人教版八年级数学教学反思
作为一位刚到岗的人民教师,我们要有很强的课堂教学能力,对教学中的新发现可以写在教学反思中,教学反思应该怎么写呢?以下是小编收集整理的人教版八年级数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
人教版八年级数学教学反思1
“有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。
研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的.应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。
人教版八年级数学教学反思2
通过八年级数学的教学,在教学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。
一、改变学生的学习状态
在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
二、重视学习动机
在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的`强烈欲望,变"学数学"为"用数学"。从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。
三、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生
参与知识形成发展的全过程,尽可能增加学生的参与机会。在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。
四、重视学习环境在教学过程中的作用
通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。
现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。交往沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。
五、重视学习方法在教学过程中的推动作用
通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。
六、培养学生反思是作业之后的一个重要环节
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。反思对学生思维品质的各方面的培养都有作积极的意义。因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思。对学生来说是培养能力的一项有效的思维活动,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实意义。
总之,在数学课堂教学中,教师要时时刻刻注意给学生提供参与的机会,体现学生的主体地位,充分发挥学生的主观能动作用。只有这样才能收到良好的教学效果
人教版八年级数学教学反思3
一、设计思路:
在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,
由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
二、教学知识点:
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的`区别,在解分式方程时必须进行检验。
2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。
人教版八年级数学教学反思4
利用性质与判定的互逆,学生对四个判定定理的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的数学表达和语言能力。
今后应加强的.方面:八年级按照课标不要求书写规范的证明过程,学生的几何证明题仍然是一个弱项,因此有部分学生仍然存在会分析,但是书写不规范,这在今后的教学中需要加强对学生的训练。
人教版八年级数学教学反思5
我上的“三角形”这节课,研究三角形按边的特征认识三角形并进行分类。整堂课的设计体现以教师为主导,学生为主体,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程,是让学生用内心创造与体验学习数学。
教学三角形这节课,探究新知阶段我认为处理得比较好。为使学生学会有目的、有规律地探究,采用“引——扶——放”教学手段,让学生在师生互动,生生互动,合作探究中体验感悟三角形围成的过程,并感受到学会用科学的数学思维进行有规律地探究,能围出尽可能多的不同种类的三角形,大大激发了学生的学习兴趣,培养了学生思维的有序性和探究能力。再通过小组讨论、交流、归纳出三角形按边分类及三角形按边特征命名,真正让学生动眼、动手、动口、动脑参与获取知识的过程,学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。
最后让学生在猜想中探究、生成。本节课中学生用三根小棒围出了尽可能多的.不同种类的三角形,为防止知识的负迁移,我提出了猜想的话题:任意三根小棒都能围成三角形吗?然后让学生带着对问题结论的不同猜想和对正确结果的渴望,再次实验操作,得出不是任意三条边都能围成三角形的,催发学生生成了对三角形三边长度之间关系正确而又具有个性的认识,使学生意识到三角形中还藏着好多知识,正等待我们去探究。
人教版八年级数学教学反思6
今天下午在我任教的一班实施了《函数》这一节内容的教学。一堂40分钟的课下来,原本以为可以轻松搞定的课,结果却问题多多,有很多东西需要自己静下心来思考,现将我实施完本课教学后的思考内容整理如下:
《14.1.2函数》的教学是一堂概念课的教学,我的基本思路还是通过从实际问题出发,得出函数关系式后,引导学生观察、发现、总结,进而归纳得出函数这一概念,讲解时,重点引导学生掌握函数的两个显著特征,即一是存在两个变量,二是当其中一个变量确定为一个数值时,另一个变量会有唯一确定的数值与之对应。通过不断强调“变化与对应”这两个关键点,让学生发现函数的本质属性。引导学生学习了解了函数的概念之后,再通过教材中的例题进行巩固,接着是分了两个层次进行加强训练,最后进行课堂小结。
本课教学的困难之处,我觉得一是如何将抽象性的函数概念清晰明了的讲授给学生,二是教材内容中出现的大量实际问题该如何科学恰当的处理。我的选择是先回顾有关“变量和常量”这两个概念,然后通过之前“14.1.1变量”这一节所提到的前三个问题入手,得出关系式,填写好当其中一个变量确定后所对应的数值(每个问题做了一份表格),完成这三个问题后,让学生来归纳其特征,从而过渡到学习“函数”的概念这一教学环节上来。从实施的情况来看,效果不理想,主要原因是在这三个问题的处理上时间稍显过长,最重要的一点是在引导学生去思考这些问题的特征时,语言不够简练恰当,使得学生在这里的思考陷入困境,课堂氛围陷入僵局。由于自己的引导预设的原因,学生做出了非本人预想的回答,打乱了我的教学思路,致使后面的教学受到了影响。具体情况是这样的,当我提问学生“观察上述问题,每个问题中有几个变量?同一个问题中的变量之间有什么关系?”时,随口说了一句“请同学们观察这三个问题,有何共同点?”在我的引导下,学生说出了两个我想要的答案——一是都存在两个变量,二是当其中一个变量取了一个确定的数值时,另一个变量会有唯一确定的值与之对应,接下来又有学生说出了第三个,那就是这三个问题中都存在常量,这一回答针对课件中我所设计的那三个问题是没有错的,于是我便将其写在了黑板上,但是我们仔细研究初中教材中给出的“函数”定义后会发现,存在常量并非函数关系中必须存在的本质属性,而在课堂中,我并没有跟学生解释清楚这个问题,可能致使部分学生在认识“函数”这一问题上今后还会出现偏差。
事实上,课本教材中的“心电图与人口调查”这两个实际例子,也是函数关系的一种体现,同时也可以作为论述“存在常量,并非函数关系中必须存在的因素”,因为在这两个例子中,一个是讲述心脏产生的生物电的电流与时间这两个变量之间的关系,另一个是年份与人口数这两个变量之间的关系,中间并未提到常量。(当然,对于这两个例子,是否存在常量,我觉得还值得大家进一步思考与讨论,我只是从函数的表达方式上观察得出的)。学习“函数”概念的关键是在“变化与对应”,且是当自变量的值确定时,有唯一确定的函数值与之相对应,我觉得在这里我讲的还不够好,还不够清楚,前面的.例子的引入并没有起到我预想的效果,这值得我认真的思考——该如何有效的利用这些实际问题来进行“函数”的概念教学。
在本次教学中,对于“人口调查”这一问题的讲解上也有问题。我原本想让学生观察找到其与之前的问题的共同特征——“存在两个变量”和“对于其中一个变量去确定的值后,另一个变量也有唯一确定的值与之对应”,但事实证明,学生很难找到其与前面三个问题的共性,当我提出让学生观察并发现后,部分学生的思维被
发散了很多,导致思考漫无边际,而又有一些学生思维陷入了困局,不知从何回答。课后,我也思考了一番,不如讲完前三个实际问题后,便给出“函数”的概念,再给出“心电图”和“人口调查”这两个例子,来印证和说明这也是一种函数关系,进而再讲解,函数的三种表示方法——解析法,图像法和列表法。这样的处理会不会效果更好呢?星期五可以再做新的尝试。
在本次教学中,我讲课本97页的探究内容去掉了,课后许多老师提出这个内容不应删掉,我也觉得如此,这个探究内容确实能够很好的去印证“函数”概念中所蕴含的“变化”与“对应”这两个关键点,是对“函数”概念理解的很好的活动。
在例题的处理上,由于前面的时间安排的不好,使得这道题讲解的也有些匆忙。函数时研究运动变化的重要数学模型,它来源于现实生活又服务于客观实际,所以我明白教材中将实际问题贯穿始终的用意,但是这也无疑给这堂课的教学添加了难度。整体来说学生对于应用题的处理是存在一定困难的,再加上本课又加上了抽象的数学概念,从概念的获得到概念的应用,这个跨度也是有些大的,所以需要教师对于这一过程非常熟悉,非常明确本课的教学目标和重点,采取有效的教学手段,才能引导学生不会在学习中分不清方向,抓不住重点。
课后的分层练习,由于讲到这里课堂剩余的时间已不多了,所以处理的很快,学生完全是被动学习,效果应该也是打了不少折扣。
此外,本课缺少情景引入,教学目标不够清晰,教学语言不精练简介,板书不够有条理,也是本课教学存在的问题。还有在《学习卡》与课件的设计上也存在一些需要改进的地方,在这两天务必要重新设计规划了。
“上好一堂课真不容易,上好每堂课更不容易”,这次教学许多老师提了很好的意见,尤其是黄玲老师,一针见血的指出,尽管我参加过许多大赛并获过不少奖,但是这一两年感觉已经到了一个“瓶颈”,就本课的教学来说,施教者对于概念的特质还抓得不够精准,让听课者感觉有点乱,说明今后还需要加强理论上的学习,需要认真研读教材,扎扎实实的去备课。我觉得说的很对,这也反映出我在平时工作上存在的问题。这些年来,科组的老师们对我的帮助很大,尤其是科组长陈笑联老师和黄玲老师,在这里由衷的表示感谢。对个人而言,虽然参加了东莞市第一期的初中数学教师骨干培训班的培训,但从未将“骨干”跟自己划等号;尽管现在进入了“名师工作室”学习,但从不敢以“名师”自居,我的教学生涯还有很长的一段路要走,在教学教研的路上,我觉得自己还是刚刚入门,还需要不断学习,自己主动的去参加这么多的培训,其实也是想通过培训来鞭策和要求自己,不让自己松懈。没做老师之前,母亲就曾告诫我,做教师这一行是“良心活儿”,要对得起学生,对得起良心。这句话我时刻都记着,我会努力去做的。
人教版八年级数学教学反思7
学生要学习的数学知识,是经过前人的筛选和整理了的,但对于他们来说仍是全新的、未知的。这就需要教师通过对学习内容的重新设计,启发学生去思考,引导学生去探究,使学生在一定的条件下,经过自身的学习活动,把新的知识纳人原有的认知结构,进行重组、整合,构建新的认知结构。这就是建构主义的.教学观。
本教学设计在这方面力求得到体现。另外还体现了以下几个特点:
①符合学生的认知规律。本设计以复习上节课旧知识引人,然后采用先尝试的方法合作讨论书本P84的“思考题”。对于概念的建立采用从具体到抽象、从理论到实践的过程,对于方法的探索采用从特殊到一般的思想;
②体现了自主学习、合作交流的新课程理念。对于例题的处理,改变了传统的教学模式,采用了“尝试—交流—讲评—讨论”的方式,充分发挥学生的主体性、参与性。对于用估算的方法求方程的解时,同样采用了“尝试—发现—归纳”的方式。
③重视数学思想方法与算法算理的渗透,这也是新课程的一个特点。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等),通过让学生不断回顾有理数的相反数、绝对值、混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力。
④在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙述)实数范围内的相反数、绝对值含义,以及实数范围内的混合运算法则。
⑤ 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议。
人教版八年级数学教学反思8
一、教学的成功体验
《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动.
二、信息技术与学科的整合
在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学,为学生创设了生动、直观的`现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的注意力.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是
静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flash动画演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃.
人教版八年级数学教学反思9
在指导教师陆春蕾老师的指导下,经过我们的多次沟通,我进行了多次修改,我上了的研究课《14.2.2一次函数(2)》,内容是一次函数的图象和性质。反思这节课,自己评价为很烂的一节课。
1、不足之处:
(1)课前对学生备的不充分,不了解学生对函数图象的画法和正比例函数的图象与性质掌握的程度如何,导致本节课不能按照预期的设想顺利进行。本节课一开始我设计了通过两个具体的正比例函数对正比例函数图象和性质进行了复习,大部分学生对正比例函数的性质掌握的还比较好,第二个活动是通过学生画函数y=x,y=x+2,y=x-2的图象,探究正比例函数和一次函数图象之间的关系,但是由于不了解学生画函数图象掌握的怎么样,高估了学生的能力,看到学生连列表都不知道什么意思,大部分学生不会画函数图象,在这个活动里耽误了很多的时间,我也就有些紧张,有些着急,直接影响了后面的教学活动。
(2)心理素质差,随机应变的能力比较差。由于学生画图象的表现对我的影响,一时的紧张让我对后面的教学有些混乱,思路不清晰,所以后面的教学中有些语无伦次,事先备好的环节不连贯,联系不紧密。
(3)由于活动二浪费了时间,所以后面的活动四探究一次函数y=kx+b(k≠0)中的k、b对函数图象有什么影响的时间就有些紧,探究的不充分,不够,学生思考的时间比较少,没有发挥学生的主体性,让学生真正动起来。
(4)学生比较沉默,不爱说,课堂比较死板,不活跃,所以整节课我说的太多,学生说的动的少。
2、提高的地方:
通过本次备课、说课、上课的活动,我觉得自己也有所提高。
(1)本次课通过与陆老师的交流,经过陆老师的指导,经过四次的备课修改,反复斟酌,最后成型的。最开始是按照陆老师的要求把一次函数的定义和一次函数的图象与性质合为一节课来讲,于是我就按照我的思路,我的站位备了课。第二次交流的时候,我们觉得这样内容太多,东西也太碎了,于是又统一意见,陆老师讲一次函数的定义,我们讲后一节一次函数的图象与性质。这样我又修改我的教学设计,备好之后给陆老师看,陆老师基于对学生、对教材的理解和站位又给我一些好的建议,我开始了第二次修改,也就是第三次备课。备好之后有拿给陆老师看,一同交流讨论,交换意见,又有所修改,周末回家我又对本节课进行斟酌,修改一些细节的.东西,连同学案发给了陆老师,陆老师又认真的看了我的课件和学案,还为我重新设计了学案的排版,替我重新画了平面直角坐标系,使学案看上去更加美观。讲课的前一天我们又重新的沟通了意见,最后敲定。这个备课的过程虽然很复杂,修改数次,但在与陆老师交换意见的同时,使我对本节课的思路更加明确,站位更准,同时也深深的感受到陆老师对教材、对知识的理解,以及对数学思想和学法的渗透真真正正的是从学生的角度出发,以学生为本,这也是我今后应该努力的地方。
(2)通过周一的说课,在吴老师的指导下,我学到了很多关于细节的知识,如:PPt上的格式,对齐方式问题;“1”后面应该是“.”,而不是“、”,PPt上用的字体只有两种:宋体或者黑体;学案应该如何设计更好,坐标系要画的特别标准,并且美观,为此,陆老师特意为我重新设计了学案。这些细节我以前真的都不知道,因为,从没有人和我说过这些问题,我也从没把这些当回事去请教谁,这对于我来说真的是一个很大的收获,非常感谢吴老师和陆老师的指导。
人教版八年级数学教学反思10
今后的教学中:
(1)立足教材,钻研教学大纲的要求;试卷中较多题目是根据课本的题目改编而来,从学生的考试情况来看课本的题目掌握不理想,这说明在平时的`教学中对书本的重视不够,过多地追求课外题目的训练,但忽略学生实实在在地理解课本知识,提高思维能力。课堂上尽量把课堂还给学生,让学生积极参与到课堂中,多机会给学生展示,表演,讲题,把思路和方法讲出来,使学生更清淅地理解题目,提升自己对数学的理解。多点让学生独立思考,发现问题,解决问题。
(2)注重培养学生良好的学习习惯。
(3)加强例题示范教学,培养学生解题书写表达。
(4)多一些数学方法、数学思想的渗透,少一些知识的生搬硬套。
(5)在数学教学过程中,课堂上系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,从知识的联系和整体上把握基础知识。
(6)针对学生的两极分化,加强课外作业布置的针对性。让每个学生课外有适合的作业做,对不同层次的学生布置不同难度的作业,提高课外学习的效率,减轻学生课外作业的负担。正确看待学生学习数学的差异,克服两极分化。数学课堂上多考虑、关照中下生,让他们在数学课堂上听得进,肯用手。
(7)教师在平时的课堂教学中必须致力于改变教师的教学行为和学生的学习方式,加强学法指导,提高学生的阅读能力,平时培养学生的自学能力,使学生实实在在地理解课本知识,提高思维能力。平时要关注课本、关注运算能力、关注教学中的薄弱环节。
人教版八年级数学教学反思11
在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:
1、课前没很好确定学生的基础知识情况
高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。
2、课堂没完全还给学生
预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。
3、课后练习不能真正落实
学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的`乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。
人教版八年级数学教学反思12
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的.是,课堂交流的不是很充分。
性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。
在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。
要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。
人教版八年级数学教学反思13
承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
由于时间的关系,再加上,总认为学生已经有了小学知识的铺垫,就舍去了让学生动手实验操作探究的部分,而教师的`演示又迟了一步,这就忽略了学生知识形成的过程!使得这堂课总觉得缺少些东西。
小结部分也做得较匆忙,应由学生自己归纳本节课的内容,把性质按边、角归纳,再加上几何符号的叙述那就更完整了。从练习看,部分学生的几何语言表述不够严谨,书写格式较混乱。
通过对本节课的回顾,我觉得下次上本课内容时应重点突出以下几个方面:
一、新课讲解过程,要让学生通过观察、拼一拼、折一折、量一量等方法去探究、去亲身感受知识的形成和发展过程。
二、在练习的过程中注意方法指导,“转化”思想的渗透。比如:当学生利用连结对角线来解决实际问题后,老师应该强调,我们在解决四边形问题时常用的方法是:“转化”成三角形问题。
三、对于学生的练习情况要多用多媒体来展示,使说和写有利地结合起来,培养学生论证推理的能力!
人教版八年级数学教学反思14
在本节课的教学中,我按照课本上的思路,在实际过程中,学生作图、观察这个环节比较顺利,多数学生能得出对边相等,对角相等这两个结论,在进一步追问下,学生可以理解用全等知识来证明这两个结论的正确性。板书证明过程这个环节是由教师完成的,因为这个时候学生需要的是规范的证明格式与思路,我的重点放在引导学生将证明思维转化成具体的证明书写,课本上用箭头表示的思路过程非常清晰,但与中考的证明格式要求不同,所以在这个步骤上,花费时间较多。在教师和学生共同完成定理证明后,再引导学生观察这两个全等三角形之间的旋转变换关系,加深对前一章旋转变换的理解。课后的习题讲解时,我采取先让学生说,再书写过程的方式,虽然费时较多,但个人认为对几何证题思路还是有帮助的,从中也发现了不少学生容易出错的地方,部分学生在说思路的时候跳跃性太大,写作证明过程的时候有掉条件的'情况,比如证全等的条件,题目并未直接给出条件,有学生未经证明就用来证明全等。整节课书写证明过程花费的时间较长,课后习题未能处理完,留给学生课后完成。
其实无论采取哪种方式进行本节课的教学,最关键的是让学生理解平行四边形的性质,并会利用性质进行简单的应用,这里需要对学生进行严格的证明书写训练,从几何整体教学来看,公理化体系有助于学生理解后继的特殊平行四边形的性质、判定定理。
人教版八年级数学教学反思15
在本节课的教学过程中首先明确目标是让学生如何找到等量关系,书本原先给出两个例子较难达到这个教学效果,原因是学生对毛利率的概念本身不清楚,按照书本的引入,一开始课堂就可能处以一种安静的思维很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才用学生经过自己努力思考之后完全能解答的题目作为第一题,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;其次应用题的难度设置上是层层深入,提问是分层次性,能够让不同层面的学生都有不同的体会与感受。
将“毛利率”概念的问题采用调查的方法,能够有效发挥学生右脑在形象思维上优势,从而为后面的解答抽象的逻辑、左脑理性思考做了准备;能够最大限度发挥学生原有的.能力。
公式变形,书本例题是才用将右边先进行变形,再倒过来分析,我认为学生的解答方法更具有对称美,在课堂中予以充分的肯定,这一方面培养学生的审美能力、更重要的是肯定学生进行思考的价值、从而激发学生思考的意愿与热情!
其实任何一节课的教学设计以及对课堂的动态把握只能针对具体实际情况进行调整分析,如果学生对“毛利率”等概念已经非常熟悉、阅读理解能力很强那么这节课的教学设计肯定是另一番样子。
【八年级数学教学反思】相关文章:
数学教学总结反思数学教学的反思12-05
八年级下数学教学反思07-31
八年级数学教学反思06-15
八年级数学教学反思06-18
八年级数学教学反思07-10
教学数学教学反思06-02
数学的教学反思09-01
数学教学反思10-03
数学的教学反思04-20
数学教学反思06-13