一元二次方程教学设计(精选10篇)
作为一名教师,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?以下是小编整理的一元二次方程教学设计,仅供参考,欢迎大家阅读。
一元二次方程教学设计 篇1
教材分析
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的'做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。
教学目标
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点
重点:利用增长率问题中的数量关系,列出方程解决问题。
难点:理清增长率问题中的数量关系。
一元二次方程教学设计 篇2
【教学目标】
1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
【教学过程】
一、复习回顾:
1、解一元二次方程都有哪些方法?(学生口答)
2、列一元一次方程解应用题有哪些步骤?(学生口答)
①审题;
②设未知数;
③找相等关系;
④列方程;
⑤解方程;
⑥答。
二、问题探究:
(一)思考课本探究1回答下列问题:
(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。
(2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。
(3)根据等量关系列方程并求解。为什么要舍去一解?
(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?
(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)
三、例题学习:
例1:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)
例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)
四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)
1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中平均一个人传染了几个人?
五、总结反思:(由学生自己完成,教师作适当补充)
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。
2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)
教后记:
本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的'方法,为学习本节知识打好了基础。
二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、
2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、
3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。
一元二次方程教学设计 篇3
教材分析
一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的.能力。为接下来的学习起到很好的铺垫作用
学情分析
九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。
教学目标
一、知识与技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;
2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;
3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。
二、过程与方法
1. 在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;
2. 借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学
三、情感态度与价值观
1. 通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;
2. 通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。
教学重点和难点
重点:一元二次方程的概念及一般形式。
难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。
一元二次方程教学设计 篇4
一、学生知识状况分析
学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,实际问题的应用,有些抽象,虽然学生在七、八年级已经进行了有关的训练,但还是有一定的难度。
本节内容针对的学生是才进入九年级的学生,他们已经具备了一定的抽象思维和建模能力,也具备一定的生活经验和初步的解一元二次方程的经验。
二、教学任务分析
本节课的主要是发展学生抽象思维,强化学生的应用意识,使学生能通过抽象思维将一个应用题抽象成一元二次方程使问题得以解决,这也是方程教学的重要任务。但学生抽象意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及抽象思维的初步形成。显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。为此,本节课的教学目标是:
知识目标:
通过分析问题中的数量关系,抽象出方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
能力目标:
1、经历分析,抽象和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;
2、能够抽象出一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
情感态度价值观:
在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
三、学法指导
本课是学生学习完一元二次方程的解法后的应用课,虽然学生在七八年级已经进行了一定的训练,但本课对学生而言还是有一定的难度。本课采用启发式、问题串讨论式、合作学习相结合的方式,引导学生从已有的知识和生活经验出发,以教材提供的素材为基础,引导学生对对问题中的数量进行分析从而抽象出方程解决问题;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,更符合学生的认知规律。无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中发现学生分析问题、解决问题的独到见解以及思维的误区,更好地进行学法指导。
四、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固,情境导入;第二环节:做一做,探索新知;第三环节:练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;情境导入
活动内容:提出问题:还记得梯子下滑的问题吗?
在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?
分组讨论:
怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理抽象出方程?
活动目的:以学生所熟悉的梯子下滑问题为素材,以前面所学的勾股定理为切入点,用熟悉的情境激发学生解决问题的欲望,用学生已有的知识为支点抽象出一元二次方程使问题得以解决,进一步让学生体会数形结合的思想。
活动的实际效果:大部分学生能够联系以前学过的勾股定理的三边关系抽象出方程对上述问题进行思考,能够在老师的引导下主动地探究问题,取得了比较理想的效果,而且也调动了学生的学习热情,激发了学生的思维,为后面的探索奠定了良好的基础。
第二环节探索新知
活动内容:见课本P53页例1:
如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。在讲解过程中可逐步分解难点:审清题意;找准各条有关线段的长度关系;通过抽象思维建立方程模型,之后求解。
实际应用问题比较抽象,因此教学中老师要给学生充分的时间去审清题意,让学生自己反复审题,弄清各量之间的关系,分析题目中的已知条件和要求解的问题,并在这个前提下抽象出图形中各条线段所表示的量,弄清它们之间的关系,从而抽象出方程模型解决问题。
在学生分析题意遇到困难时,教学中可设置问题串分解难点:
(1)要求DE的长,需要如何设未知数?
(2)怎样建立含DE未知数的等量关系?从已知条件中能找到吗?
(3)利用勾股定理建立等量关系,如何构造直角三角形?
(4)选定后,三条边长都是已知的吗?DE,DF,EF分别是多少?
学生在问题串的引导下,逐层分析,在分组讨论后抽象出题目中的等量关系即:
速度等量:V军舰=2×V补给船
时间等量:t军舰=t补给船
三边数量关系:
弄清图形中线段长表示的量:已知AB=BC=200海里,DE表示补给船的路程,AB+BE表示军舰的路程。
学生在此基础上选准未知数,用未知数表示出线段:DE、EF的长,根据勾股定理抽象出方程求解,并判断解的合理性。
巩固练习:1、一个直角三角形的'斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?
文本框:8cm2、如图:在RtACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半?
3、在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?
说明:三个题目的设计从简单问题入手,第一题通过勾股定理抽象出一元二次方程解决直角三角形边长问题;第2题构造了一个可变的直角三角形,抽象出方程解决面积问题;第三题也是面积问题,在这个问题中常设道路宽为x米,通过平移道路使六块田地变成一块田地,从而根据矩形面积公式抽象出方程解决问题。
活动目的:一元二次方程的应用题的类型较多,像数字问题、面积问题、平均增长(或降低)率问题、利润问题等;本节课以教材上的引例作为出发点,作为素材来呈现,可以将应用类型作适当的拓展,在练习中将教材中的应用问题归类呈现出来,便于学生理解和掌握。本课由数形结合问题拓展到面积问题,后面可以在练习中增加数字问题,为学生呈现更多的应用类型,让学生在不同的情境中体会数学抽象和建模的重要性。
活动实际效果:应用问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到通过抽象出方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。
第三环节:练一练,巩固新知
活动内容:
1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的面积为4800cm2。求原正方形钢板的面积。
2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱?
3、《九章算术》“勾股”章有一题:甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走了10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇时,甲、乙各走了多远?
活动目的:通过三道问题的解决,查缺补漏,了解学生的掌握情况和灵活运用知识的程度。在教学过程中要以学生为主体,引导学生自主发现、合作交流。活动实际效果:学生在前面活动中积累的经验,可以帮助学生比较顺利地分析上述问题,遇有疑难可以让学生在合作交流中解决,学生在训练过程中更加理解数学抽象和建模的重要性.大部分学生能够独立解决问题。
第四环节:收获与感悟
活动内容:提问:
1、列方程解应用题的关键;
2、列方程解应用题的步骤;
3、列方程应注意的一些问题。
学生在学习小组中回顾与反思,并进行组间交流发言。
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决;通过对三个问题的解决,加深学生通过抽象思维抽象出方程解决实际问题的意识和能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心。
活动实际效果:学生通过回顾本节课的学习过程,体会利用抽象思维抽象出一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。
第五环节:布置作业
1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积等于45,你知道这两个小朋友几岁吗?
2、一块长方形草地的长和宽分别为20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为246,求小路的宽度。
3、一个两位数等于其数字之积的3倍,其十位数比个位数小2,求这两位数。
一元二次方程教学设计 篇5
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:
①用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的.用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
一元二次方程教学设计 篇6
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的.合作交流意识。
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点
1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
Ⅱ.讲授新课
一、例题讲解
投影片:(§2.8.1A)
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(1)h与t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流。
[师]请大家先发表自己的看法,然后再解答.
[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式。
(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可。
还可以观察图象得到.
[师]很好.能写出步骤吗?
[生]解:(1)∵h=-5t2+v0t+h0,
当v0=40,h0=0时,
h=-5t2+40t.
(2)从图象上看可知t=8时,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0。
∴t(t-8)=0。
∴t=0或t=8。
t=0时是小球没抛时的时间,t=8是小球落地时的时间。
二、议一议
投影片:(§2.8.1B)
二次函数①y=x2+2x,
②y=x2-2x+1,
③y=x2-2x+2的图象如下图所示。
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[师]还请大家先讨论后解答。
[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点。
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根。
(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根。
由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根。
[师]大家总结得非常棒。
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。
三、想一想
在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?
[师]请大家讨论解决。
[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此当小球离开地面2秒和6秒时,高度都是60m。
Ⅲ.课堂练习
随堂练习(P67)
Ⅳ.课时小结
本节课学了如下内容:
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系。
2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根。
Ⅴ.课后作业
习题2.9
板书设计
§2.8.1 二次函数与一元二次方程(一)
一、1.例题讲解(投影片§2.8.1A)
2.议一议(投影片§2.8.1B)
3.想一想
二、课堂练习
随堂练习
三、课时小结
四、课后作业
备课资料
思考、探索、交流
把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?
解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则
S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625。
即当x=25时,S最大=625。
(2)S正方形=252=625。
(3)∵正三角形的边长为 m,高为 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= 。
∴S圆=πr2=π·( )2=π· = ≈796(m2).
所以圆的面积最大。
一元二次方程教学设计 篇7
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点
1、教学重点:学会用列方程的方法解决有关增长率问题。
2、教学难点:有关增长率之间的数量关系。下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)原产量+增产量=实际产量。
(2)单位时间增产量=原产量×增长率。
(3)实际产量=原产量×(1+增长率)。
2、例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x。
则2月份的产量是5000+5000x=5000(1+x)(吨)。
3月份的产量是
=5000(1+x)2(吨)。
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2。
x1=0.2,x2=—2.2(不合题意,舍去)。
取x=0.2=20%。
教师引导,点拨、板书,学生回答。
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x。
(2)认真审题,弄清基数,增长了,增长到等词语的关系。
(3)用直接开平方法做简单,不要将括号打开。
练习1、教材P。42中5。
学生分析题意,板书,笔答,评价。
练习2、若设每年平均增长的百分数为x,分别列出下面几个问题的方程。
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。
(1+x)2=b(把原来的总产值看作是1。)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数。
((1+x)2=b+1把原来的总产值看作是1。)
以上学生回答,教师点拨。引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的.产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n。
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力。
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x。
第一次降价后,每件为600—600x=600(1—x)(元)。
第二次降价后,每件为600(1—x)—600(1—x)x
=600(1—x)2(元)。
解:设每次降价为x,据题意得
600(1—x)2=384。
答:平均每次降价为20%。
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。
引导学生对比“增长”、“下降”的区别。如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1—x)2=b)。
(四)总结、扩展
1、善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程。培养学生用数学的意识以及渗透转化和方程的思想方法。
2、在解方程时,注意巧算;注意方程两根的取舍问题。
3、我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率。3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程。
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1、数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2、最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率。
一元二次方程教学设计 篇8
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的.推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习课时小结——布置作业。
1、复习引入:
这节课,我首先从旧知
问题(1)用配方法解方程2x28x90的练习引入,
问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。
设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。
2、问题呈现:
你能用配方法解一般形式的一元二次方程吗?
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )
问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,
应加以强化。
最终总结出:
当b24ac<0时,原方程无实数解。
当b24ac≥0时,原方程有实数解,
再进一步谈论:b24ac=0与b24ac>0时,两个解区别?
(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)
由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。
同时,方程的解是可以将a、b、c
的值带入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例题讲解
例4:用公式法解下列方程
总结步骤:
1、把方程公成一般形式,并写出a,b,c的值。
2、求出b24ac的值
4、写出方程的解:x1= ,x2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。
4、巩固练习
解下列一元二次方程:
①x2x60
②4x2x90
③x2100
设计意图:
(1)熟悉公式法,强化解题格式,
(2)及时发现错误及时解决。
例5:解方程:x(x1)(x2)
化简得12212x3x40 2
强调:
①当方程不是一般形式时,应先化成一般形式,再运用求根公式。
②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。
5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。
(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。
6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。
四、板书设计
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。
通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。
一元二次方程教学设计 篇9
学情分析
学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教学目标:
知识技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法
1、通过一元二次方程的引入,培养学生分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感态度
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学重难点
重点:一元二次方程的概念及一般形式.
难点:探求问题中的等量关系,建立方程模型
教学突破:
1、方程是否为一元二次方程,主要看是否满足三个条件:
(1)是整式方程;
(2)只含有一个未知数;
(3)未知数的最高次数为2次。
2、一元二次方程的各项系数均是相对于一般形式而言的,因此在教学中应强调:若要确定各项的系数,应先将方程化为一般形式。另外,一定要注意符号,尤其符号不能漏掉。
教学过程设计
一、创设情境引入新课
问题1:
在长30米,宽20米的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500平方米,求道路的宽度?.
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.
问题2:
参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,求有多少家参加商品交易会?
二、启发探究获得新知
1、一元二次方程的概念:经整理后,,只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
说明:(1)由一问题得到2个方程,由学生观察归纳这2个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的.定义.
(2)一元二次方程必须同时具备三个特征:a)整式方程; b)只含有一个未知数; c)未知数的最高次数为2.
眼疾口快:
请抢答下列各式是否为一元二次方程:
(4)5x+3=10
说明:此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
2、一元二次方程的一般式:
试一试:
例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
说明:此题设置的目的在于加深学生对一般形式的理解
三、运用新知体验成功
小试牛刀:
1.将下列方程化成一元二次方程的一般形式,并
写出其中的二次项系数、一次项系数和常数项.
(1)5x 2 -1= 4x;
(2)4x 2 = 81;
(3)4x(x+2)=25;
(4)(3x – 2)( x + 1 ) = 8x - 3
说明:巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.另让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容。
2.(1)小区2013年底拥有家庭轿车64辆,2015年底家庭轿车的拥有辆达到100辆,若该小区这两年的年平均增长率相同,求年平均增长率x;
(2)一个矩形的长比宽多2厘米,面积是100平方厘米,求矩形的长x;
(3)要组织一次篮球联赛,每两队之间都赛一场,计划安排21场比赛,有多少队参加?
说明:这几题有在实际生活中应用的意义,以此题为例,教师板书整理一元二次方程的过程,让学生学会如何整理任意一元二次方程的一般形式,并能准确找到各项系数.
教师在此活动中应重点关注:
(1)由一个学生列出方程,并解释解题方法,教师进行引导,点评,引起其他学生的关注,认同.
(2)教师在归纳点评过程中,应注意把两队只打一场比赛解释清楚,以便学生理解题意.
(3)整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等.
(4)让学生指出各项系数时,教师强调系数须带符合.
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
此题由学生思考,讨论,并由学生给出结果并进行解释.
说明:此活动过程中,教师应重点关注:
(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结果.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
四、归纳小结拓展提高
1、问题:
本节课你又学会了哪些新知识?
说明:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
2、还有什么疑惑?
五、布置作业:
教科书第21.1第1、2、3题.
板书设计
21.1一元二次方程
一元二次方程的概念:方程两边都是整式,并且只含有一个未知数,未知数的最高次数是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次项系数,b表示一次项系数,c表示常数项。
例1.例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
学生学习活动评价设计:
关注学生在学习活动中的表现,如能否积极的参加活动,能否从不同的角度去思考问题,等等,而不是仅局限于学生列方程,判断学生各项系数的正确与否。
重视学生应用新知解决问题的能力的评价,鼓励学生使用数学语言,有条理地表达自己的思考过程,鼓励大胆质疑和创新。
一元二次方程教学设计 篇10
一、教学目标:
1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。
2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。
3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。
二、教学重难点:
1、重点---会利用配方法熟练解一元二次方程。
2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。
三、教学过程
(一)活动1:提出问题
要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。
师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。
(二)活动2:温故知新
1、填上适当的数,使下列各式成立,并总结其中的规律。
(1)x+ 6x+ =(x +3 )
(2) x+8x+ =(x+ )
(3)x2-12x+ =(x- )2
(4) x2- 5x+ =(x- )2
(5)a2+2ab+ =(a+ )2
(6)a2-2ab+ =(a- )2
2、用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。
专心(三)活动2:自主学习
自学课本P31---P32思考下列问题:
1、仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?
2、怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)
3、讨论:在框图中第二步为什么方程两边加9?加其它数行吗?
4、什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。
设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想
(四)活动4:例题学习
例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
交流与点拨:用配方法解一元二次方程的一般步骤:
(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)
(2)移项,使方程左边只含有二次项和一次项,右边为常数项。
(3)配方,方程两边都加上一次项系数一半的平方。
(4)原方程变为( mx+n)2=p的形式。
(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。
(五)课堂练习:
1.教材P34练习1(做在课本上,学生口答)2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。
四、归纳与小结:
1.理解配方法解方程的含义。
2.要熟练配方法的技巧,来解一元二次方程,
3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。
五、布置作业
教材P42习题22.2第3题
---教后反思
通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的'一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。
1、学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:
①化二次项系数为1;
②移常数项到方程右边;
③方程两边同时配上一次项系数一半的平方;
④化方程左边为完全平方式;
⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固
2、教学方法上的几点体会:
①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。
②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。
3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:
①二次项系数没有化为1就盲目配方;
②不能给方程“两边”同时配方;
③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);
④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。
4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。
5、在我本节课的教学当中,也有如下不妥之处:
①对不同层次的学生要求程度不适当;
②在提示和启发上有些过度;
③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。
【一元二次方程教学设计】相关文章:
一元二次方程教学设计(精选12篇)12-09
一元二次方程根与系数的关系教学设计06-03
一元二次方程教学设计(通用12篇)08-28
一元二次方程教学反思03-22
《一元二次方程》教学反思03-30
一元二次方程教学反思04-04
有关一元二次方程根教学设计(通用6篇)07-11
解一元二次方程教学反思04-01
一元二次方程的概念教学反思04-07