- 相关推荐
《组合图形的面积》教案
在教学工作者开展教学活动前,时常需要用到教案,教案是备课向课堂教学转化的关节点。那么应当如何写教案呢?以下是小编为大家整理的《组合图形的面积》教案,欢迎大家借鉴与参考,希望对大家有所帮助。
《组合图形的面积》教案1
教学内容:92和93页练习十八
教学目标:明确组合图形的意义;
知道求组合图形的面积就是求几个图形面积的和(或差);
能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
教学过程:
一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab
“第二个图形呢?”
......
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.
教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形
1、让学生指出92页页的四幅图有哪些图形?
2、引导学生把下面的图形,组合成多边形(展示台上拼)
对学生的拼出的图形,有选择地出示其中的几个。(如下所示)
分别说出这些图形是由哪几个简单的图形组合而成。
师:怎样计算这些组合图形的面积呢?(板题)
二、组合图形面积的计算。
1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)
订正,讨论第一图的'两种方法。
5×5+5×6÷2[5+(5+6)]×5÷2
=25+15=16×5÷2
=40(平方厘米)=40(平方厘米)
2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状。
它的面积是多少平方米?
如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)
5×5+5×2÷2
还能用其他的划分方法求出它的面积吗?(分组讨论)
汇报讨论结果。可能有下面情况。
[5+(2+5)]×(5÷2)÷2×2
小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)
三、巩固初步
1.做一做/书93页
2.练习十八/第1题
3.练习十八/第2题
(1)由中队旗引入
(2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2S总=S长-S三
5.练习十八/第3、4题
四、拓展练习
练习十八8*
课后记:
《组合图形的面积》教案2
第6单元 多边形的面积
第7课时 组合图形的面积
【教学内容】:教材P99例4及练习二十二第1~6题。
【教学目标】:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
【教学重、难点】
重 点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的
条件。
难 点:根据组合图形的条件,有效地选择计算组合图形面积的方法。
【教学方法】:动手实践、自主探索、合作交流。
【教学准备】:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
【教学过程】
一、情境导入
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)
二、互动新授
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。
学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。风筝的面是由四个小三角形组成的,2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
学生可能想到研究它的周长,也可能想到研究它的面积。
适时点拨:它们的`周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。
集体汇报,学生可能会想到两种方法:
(1)把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、巩固拓展
1.完成教材第101页“练习二十二”第1题。
先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
2.完成教材第101页“练习二十二”第2题。
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
3.完成教材第101页“练习二十二”第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
五、作业:教材第101页练习二十二第4、5、6题。
【板书设计】:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
《组合图形的面积》教案3
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的.面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。
《组合图形的面积》教案4
教学内容:教科书第6页
教学目标:
1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。
2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。
3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。
教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。
教学准备:简单图形的纸片、剪刀、多媒体课件
教学过程
一、复习引入
1、课件出示:长方形和正方形。
师:这是我们学过的长方形和正方形。
师:现在要求它们的面积必须知道什么呢?
生:要知道长方形的长和宽,以及正方形的边长。
2、标上相应尺寸。
师:求图形的面积必须要有相应的尺寸,请看!课件出示:
师:现在能算了吗?左右同学各口算一题。
生汇报:长方形的面积=长×宽
=10×5
=50(dm2)
正方形的面积=边长×边长
=4×4
=16(dm2)
[复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]
二、新知探究
1、把引入部分的长方形和正方形合二为一
课件出示:
师:这个图形是由我们学过的图形组合而成的,这样的图形叫组合图形。(出示部分课题:组合图形)
2、课件出示一些组合图形。
让学生仔细观察图形的'特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。
图①
图②
图③
学生可能有其它想法,教师根据学生汇报后小结。
3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。
[这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]
4、组合图形的面积计算
(1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合
图形的面积。(将课题补充完整)组合图形的面积 课件出示:
瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。
(2)小组合作、动手操作、并汇报
师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。
*第五种
移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据
=(8+2)×3 相等。也就是说通过“移”的方法能将原来的
=10×3 图形转化成我们学过的简单图形。
=30(m2)
* 第六种
分割成5块长为3cm,宽为2cm的长方形。
3×2×5
=6×5
=30(m2)
(第五、第六种可视班级情况进行教学。重在培养学生的数感。)
(3)小结:
①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形
来计算,先割后加,先补后减。
②分割的图形尽量要少。
③我们无论用“割”或“补”的方法,关键必须找到相应的尺寸。
[通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]
三、及时练习
1、课件出示小胖家的平面图:
小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。
2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)
[除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]
[让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]
四、总结
师:通过今天的学习,你有什么收获呢?
五、作业设计
求下面组合图形的面积
六、教后反思
《组合图形的面积》教案5
1. 教学目标
1、运用适当的分割拼补的方法明 确图形的组合关系。
2、利用已经学过的基本图形面积计算公式正确计算出组合图形的面积。
2. 教学重点/难点
教学重点:
将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。
教学难点:
合理 利用图形中标出的长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。
3. 教学用具
教学课件
4. 标签
教学过程
一、 复习引入
1、 我们已学过哪些平面图形?
2、 说出它们的`面积计算公式 ?
3、 谁能用上面两个或三个拼成一个图形?
4、 揭题:组合图形的面 积
二、 探究新知
1、 出示:下面是一个组合图形,你会求它的面积吗?
1、 小组讨论
2、 小组汇报,集体交流
三、 巩固练习
1、求组合图形的面积
课堂小结
总结
这节课你有什么收获?
课后习题
作业设计
《组合图形的面积》教案6
一、教材分析
《组合图形面积》是冀教版九年义务数学教科书五年级上册的重要内容。学生在以前已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册又学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。
二、创新点
(1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。
(2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。
三、教学目标以及重难点
有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
过程与方法:
能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。情感态度与价值观:
能运用所学的知识,初步解决生活中组合图形的实际问题。教学重点:
在探索活动中,理解组合图形面积计算的'多种方法,会找出计算每个简单图形所需的条件。
教学难点: 根据组合图形的条件,有效地选择计算方法。教学准备:
七巧板、ppt课件、简单图形学具、少先队中队旗实物
1、七巧板拼图游戏,初步感知组合图形。
用准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?选取几个有创意的图案在实物投影仪上展示和让学生汇报。
2、自主探究,汇报交流。让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。
设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。
出示例题:出示几个图形让学生先商量出计算方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的方法求一求它的面积?看谁的方法多。
为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。
汇报时先汇报分的方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。
接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。
习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的培养。
我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。
这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。
最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。
3、综合应用,巩固提高。
练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题采取学生独立解决与合作交流的形式
A、可以任意分割
B、分割为最少的学过的图形
C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。
4、回顾反思,自我评价。
通过本节课的学习,你有什么收获?借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。
《组合图形的面积》教案7
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的'各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
《组合图形的面积》教案8
教学内容:义务教育课程标准实验教科书人教版数学五年级上册第92~93页例4。
教学目标:
1.联系已有知识认识组合图形,会把组合图形分解成已学过的平面图形,能正确计算组合图形的面积。
2.通过观察、操作、分析,初步认识转化思想方法在组合图形面积计算中的运用;提高观察、分析、综合和运用转化的方法解决实际问题的能力。
3.增强探索数学的自觉性与创新意识,体验成功解决数学问题的愉悦。
教学重点:将组合图形转化成若干个已学过的基本图形。
教学难点:根据组合图形的特点灵活进行转化,并找出隐含在图形中的条件。
教具、学具准备:教师准备多媒体课件、实物投影仪;学生准备七巧板。
教学过程:
一、复习旧知,激疑导入
1.复习平面图形的面积。
(1)出示下列图形,让学生说说每个图形的面积怎样计算?
(2)学生说后,教师依次在图形的下面写上面积算公式:
S=ab S=a2 S=ah S=ah2
S=(a+b)h2
2.观察组合图形,激疑导入。
教师(投影)出示组合图形:房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形。
师:这些图形与我们学过的哪些图形相同?怎样计算它们的面积?(引导学生观察思考并说明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)
(设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题水到渠成。)
二、观察分析,探索方法
1.认识组合图形。
(1)在组合图形中找一找简单图形。
师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?
(学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)
(2)找一找生活中见过的组合图形。
师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?
(3)小组议一议,画一画组合图形。
(4)小结:组合图形是由几个简单图形组成的平面图形。
(设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的认识。)2.探索组合图形面积的计算方法。
师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。
(1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?
(2)探索计算方法。
教师发给每个学生印有上图的练习纸,按下列要求完成:
①想一想:这个图形是由哪几个简单图形拼成的?
②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?
③找一找:寻找计算组合图形面积的条件。
④算一算:学生独立尝试计算组合图形的面积。
⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。
方法一:求一个梯形和一个长方形面积的和。
(4+8)(10-5)2+54
=30+20
=50(m )
方法二:求一个梯形和一个三角形面积的和。
(5+10)42+8(10-5)2
=30+20
=50(m )
方法三:求一个三角形和一个长方形面积的和。
(10-5)(8-4)2+104
=10+40
=50(m )
方法四:求两个三角形面积的和。
1082+542
=40+10
=50(m )
方法五:从一个长方形的面积中减去一个梯形的面积。
108-(10+5)(8-4)2
=80-30
=50(m )
⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?
3.小结计算方法。
先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。
教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。
(设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的.解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力
1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?
师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?
(1)让学生独立完成。学生一般能想出下面两种方法:
①求两个梯形面积的和。
②求一个长方形和两个三角形面积的和。
(2)组织小组交流,引导学生想出第三种方法:
从一个长方形的面积减去一个三角形的面积。
(3)评价小结。
师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。
2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?
师:先观察这幅图,想一想可以怎样求阴影部分的面积?
(1)让学生独立完成。
(2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?
(3)反馈评价。
3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?
师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?
(1)让学生独立完成。
(2)组织小组交流。
(3)引导反馈评价。
(4)自己订正错误。
4.摆一摆,量一量,算一算。
(1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?
(2)想一想,还有别的组合方法吗?再动手拼一拼。
(3)说一说,你是用哪四个图形组合起来的?
(4)量一量,量出求组合图形需要的有关数据。
(5)算一算,计算出组合图形的面积。
(6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。
(设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)
四、全课总结,情知共融
师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?
《组合图形的面积》教案9
教学目标:
1、在自由探索的活动中,理解计算组合图形面积的各种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。
教学难点:如何选择有效的计算方法解决问题。
教学准备:图形卡片、题卡
教学过程:
一、激趣导入。
1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。
生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。
2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。
生拿基本图形拼。
指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。
3、揭示课题。
这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。
4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?
二、探究新知。
1、出示例题。
老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?
你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。
生先说估计值,并说出依据,教师在黑板右上角板书。
2、小组探索。
刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的面积。我们没有学过这种图形的面积,怎么办呢?
生:我们可以把它转化成我们学过的图形再求面积。
小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。
教师巡视指导。
3、全班汇报交流。
小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。
教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。
生共同探索所说的方法是否能求出面积,不合适的说出为什么。
把以上方法汇总,说说哪种方法最简单,为什么?
师:分割或添补的越简单,计算起来就会越简便。
4、教师贴出学生选出的
4种简便方法,用卡纸贴在黑板上。
生观察着几种方法,把它们分类。
师相应板书:分割法添补法
这两种方法在计算时有什么不同吗?
6、选择一种你最喜欢的方法,计算出图形的面积。
指名板演。检查订正,写出答语。
把实际结果与估计结果比较,看看谁估计的比较准。
师:只要选择了简便易行的'方法,我们求组合图形的面积才会又快又准确。
三、实际应用。
1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。
2、学校要粉刷教室,粉刷一面墙每平方米需用
0.15千克涂料,一共需要用多少千克涂料?
生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。
3、学校要油漆
60扇教室的门的外面,(单位:米)。
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费
5元,那么学校共要花费多少元?
指名读题,说说完成这道题要注意什么?
生独立完成。汇报。
四、全课总结。
你说说这节课你有什么收获。
师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!
五、课外练习。
在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。
《组合图形的面积》教案10
教学内容:
教材P99例4及练习二十二第1~6题。
教学目标:
知识与技能:
结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:
根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:
能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程
课前预习案
1、判断
(1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )
(2)梯形的面积比平行四边形的面积小。 ( )
(3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )
一、谈话导入
师:我们一起来复习前面学过的图形的面积公式:
正方形的面积=边长×边长
长方形的面积=长×宽
平行四边形的面积=底×高
三角形的面积=底×高÷2
梯形的面积=(上底+下底)×高÷2
二、自主探究:
1.探究活动一:组合图形的分解:
(1)观察课本99页的四幅主题图,说说它们分别是由哪些简单图形组成的?
(2)一个组合图形我们可以把它分割成已学过的几个图形,试着把下面的图形分一分。
(3)同一个图形,我们从不同的角度认识,也可以分成几个不同的基本图形。分一分,看看我们的`队旗可以分成哪些不同的基本图形?
(4)找一找生活中的组合图形。
2.探究活动二:计算组合图形的面积。
(1)出示例题,讨论交流:怎样计算这面墙的面积?
(2)一个组合图形我们可以分成已经会计算面积的几个简单图形,分别计算出它们的面积,再求和。
(3)尝试解答:
方法一:这面墙的形状可以分成一个( )和一个( )。
把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
方法二:这面墙的形状可以分成两个相同的( )形。
把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、课堂达标
1.判断。
(1)任何一个平行四边形都可以分割成两个完全一样的梯形。( )
(2)等底等高的两个三角形可以拼成一个平行四边形。 ( )
2.一个三角形的面积是22.5平方分米,与它等底等高的平行四边形的面积是多少平方米?
3.练习十八的第1题,先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
4.练习十八的第2题
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
(1)由中队旗引入 (2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2 S总=S长-S
5.练习二十二的第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
6.练习十八的第4、5题,生独立完成。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
作业布置:
板书设计:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
《组合图形的面积》教案11
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练
【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。
62×3.14× =28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
练习1:
1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)
答:阴影部分的面积是8.56平方厘米。
练习2:
1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)
答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:
1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3.如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4:
1.如图所示,求四边形ABCD的面积。
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5:
1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
组合图形面积计算(二)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习1:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的`面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米。
练习2:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习3:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习4:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习5:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
《组合图形的面积》教案12
教学内容:
教科书P75-76页的内容
教学目标:
1、知识与技能:
(1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;
(2)能正确地分析图形,并能正确地求组合图形的面积。
2、能力目标:
(1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;
(2)培养学生的自主探索、合作学习的能力。
3、情感与态度:
(1)培养学生积极参与数学学习活动的习惯;
(2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。
教学重点:
学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
教学过程:
一、创设情境,激趣导入
1、欣赏图片媒体出示:
师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?
师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”
板书:组合图形
3、复习平面图形面积计算。
二、自主学习,探究新知
1、出示(一座房子的侧墙的图)
师:考古学家们在楼兰古国的遗址发现了其中的.一堵保存比较好的墙,想知道
它的面积有多大?你有办法计算吗?
2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)
(1)师:请你估一估,小华家的客厅面积大约是多少?
想一想,找同学来回答
展示学生的做法,并请他说说思考过程。
(2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?
方法有哪些?
师:如果要你求这个组合图形的面积,你可以怎样求?
(3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……
师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)
师:还有其他方法吗?
(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)
板书:贴+写
师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)
2、基本练习
老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?
(汇报)
在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。
学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。
三、实践活动
师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?
出示队旗:其实,我们的中队旗就是一个组合图形。
(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答
(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?
(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)
用你认为简单的方法进行计算。先做好的小组上来板书。
反馈:你们是怎么思考的?
师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!
四通过这节课的学习,你有什么收获?
希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。
五、巩固练习,深化理解
1、展示学生课前做的七巧板拼图作品。
2、你能计算你的作品的面积吗?
小组合作、测量所需条件并计算面积。
指名交流计算方法,媒体随机出示学生解题策略。
《组合图形的面积》教案13
教学目标:
1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。
2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。
教学过程:
一、教学例10。
1、出示圆环图形,这是什么图形?你知道吗?
2、出示例10题目,读题。
师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
小组讨论,确立解题思路。
交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积
3、学生独立操作计算。
4、组织交流解题方法,提问:有更简便的计算方法吗?
小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。
二、“试一试”
1、出示题目和图形,学生读题。
师:(1)这个组合图形是有哪些基本图形组合而成的?
(2)半圆和正方形有什么相关联的地方?确:正方形的边长就是半圆的`直径。
(3)思考一下,半圆的面积该怎样计算?
2、学生独立计算。
3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。
小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。
三、巩固练习。
1、“练一练”。
思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
学生独立完成,并全班反馈交流。
2、练习十九第6~9题。
(1)第6题。先学生独立完成,再交流。
交流重点:
a、每个组合图形需要测量图中哪些线段的长度?
b、求每个图色部分面积时,方法是怎样的?
c、计算中有没有注意运用简便的方法。
(2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。
(3)第8题。学生读题,观察示意图。
提:
a、要求小路的面积实际求求什么?
b、求圆环的面积,必须知道什么条件?
c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?
学生独立解答,并全班交流。
(4)第9题。
通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。
(5)思考题。学生先充分思考,再组织交流。
四、读一读“你知道吗?”,并算一算。
《组合图形的面积》教案14
教学内容:新课标五年级上册92页———组合图形的面积
教学目标:
1、了解组合图形的面积的计算方法并能正确地进行计算
2、培养学生的识图能力和分析能力
3、培养学生交流合作及创新精神
教学重难点:把组合图形分割成已学过的平面图形
教学准备:多媒体课件、剪刀、纸片
教学过程:
一、 复习导入:
(1)多媒体1展示已学过的平面图形:长方形、正方形、平行四边形、三角形、梯形,学生分别说出其面积公式
(2)多媒体2展示几个组合图形,借机问这些图形与前面的图形有什么不同,得出组合图形由几个简单的图形组合而成
(3)对于这些组合图形,它们的面积怎样计算呢?引出课题并说明本节课的学习任务
二、参与活动,学习新知:
1、认识组合图形
师:组合图形在日常生活中比较常见,那你说一说所见到的组合图形由那些图形组合而成
生1:教室的窗户是由长方形和正方形组合而成
生2:房子的屋山由三角形和长方形组合而成
生3:地面由正方形组合而成
生4:梯子由一个一个的梯形组合而成
师:我也带来了一些组合图形,请同学们看一下。(展示多媒体3房子、风筝、少先队队旗、七巧板)
2、计算组合图形的面积
多媒体4展示,让学生理解题意。
师:拿出准备好的纸片、剪刀,用纸片代表侧面墙,现在请同学们动手操作一下,可以把它分成那些图形?(师巡回指导)
师:那位同学到前面展示一下,并说说你的想法
生1:把它分成一个三角形和一个正方形,然后把三角形和正方形的面积相加
生2:把它分成两个完全一样的梯形,然后把它们的面积相加
师:找两位同学把刚才两位同学的想法解答出来。
(二生板书并订正)
师:你喜欢哪种方法
生:第一种或第二种并说明原因…………
师:在计算组合图形的面积时有多种方法,同学们要认真观察,多动脑筋,选择自己喜欢而又简便的方法进行计算
师:通过刚才的学习,你认为应该怎样计算组合图形的面积呢?
生:…………
师(总结):把组合图形分解成前面已经学过的简单图形,再把它们的面积相加。
3、拓展与创新
师:同学们刚才都做得很好,你愿意接受新的挑战吗?
生:愿意
多媒体5展示,让学生弄清题意,思考一下
师:哪位同学上来展示一下,并说一下你的解题思路。
让学生指着图形说解题思路。
生1:把队旗沿中间分开,可以分成两个完全一样的梯形。上底是60cm,下底是80cm ,高是30cm,一个梯形的面积是(60+80)×30÷2,整个队旗的'面积是(60+80)×30÷2×2
生2:我是用整个图形的面积减去空白的面积就是队旗的面积。长方形的长是80cm,宽是60cm,长方形的面积是80×60.三角形的底是60 cm,高是20cm,三角形的面积是60×20÷2,所以整个队旗的面积为80×60-60×20÷2
生3:沿着三角形的顶点做一条竖直的线,队旗分为一个长方形和两个三角形。长方形的长是60cm,宽是60cm,长方形的面积是60×60。三角形的底是30cm,高是20cm,一个三角形的面积是20×30÷2,两个三角形的面积是20×30÷2×2,整个队旗的面积为60×60+20×30÷2×2
师:请同学们把刚才同学的想法解答出来。
本题有多种算法,可自由选择,作对即可。培养学生的思维拓展能力,学会从多角度思考并解决问题。
三、 学生巩固练习
教师展示习题,学生巩固强化多媒体6、7、8
四、小结
今天这节课你学到了那些知识?哪位同学起来说一下
四、 布置作业
练习十八1、3
《组合图形的面积》教案15
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
<<<12>>>
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的.组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
【《组合图形的面积》教案】相关文章:
《组合图形的面积》教案07-06
《组合图形的面积及体积》教案09-17
数学组合图形的面积教案02-11
《组合图形的面积》说课稿07-02
组合图形的面积优秀教案(精选16篇)03-07
组合图形的面积教学设计01-15
组合图形面积的教学设计02-09
《组合图形的面积》教学设计11-09
《组合图形的面积》教学反思03-07