

  教法学法

  自主探索法,练习法,讲授法。

  教学准备

  第一课时

  一、自学例1

  1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

  2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  3、上海和北京的气温一样吗?不一样在哪儿?

  4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

  二、自学例2

  1、了解海拔的意义。

  2、思考从图上你知道了什么?

  3、试着用今天所学的知识来表示这两个地方的海拔高度。

  学生活动教师助学课后改进

  第一课时

  第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

  (1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

  (2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  (3)上海和北京的`气温一样吗?不一样在哪儿?

  (5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

  第三板块:正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  学生看温度计,选择合适的卡片表示各地气温。

  第三板块:交流学习例2

  交流:从图上你知道了什么?

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

  学生根据今天所学知识把这些数分类。

  正数都大于0,负数都小于0。

  先指名读一读,再用正数或负数表示图中数据。

  先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

  一:教学例1

  1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

  根据学生的预习,共同学习交流认识新知。

  (4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

  2.教学正数和负数的读、写方法。

  “+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

  3.指导完成“试一试”。

  (卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

  二:教学例2

  1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

  三:初步归纳正数和负数。

  ⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

  ⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

  ⑶提问:正数、负数和0比一比,它们的大小关系怎样?

  四:练习

  做“练一练”1,2题

  2.做练习一第1题。

  3.做练习一第2题。

  4、练习一4、5、6题。

  五:作业

  练习一第3题。

  交流认识新知。

  正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  正数、负数和0比一比,它们的大小关系怎样?

  正数都大于0,负数都小于0。

  课后反思

  得:

  首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

  失:

  《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

  由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级数学教案5

  一、教学目标

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  二、教材说明和教学建议

  教材说明

  1、本单元内容的结构及其地位作用。

  本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

  通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

  这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

  例:分数的意义和性质

  首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

  其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

  在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

  在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

  在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

  显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

  2、本单元教材的编写特点。

  与原教材相比,本单元教材的主要改进有以下几点。

  (1)多侧面地展现了分数的来源。

  在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

  从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

  现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的.木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。

  (2)五下分数的意义和性质

  这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

  从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

  在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

  在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

  这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

  (3)约数、倍数的有关知识与分数的相关知识结合起来教学。

  我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

  现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

  (4)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

  在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

  (5)部分内容作了适当的精简处理或编排调整。

  本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

  其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

  其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

  教学建议

  1、充分利用教材资源,用好直观手段。

  如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

  本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

  2、及时抽象,在适当的抽象水平上,建构数学概念的意义。

  为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

  在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

  4、这部分内容可以用20课时进行教学。

五年级数学教案6

  一、复习旧知,激趣导入

  出示“唐僧师徒四人取经的动画片”。

  西游记是同学们最喜欢的四大名著之一,在西天取经的路上,八戒遇到了一道数学问题想请同学们帮忙,愿意么?大屏幕展示图片,指名读。

  1.3张大小一样的饼,平均分给4个人,该怎么分呢?

  2.估一估:3张饼平均分给4个人,每人能得到一张完整的饼吗?

  3.请你能用手中的圆片代替饼帮他们分一分。

  二、动手操作,探索新知

  活动一 平均分3张饼

  1.小组讨论:把你的想法和小组内的其他同学说一说。

  2.动手操作:用3张圆片代替3张饼,动手画一画,分一分

  3.汇报交流:

  A 方案:一个一个分。边说边演示分的方法及过程。

  为什么是3/4呢?

  B 方案:三个叠放分。还是3/4

  4.大屏幕展示三种分法的动态图

  小结:两种分法虽然不同,但分的结果相同,每人分得了3/4张饼,这和我们估计的每人分得的饼少于1张是一致的。

  活动二 平均分9张饼

  1.出示课件:猪八戒吃了一张饼的3/4,没有吃饱,就让悟空再弄几张饼,悟空就去其他地方又化斋来9张饼,平均分给4个人该怎样分呢?每人分得多少张?”

  2.师:9张饼平均分给4个人,怎样分?

  3.估一估:9张饼平均分给4个人,每人大约得到多少饼呢?

  4.动手操作:组长拿出9张圆片,小组同学合作,画一画,分一分。

  5.汇报交流:

  A方案:一个一个分

  B方案: 9个叠放分:平均分成4份,每人分得了9/4。问:你们是怎么想的?为什么是9/4呢?问:9个1/4是多少?

  C方案:先拿8个分,每人2个,剩下的1个平均分成4份,每人即2+1/4(板书)

  师:2和1/4合起来就是二又四分之一(板书:读作:二又四分之一)

  生齐读两遍。你能说几个像这样的分数吗?

  像这样由整数和真分数组成的分数叫做带分数(板书:带分数)介绍带分数是由整数和真分数两部分组成的并强调带分数的'书写格式。

  6.分数的分类:

  师:观察这些分数的分子与分母,你发现了什么?

  生1:分子比分母小 师:你能说几个像这样的分数吗?

  像3/4……这样的分数叫作真分数。(板书:真分数)请同学们观察这些真分数,有什么共同特点?(分子比分母小)其实真分数是我们的老朋友了。

  生2:分子比分母大 师:你能说几个像这样的分数吗?

  像9/4……这样的分数叫作假分数。(板书:假分数)请同学们观察这些假分数,有什么共同特点?(分子比分母大)

  说明像8/8……这样分子等于分母的分数也是假分数。象8/8这种分子和分母相等的假分数可以写成整数1

  刚才分饼的过程中我们可以知道9/4和二又四分之一是相等的,象9/4这样的假分数可以写成这样的分数:二又四分之一

  其实带分数是某些假分数一种特殊的书写形式。

  把所有的分数分类,可以分为几类?(两类:真分数和假分数)

  (设计意图:由活动操作一做了铺垫,所以这一环节着重让学生通过自己动手操作的过程理解“假分数”、“带分数”的概念以及它们之间的特点。)

  三、巩固提高、拓展延伸

  1.学生自主写出一个分数,小组内介绍相关知识。

  (1)7/8的分数单位是(),有()个这样的分数单位?再加上()个这样的分数单位就等于1。

  (2)以8为分母,还可以写出哪些真分数?1/8;2/8;3/8;4/8;5/8;6/8;

  (3)以8为分母,以8为分母,一共有几个真分数?最小的真分数是谁?最大的真分数是谁?

  (4)以8为分母的假分数都有哪些?一共有多少个?(无数个)其中最小的假分数是谁?

  (5)以8为分母最小的带分数是多少?

  从同学们积极的交流中,老师知道你们对本课的知识掌握的一定很棒!下面我们到指挥刀去参加一个闯关游戏好么?记住自己每回答一次问题就可以加一分。

  2智慧岛闯关

  第一关、根据成语说出分数,再判断是真分数还是假分数。

  ①半信半疑( )

  ②是一举两得( )

  ③十拿九稳( )

  ④七上八下( )

  第二关、用假分数和带分数表示图中阴影部分

  四分之七表示什么?一又四分之三表示什么?

  第三关、如图,在上面的()里填上真分数或假分数,在下面的()里填上带分数。

  数轴上有0、1、2、3、4、三分之三、一又三分之二、三分之八、三分之十

  需要填三分之一、三分之五、三分之六、二又三分之二、三分之九、三又三分之一

  用这些分数跟1比较,你发现了什么?

  第四关、议一议

  1、当x( )y时, x/y 表示一个真分数;

  当x( )y时, x/y 表示一个假分数。

  四、自我总结,回顾收获

  1、同学们顺利的闯过了四关,我们又进一步了解了真分数和假分数。你能向大家介绍你的新朋友有哪些特点吗?

  2、用一个分数来评价一下你自己在这节课中的表现?

  3、老师告诉同学们一个成功的秘密,想知道吗?(1/100的天才+99/100的努力=100/100的成功)祝同学们在今后的学习生活中有更大的收获,有更优异的表现。

  五、分层作业、课堂延伸

  奋进小队:书中1、2、3题;

  1、看图写分数。

  2、以5为分母,分别写出3个真分数和3个假分数。

  3、在直线上面的□里填上假分数,在下面的□里填上带分数。

  互助小队:能力培养3、4、5题;

  26页—3、在直线上面的□里填上假分数,在下面的□里填上带分数。

  26页—4、啄木鸟医生。

  26页—5、填一填。

  雄鹰小队:

  ①课外补充题;

  ② 用16开的纸设计一张跟分数有关的数学小报。

五年级数学教案7

  1、教学目标

  1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

  2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  2、学情分析

  从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  3、重点难点

  教学重点:

  体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

  教学难点:

  观察者角度的理解,方格线上和方格中位置描述的异同理解。

  4、教学过程

  4.1教学过程

  4.1.1教学活动

  活动1【讲授】用数对确定位置

  一、探讨描述位置两要素

  师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

  第一关:找地鼠

  师:请描述小地鼠的位置。

  师:还能怎么说?

  生:从右往左数第2个。

  师:这只地鼠的位置呢?

  生:从上往下数第3个,从下往上数第2个。

  师:看来,描述一条线上的位置,我们只需要一个数。

  师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

  师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

  师:你来说,谁有不同的说法,还有吗?

  师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

  师:(面向猜的同学)听了这么多说法,能猜到位置吗?

  师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

  师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

  二、从列和行引出数对确定位置

  师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

  师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

  师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

  师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

  师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

  师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

  师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

  师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

  师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

  师:这些都是张亮位置的描述方法,你喜欢哪一种?

  (1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

  师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

  师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

  师:剩下的三个位置也用数对表示吧。写在草稿纸上。

  师:四个数对中有两个比较特别,谁来说?

  师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

  师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

  师:你是怎样判断的?

  师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

  三、点子图中的位置表示

  师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

  师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

  师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

  师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

  师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

  师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。

  师:根据已知数对可以很快确定三个点的.位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

  四,数对的日常运用

  师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

  国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

  这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

  师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

  五、拓展总结。

  师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

  生:需要两个数。

  师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

  师:什么情况下我们用一个数就能确定位置?(直线上的)。

  师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

  师:听听X先生对大家的最终评价吧。

  师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

五年级数学教案8

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的'学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学教案9

  一、分享目标:

  1、通过与学生交流《课程纲要》,了解本学期数学学习的课程内容、课程目标以及课程评价。

  2.通过了解教师对学生的评价方法,激发学生自主学习的主动性。

  二、分享重点:

  了解本学期学习内容和评价方法。

  三、分享难点:

  通过分享《课程纲要》明确学习目标。

  四、分享过程:

  (一)、谈话导入

  师:同学们,今天是开学的第一课,大家都拿到了新课本,老师看到有的同学已经迫不及待的开始翻阅新书,那么今天这节课,老师将和同学们一起交流和熟悉本学期我们将学到哪些新知识。

  (二)、了解学习内容、明确学习目标。

  1、了解一册书有七个单元,及每单元内容的主题。

  师:这学期的数学课,将由小学数学五年级下册这本书陪伴我们共同度过。这本书有七个单元内容。我们大概要用三、四个月的时间学习完这些内容,下面就是让我们走进书中看看吧!

  2、了解每单元的内容(学生们先看,通过翻阅找出每一单元的重点,老师总结适当根据学生的发言总结如下)

  (1)、数与代数(按领域划分):

  第一单元“分数乘法”。学生将在这个单元的学习中,结合具体情境,在操作活动中,探索并理解分数乘法的意义;探索并掌握分数乘法的计算方法,并能正确计算;能解决简单的分数乘法的实际问题,体会数学与生活的密切联系。

  第三单元“分数除法”。学生将在这个单元的学习中,结合具体情境,借助操作活动,探索并理解分数除法的意义;借助图形语言,探索分数除法的计算方法,并能正确计算;了解倒数的含义,能求一个数的倒数;能应用方程解决有关的分数除法的实际问题,体会数学与生活的密切联系。

  第五单元“分数混合运算”。学生将在这个单元的学习中,理解分数混合运算的运算顺序,并能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;能结合实际情境,解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用;结合具体情境,能运用方程解决有关的分数混合运算的实际问题。

  第六单元“百分数”。学生将在这个单元的学习中,经历从实际情境中抽象出百分数的过程,体会引入百分数的必要性;理解百分数的意义,会正确地读、写百分数,能运用百分数表示事物;探索小数、分数和百分数之间的关系,并能进行百分数与小数、分数之间的互化;会解决有关百分数的简单实际问题(包括运用方程解决有关的问题),感受数学在现实生活中的应用价值,体会数学学习中的乐趣。

  (2)、空间与图形:

  第二单元“长方体(一)”。学生将在这个单元的学习中,通过观察、操作等,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;结合具体情境,探索并掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题;经历展开与折叠、寻找规律等活动,发展空间观念和探索规律的能力。

  第四单元“长方体(二)”。学生将在这个单元的学习中,通过操作活动,了解体积(包括容积)的含义;认识体积(包括容积)单位(米3、分米3、厘米3、升、毫升),会进行单位之间的换算,感受1米3、1分米3、1厘米3以及1升、1毫升的实际意义;探索并掌握长方体、正方体体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;在观察、操作等活动中,发展动手操作能力和空间观念。

  (3)、统计与概率:

  第七单元“统计”。学生将在这个单元的学习中,经历收集数据、整理数据、分析数据的过程,体会统计的作用,发展统计观念;通过实例,认识扇形统计图,了解扇形统计图的特点与作用;能根据需要,选择条形统计图、折线统计图、扇形统计图直观、有效地表示数据;通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义;根据具体问题,能选择适当的统计量表示一组数据的不同特征;能从报刊杂志等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。

  (4)、综合应用:

  本册教材安排了两个大的专题性的综合应用,即“数学与生活”、“数学与购物”,旨在综合运用所学的知识解决某一生活领域的实际问题。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

  (5)、整理与复习:

  教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答和一些练习题目。

  “你学到了什么”这个栏目,目的是鼓励学生对学过的知识进行回顾与反思,能运用列表或采用其他的形式对所学的主要内容进行简单的梳理。

  “运用所学的知识提出相关的数学问题,并尝试解决问题”,目的是培养学生提出问题、解决问题的能力;在解决问题过程中加深对所学知识的理解;回顾在学习过程中自己的体会与进步。

  3、了解课程目标(因为学生对整个了解不够,需要老师多加说明和解释)

  (1)结合具体情境,理解分数乘法的意义,掌握它们的计算法则,并能正确熟练地计算。

  (2)掌握长方体和正方体的特征,认识它们展开图的形状,理解掌握长方体和正方体的表面积含义并能正确计算。

  (3)理解倒数的'意义,掌握分数除法的计算法则,并能熟练地计算。

  (4)认识理解物体体积概念,认识常用体积和容积单位(立方米、立方分数、立方厘米、升、毫升),能够掌握这些单位间的进率和换算,掌握长方体和正方体体积计算方法。

  (5)掌握分数乘法、除法的数量关系,并能运用这些知识和技能解决简单的数学问题。

  (6)理解百分数的意义,能正确熟练地进行小数、分数、百分数的互化,并能正确地解答百分数应用题。

  (7)认识条形统计图、折线统计图、扇形统计图的特点,懂得中位数,众数的意义,并能针对具体问题选择使用。

  (8)通过实践活动,体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。

  4、交流方法,轻松学习

  师:为了更好的实现课程目标,大家共同来想想办法,我们应该采取哪些方法来帮助我们有效的达成目标呢?

  提出学习建议:

  (1)、课前预习。

  预习的方法:看一看明天要学习什么内容,是否能用今天学习的知识去解决它;在不懂的地方画上记号;尝试地做一二道题,看哪里有困难……

  (2)、课后整理。

  要养成先复习当天学习的知识,再做作业,最后,把学习内容加以整理的习惯。

  (3)、课堂听讲。

  一要仔细看教师的操作演示、表情、手势;二要全神贯注地听老师的提问、点拨、归纳以及同学的发言;三要积极思考、联想;四要踊跃发表自己的想法,有困惑应发问,敢于质疑。

  (4)、检查验算。

  要养成做完每道题都能及时认真检查验算的好习惯。

  5、交流评价方法,促进学习信心

  为了让大家在日常学习中即使发现自己的进步,老师专门制定了一套评价方案来评价同学们的学习。我们一起来看看吧。

  (1)、作业评价。

  对于作业完全正确的学生本子上打优,稍差的打良,再差点就打合格。

  字写得端正的,会再得到一个A,稍差的得B。

  (2)、考试评价。

  满分的盖3个“数学之星”;90分以上的盖2个“数学之星”,对于成绩有进步的,同样可以盖1个“数学之星”。

  另外,书写也是评价的内容之一,每次卷面整洁的,可附加2分。

  (3)、帮带评价。

  一个后进生都配备一个小老师,负责教他,对于学习任务完成好的也进行奖励制度,如小老师能让自己的小学生及时订正作业的,学生和小老师都盖一个“数学之星”。

  5、加油鼓励、树立信心

  请同学们对自己说一句鼓励的话来为自己打打气吧!

  把对自己鼓励的话记录在课本的首页,让我们不断用这句话来鞭策自己!

五年级数学教案10

  教学目标

  1、使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题、

  2、提高学生分析问题,解决问题的能力、

  3、培养学生大胆尝试,勇于探索的精神、

  教学重点

  1、找到与求路程应用题的内在联系、

  2、正确分析解答求相遇时间的应用题、

  教学难点

  掌握求相遇时间应用题的解题思路、

  教学过程

  一、复习引入

  (一)出示复习题

  小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米、经过3分钟两人相遇、两地相距多远?

  1、画图,列式解答、

  2、订正答案

  3、小组讨论:试着改编一道求相遇时间应用题、

  二、探究新知

  例4、两地相距270米、小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米,经过几分两人相遇?

  1、讨论:复习题的线段图该怎样改一改、并试着画一画、

  2、联系复习题的解法,尝试解答

  3、订正思路

  想法一:两人相遇时,所走的路程是270米、几分走270米,就是几分相遇、

  270÷(50+40)、

  想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:

  相遇时间=路程÷速度和、

  三、反馈调节

  两人同时从相距6400米的两地相向而行、一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

  1、学生独立分析解答、

  2、订正答案、

  3、质疑:对于“求相遇时间”应用题还有什么问题?

  4、教师提问

  (1)要求“相遇时间”题目中需告诉我们哪些条件?

  (2)例4与复习题之间有什么联系?又有什么区别?

  四、巩固练习

  (一)从北京到沈阳的铁路长738千米、两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米、两车开出后几小时相遇?

  (二)两艘军舰同时从相距948千米的两个港口对开、一艘军舰每小时行38千米、另一艘军舰每小时行41千米、经过几小时两艘军舰可以相遇?

  教师提问:怎样验证结果是否正确?

  (三)两个工程队合开一条670米的隧道,同时各从一端开凿、第一队每天开12.6米,第二队每天开14.2米、这个隧道要用多少天才能打通?打通时两队各开凿多少米?

  (四)长沙到广州的铁路长726千米、一列货车从长沙开往广州,每小时行69千米、这列货车开出后开往广州,每小时行69千米、这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米、再过几小时两车相遇?

  五、课后小结

  我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

  探究活动

  猜两位数

  活动目的

  激发学生学习数学的兴趣、

  活动方法

  表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的'是哪一个两位数、

  例如:观众想的是59,他按规定计算出

  59×167+2500=12353

  表演者根据报的得数计算

  53×3=159

  于是就知道观众想的是59、

  活动过程

  1、教师进行表演

  2、学生探讨其中的奥妙

  3、学生自己设计这样的几个游戏、

  猜数方法

  将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数、

  六、板书设计

五年级数学教案11

  教学目标

  1.使学生知道容积的含义.

  2.认识常用的容积单位,了解容积单位和体积单位的关系.

  教学重点

  建立容积和容积单位观念,知道容积单位和体积单位的关系.

  教学难点

  理解容积的含义和升、毫升的实际大小.

  教学步骤

  一.铺垫孕伏

  1.什么是体积?

  2.常用的体积单位有哪些?它们之间的进率是多少?

  3.这个长方体的体积是多少?是怎样计算的?

  二.探究新知

  我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位.(板书课题)

  (一)建立容积概念.

  1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

  实验题目:计算出长方体盒的体积.

  把长方体盒装满细沙,计算细沙的体积.

  2.学生汇报结果.

  长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.

  细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.

  教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?

  3.师生共同小结.

  教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的'油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.

  师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)

  4.比较物体体积和容积的相同和不同.

  相同点:体积和容积都是物体的体积,计算方法一样.

  不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.

  所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)

  (二)认识容积单位.

  1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升毫升)

  2.出示量杯:这就是1升的量杯.

  出示量筒:这就是刻有毫升刻度的量筒.

  3.教师演示升和毫升之间的关系:

  ①认识量筒上1毫升的刻度,找出100毫升的刻度.

  ②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.

  板书:1升=1000毫升

  4.学生演示容积单位和体积单位间的关系:

  ①把1升的红色水倒人1立方分米的正方体盒里

  小结:1升=1立方分米

  ②把1毫升的红色水倒入1立方厘米的正方体盒里

  小结:1毫升=1立方厘米

  5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

  6.反馈练习.

  3升=()毫升2700毫升=()升

  2.57升=()毫升640毫升=()升

  2.4升=()毫升3.5升=()立方分米

  500毫升=()升760毫升=()立方厘米

  (三)计算物体的容积.

  1.教学例1.

  一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?

  8×5×4=160(立方分米)

  160立方分米=160升

  答:这个油箱可以装汽油160升.

  2.反馈练习.

  一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

  12×6×5=360(立方分米)

  360立方分米=360000毫升

  答:这个水箱可以装水360000毫升.

  三.全课小结

  这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

  四.随堂练习

  1.填空.

  (1)()叫做容积.

  (2)容积的计算方法跟()的计算方法相同.但要从()是长、宽、高.

  (3)6.09立方分米=()升=()毫升

  1750立方厘米=()毫升=()升

  435毫升=()立方厘米=()立方分米

  9.8升=()立方分米=()立方厘米

  2.判断.

  (1)冰箱的容积就是冰箱的体积.()

  (2)一个薄塑料长方体(厚度不计),它的体积就是容积.()

  (3)立方分米()

  3.选择.

  (1)计量墨水瓶的容积用()作单位恰当.

  ①升②毫升

  (2)3毫升等于()立方分米.

五年级数学教案12

  教学内容:

  观察5个或6个相同正方体摆成的物体

  教学目标:

  1、通过从下面、上面以及不同侧面观察5个或6个相同正方体摆成的物体,积累辨认物体视图的经验,体会物体的相对位置关系。

  2、使学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观察。

  3、体验数学与日常生活的关系。

  教学重点:

  积累辨认物体视图的经验

  教学难点:

  体会物体的相对位置关系

  教学准备:

  学具盒

  教学思路:

  一、导入新课:

  出示4个同样大小的正方体摆成的物体。

  让学生观察,说说从下面、侧面和上面看到的视图。

  接着追问:还可以怎样摆?

  二、探究新知:

  让学生试一试,再看一看。

  学生分组展示不同的摆法。

  集体交流:你能找到摆的.方法吗?

  引导学生发现:在原来物体的前面或后面,与原来的某一个正方体对齐着放一个都是正确的。

五年级数学教案13

  一、教学目标

  1、能直接在方格图上,数出相关图形的面积。

  2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

  3、在解决问题的过程中,体会策略、方法的`多样性。

  二、重点难点

  整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。

  难点:学生能灵活运用。

  三、教学过程

  (一)直接揭示课题

  1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。

  2、小组讨论。

  3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。

  4、看这副地毯图,请你提出一些数学问题。

  (二)自主探索、学习新知

  1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

  2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

  3、小组内交流、讨论。

  4、全班汇报。

  a)直接一个一个地数,为了不重复,在图上编号。(数方格法)

  b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)

  c)用总正方形面积减去白色部分的面积。(大减小法)

  d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

  5、师总结求蓝色部分面积的方法。

  (三)巩固练习

  1、第一题。

  (1)学生独立思考,求图1的面积。

  (2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

  2、第二题。独立解决后班内反馈。

  3、第三题。

  (1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

  (2)学生观察结果,说发现。

  第(1)题的4个图形面积分别为1、2、3、4的平方数。

  第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。

  (四)总结

  对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。

  四、板书设计

  地毯上的图形面积

  一个一个地数(数方格法)

  平均分成4份,再乘4。(化整为零法)

  总面积减去白色面积。(大减小法)

  五、教学反思

  本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。

五年级数学教案14

  教学目标:

  1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。

  2,学会找出生活问题中相等的数量关系,正确列出方程。

  3,培养学生根据具体情况,灵活选择算法的意识与能力。

  4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。

  教学重点:

  用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。

  教学难点:

  分析问题中的等量关系,并会列出方程解答。

  教学准备:

  多媒体课件。

  教学过程:

  一,知识回顾:

  1,解下列方程。

  X+2x=147 y-34=71

  2,根据下面叙述说说相等关系,并写出方程。

  ①公鸡x只,母鸡30只,是公鸡只数的2倍。

  ②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

  3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……

  (足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)

  让学生独立做,集体订正时,(板书线段图)。

  二,合作探究:

  1,教学例1(媒体出示教材情景图)。

  "足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"

  (1)审题,寻找解决问题的有用信息。

  提问:"例题与复习题有什么相同的地方" "有什么不同的地方"

  教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。

  教师板书:稍复杂的方程

  (2)分析,找出数量之间的相等关系(教师板书线段图讲解)

  看图思考:白色皮和黑色皮有什么关系

  学生小组讨论,汇报结果。

  可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数

  黑色皮的块数×2-白色皮的块数=4

  黑色皮的块数×2=白色皮的块数+4

  (3)同桌讨论怎样列出方程。

  (4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

  板书学生的方程并选择2x-4=20讨论它的解法。

  学生小组讨论解法。

  汇报交流板书:

  解:设共有x块黑色皮。

  2x-4=20

  2x-4+4=20+4

  2x=24

  2x÷2=24÷2

  x=12

  检验:(引导先生口头检验)

  答:共有12块黑色皮

  (5)学生选择其余的方程解答。

  2,变式练习。

  (1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。

  (2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。

  3,引导学生总结列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析,找出数量之间的相等关系,列方程。

  ③解方程。

  ④检验,写出答案。

  三,巩固应用

  1,只列式不计算。(课件出示)

  ①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

  ②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

  ③学校饲养小组今年养兔25只,比去年养的.只数的3倍少8只,去年养兔x只。

  ④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。

  2,学生独立完成,集体汇报交流

  ①北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米

  ②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米

  ③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km

  ④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒

  3,拓展提高。

  ①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少

  ②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少

  四,全课总结

  今天这节课你学到了什么知识

  板书设计:

  先把2x看作一个整体

五年级数学教案15

  教学内容:教材第1--3页的内容及练一练。教学目标:

  1.在实际操作活动中,经历了解容量概念和认识测量工具、以及认识“升”和“毫升”的过程。

  2.了解容量的含义,认识“升”和“毫升”,了解升和毫升怎样用字母表示;会读量杯和量筒中液体的多少。

  3.积极参与“玩水”实验活动,获得愉快的学习体验和数学活动经验。重点、难点

  重点:使学生感知“升”和“毫升”这两个容量单位的大小,会读量杯和量筒上的刻度。

  难点:理解容量的含义。

  教学具准备:课件,水盆、杯子。

  教学过程:

  一、揭题示标。

  1、设疑导入

  师手拿两个杯子,提出问题:如果两个杯子都装满了水,哪个杯子装的水多呢?这里面隐藏着有趣的数学知识,谁来猜一猜是什么?(让生自由猜)

  2、板书课题。

  师:今天我们就一起来学习“认识升和毫升”(板书课题)

  3、出示目标

  我们这节课要达到的目标是:(学生齐读)

  1、知道“容量”的概念,认识容量单位“升”和“毫升”。

  2、了解升和毫升怎样用字母表示;我会读量杯和量筒中液体的多少。

  师:接下来就让我们带着目标根据自学指导的要求认真自学,相信每位同学都会有所收获。

  二、学习指导。

  认真看课本第1-2页的内容,然后动手试一试,比一比,思考:

  1、哪个杯子装的水多?你是怎样比较的?

  2、你认为什么是容量?容量的单位有哪些?

  3、升和毫升用字母怎样表示?

  师:自学时,可以边看边动手做一做,重点的地方用笔画下来。

  (自学时间5分钟,看书-思考-动手-交流-汇报)

  三、自研共探

  1、看一看(自学探究)

  生认真看书自学,师巡视,督促人人认真地看书,也可参与学生的活动中。

  2、议一议(对子交流,疑难问题小组讨论,整合答案)

  针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。

  教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。

  3.动手演示说一说(汇报展示)

  师:同学们学的怎么样呢?下面,就让我们一起来检测一下大家的自学成果。以小组为单位由老师指定题目进行汇报,没有得到展示机会的小组可以在期间举手示意要求汇报,但只展示不同方式或质疑补充。各组展示后,可以自评,他评或老师评价。对疑难地方师及时点评讲解。

  4.小结归纳

  生说,师生共同总结:容器中所能装液体的多少,就是容器的.容量。

  常用的容量单位:升和毫升

  四、学情展示。

  1、课本第3页试一试。

  2、练一练中的1题.

  3、练一练中的第2题。

  要求:

  1、独立完成、对子交流。

  学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论

  2、组内讨论、整合答案。

  学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

  3、分工合作、板演展示。

  学法指导:每两组展示一题,预展速度快的组先展示,另外一组只展示不同之处,或质疑补充评价。由组长分工:展示题1可板演口答,展示题2可以边演示边说明理由,展示题3可以口答。展示形式可以多样化。(预展时间:2分钟)

  4、汇报讲解、补充评价。

  学法指导:由一个小组做讲解展示,讲解时可以组内补充,也可其它组补充或质疑。展示后,其它组或教师给予评价。

  5、操作指导:教师要在预展时巡视各小组,指导并帮助小组快速分工,让每一个学生都参与其中,做到人人有事做。

  五、归纳总结

  同学们,经过这节课的学习我们学到了哪些知识呢?你还存在什么疑惑?

  教师可从以下几方面引导学生说一说:1、知识点(表格、知识树等)2、方法3、易混易错点4、疑惑5、学情。

  六、巩固提升

  1、在()内填入升或毫升。

  (1)一瓶大瓶可乐的容量是2()

  (2)一瓶牛奶的容量是250()

  (3)一瓶眼药水的容量是5()

  (4)一桶饮用水的容量是15()

  (5)一瓶洗发水的容量是200()

  2、课本练一练第3题。

  3、拓展:课本第3页练一练的第4题。

【五年级数学教案】相关文章:

五年级数学教案01-06

五年级数学教案01-29

五年级教案数学教案12-27

五年级数学教案10-24

五年级下册数学教案03-09

五年级数学教案(集合)06-25

五年级数学教案【荐】01-24

【推荐】五年级数学教案01-24

【精】五年级数学教案01-25

小学五年级下数学教案02-15