
《数的奇偶性》教学设计(通用10篇)
作为一无名无私奉献的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。那么什么样的教学设计才是好的呢?下面是小编收集整理的《数的奇偶性》教学设计,希望对大家有所帮助。
《数的奇偶性》教学设计 1
教学目标:
1、在实践活动中认识奇数和偶数,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
探索并理解数的奇偶性
教学难点:
能应用数的奇偶性分析和解释生活中一些简单问题
教学过程:
一、游戏导入,感受奇偶性
1、游戏:换座位
首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)
2、讨论:为什么会出现这种情况呢?
学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的`倍数,这样的数就叫做奇数。
学生相互举例说说怎样的数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性
1、设置悬念、激发思维
现在我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来能够刚好换完?那些不能?
2、学生猜想、操作验证
学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
汇报成果:
奇数﹢奇数=偶数奇数—奇数=偶数奇数+奇数+……+奇数=奇数
奇数个
偶数+偶数=偶数偶数—偶数=偶数奇数+奇数+……+奇数=偶数
偶数个
奇数+偶数=奇数奇数—偶数=奇数偶数+偶数+……+偶数=偶数
你能举几个例子说明一下吗?
(学生的举例可以引导从正反两个角度进行)
3、深化
请同学们闭上眼睛,想一想:2+4+6+8+……+98+100这么多偶数相加的和是偶数还是奇数?为什么?
三、实践操作、应用奇偶性
我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动100次?105次?
学生动手操作,发现规律:奇数次朝下,偶数次朝上。
2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
你手上只有一个杯子怎么办?(学生:小组合作)
学生开始动手操作。
反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。
引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。
学生动手操作,尝试发现
交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。
学生再次操作,感受过程,体验结论。
3、游戏。
规则如下:用骰子掷一次,
得到一个点数,以A点为起点,
连续走两次,转到哪一格,那
一格的奖品就归你。谁想上来
参加?
学生跃跃欲试……如果继
续玩下去有中奖的可能吗?谁
不想参加呢?为什么?
生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。
是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?
学生自由说。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
请同学们课后去尝试探索这个命题,可以独立思考,也可以找人合作。
《数的奇偶性》教学设计 2
1、通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数。
2、经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3、结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识和能力。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
实物投影仪、一个杯子。
学具准备:
每人一枚硬币。
教学过程:
一、揭示课题:
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知。
(一)活动一:示图:小船最在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。
1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生列表并观察。
4、想:摆渡的次数与船所在的.位置有什么关系?
摆渡奇数次后,船在岸。
摆渡偶数次后,船在岸。
(二)活动二:试一试
1、师:一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝---,反动19次后杯口朝-----。
2、师示范,生活动:
摆开始状态第1次第2次第3次
下上下(师示范,生活动)
3、师:任说一个翻动的次数,学生抢抢抢答杯口朝上还是朝下?
4、观察杯口,找规律:
想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝。
翻动偶数次后,杯口朝。
5、师:把“杯子”换成“硬币”你能提出类似的问题吗?
6、学生你说我答,一人任说一个翻动次数,另一人判断杯口朝上还是朝下。
(三)活动三:观察下面两组数:
1、出示圆内数:121820346801652
2、出示方框内数1149252133710187
(1)读一读:
(2)说一说圆中的数有什么特点?
(3)方框中的数有什么特点?
3、偶数有什么特征?奇数有什么特征?
(四)活动四:试一试:
1、从圆中任意取出两个数相加,和是偶数。
同桌两人:一人说算式,一人计算和。
师:从以上举例可以发现?
任请一组同桌汇报,
(1)偶数+偶数=()(2)从正方形中任意取出两个数相加,和是。
(3)任意写出两个偶数,它们的和是。
(4)任意写出两个奇数,它们的和是。
(5)分别从圆和正方形中各取一个数相加,和是。
(6)任意写出一个偶数,一个奇数,它们的和是。
(7)判断下列算式的结果是奇数还是偶数。
10389+20xx=
11387+131=
三、总结。
这节课同学们有什么收获和体会?希望同学们做一个生活中的细心观察者,发现并创造我们美好的生活。
《数的奇偶性》教学设计 3
教学内容:
义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。
教学目标:
1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等毛生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
教学重点:
探索数的奇偶性变化规律。
教具学具准备:
数字卡片,盒子,奖品。
教学过程:
复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)
活动1:数的奇偶性在生活中的应用。
(一)激趣导入。
清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?
(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况
开、关;开、关;开、关;开、关;开、关;开、关……
让学生数数,直观地发现第11个人按过开关后,开关是打开的'。
2、增加人次,深入探究。
如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?
3、第二次汇报交流。
投影下表:
用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。
(三)巩固应用。
1、看书学习并解决小船的靠岸问题。
2、解决杯子上下翻转,杯口的朝向问题。
3、举例说说数的奇偶性还能解决哪些生活问题?
(四)活动小结。
当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。
活动2:探索奇、偶数相加的规律。
(一)有奖游戏。
1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。
2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。
3、引发思考。
师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?
4、发现规律。
学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。
5、举例验证。
6、修改游戏规则。
(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?
(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)
(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。
(3)举例验证:奇数+偶数=奇数
(二)总结奇、偶数相加的规律。
奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。
(三)应用规律解决问题。
1、不计算,判断下列算式的结果是奇数还是偶数。
10389+2004 11387+131 268+1024
2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?
全课小结:说说这节课有什么收获?
《数的奇偶性》教学设计 4
教学内容:
北师大版小学数学五年级上册第一单元。
教学目标:
1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。
2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。
3、让学生在活动中体验研究方法,提高推理能力。
教学准备:
一次性纸杯、硬币、课件等。
教学过程环节设计:
一、创设情境,产生认知冲突。
师:同学们,有一位家住在河南岸,以摆渡为生的船夫,想请我代他向同学们提一个问题,不知同学们是否愿意帮这位船夫解决一下呢?
(愿意)
课件出示情境图和问题。
【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。
二、分组活动,动手操作,感受奇偶性,建构数学模型。
1、活动一:
讨论:船夫将小船摆渡11次后,船在南岸还是北岸?
小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。
2、活动二:
一个纸杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次呢?翻动19次呢?100次呢?
学生动手操作,发现规律,汇报结果。
师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。
3、活动三:
讨论:加法中数的奇偶性与结果的奇偶性。
课件出示填有偶数的图形,奇数的正方形。
小组合作,完成表格(先猜一猜结果,再举例验证)
小组汇报,全班交流。
(师板书:)
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的.数学学习课堂,让学生经历数学模型建构的全过程。
三、运用模型,解决问题。
1、判断下列算式的结果是奇数还是偶数。
10389+2004: 11387+131:
268+1024: 46786+25787:
6007+8997:
2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
你手上只有一个杯子怎么办?
……(学生小组合作)
完成后,汇报反馈。
3、数学游戏。
规则如下:用骰子掷一次,得到一个点数,以 A点为起点,连续走两次,转到哪一格,那一格的奖品归你。
谁想上来参加?
……(学生玩游戏。)
这样玩下去,能获得奖品吗?为什么?
【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、如果将4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
板书设计:
数 的 奇 偶 性
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
《数的奇偶性》教学设计 5
教学目标:
1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
教学重点:
运用数的奇偶性解决生活中的一些简单问题。
教学难点:
发现加法中数的奇偶性的变化规律。
教学准备:
课件
教学过程:
一、复习导入
同学们看,这些数哪些是奇数,哪些是偶数
1、2、3、4、5、10、11、20、21、30、31、100 、101
同学们认识了什么叫奇数,什么叫偶数,这节课就让我们进一步去探索发现数的奇偶性的规律。(板书:数的奇偶性)
二、探索新知
(一)小船摆渡
1、出示情境图,介绍小河的南北岸。这里有一条小船,在小河两岸来回摆渡。你知道什么叫摆渡吗?(从南岸到北岸或从北岸到南岸叫一次摆渡,一个来回是2次摆渡。)
2、这条小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。小船摆渡11次后,船在南岸还是北岸?为什么?仔细想一想,你能用几种方法解答这题,将你的思路写在课堂练习本上。
3、实物投影学生的解题思路并让学生讲解。
4、你发现什么规律了吗?教师提示:当摆渡是( )次时,船在( )岸,当摆渡是( )次时,船在( )岸。
5、引导:列表和画图最终得出的结论是一样的。
6、大家都发现了小船最终在南岸还是北岸,是与小船摆渡是奇数次还是偶数次有关,那么,如果小船来回摆渡100次呢?10001次呢?怎样判断?如果小船从北岸出发呢?
(二)翻杯子
1、利用上面的`发现,请大家观察并思考:一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上。 (教师演示)翻动10次呢?翻动100次?10005次呢?
2、说说你是怎样想的?为什么?
3、汇报发现;当翻动奇数次时,杯口朝上;当翻动偶数次时,回到原样,杯口朝下。
4、你能举出和数的奇偶性有关的例子吗?(开窗、开灯等例子)
三、体会奇偶性在计算中的作用
1、活动2,学生独立完成“试一试”。
2、学生汇报,教师板书。(板书:偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数)
3、再让学生举例验证。
4、独立完成“试一试”第7小题,学生汇报结果并说明理由。
四、课堂小结
通过今天的学习,你有什么收获?
五、板书设计
数的奇偶性
偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数
课后反思:
本课通过让学生自主探索解决问题的方法,学生很好地掌握了画示意图法和列表法来找规律。再让学生举一些生活中有关数的奇偶性的例子,学生参与热情高涨,理解较透彻。另外,对于奇偶性在计算中的作用,通过让学生大量举例证明,很有说服力。从作业反馈来看,绝大多数学生都掌握了本课的重要内容,但个别学生在解释“为什么此时灯是开着的”这类题时,表达不清,语句不通,解释用语太生活化,所以教师在平日教学中要规范数学用语,给学生做好示范。
《数的奇偶性》教学设计 6
教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性, 奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的`定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让 在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式 时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
《数的奇偶性》教学设计 7
一、教学目标
【知识与技能】
理解函数的奇偶性及其几何意义.
【过程与方法】
利用指数函数的图像和性质,及单调性来解决问题.
【情感态度与价值观】
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.
二、教学重难点
【重点】
函数的奇偶性及其几何意义
【难点】
判断函数的奇偶性的方法与格式.
三、教学过程
(一)导入新课
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
(二)新课教学
1.函数的奇偶性定义
像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.
(1)偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(学生活动):仿照偶函数的定义给出奇函数的定义
(2)奇函数(odd function)
一般地,对于函数f(x)的'定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
2.具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
3.典型例题
(1)判断函数的奇偶性
例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)
解:(略)
总结:利用定义判断函数奇偶性的格式步骤:
1 首先确定函数的定义域,并判断其定义域是否关于原点对称;
2 确定f(-x)与f(x)的关系;
3 作出相应结论:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(三)巩固提高
1.教材P46习题1.3 B组每1题
解:(略)
说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.
2.利用函数的奇偶性补全函数的图象
(教材P41思考题)
规律:
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
说明:这也可以作为判断函数奇偶性的依据.
(四)小结作业
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
课本P46 习题1.3(A组) 第9、10题, B组第2题.
《数的奇偶性》教学设计 8
教学过程设计:
为了完成教学目标,解决教学重点突破教学难点,本节课教学流程设计如下:课前自学→课堂教学(兴趣导入→知识回顾→探索新知→巩固新知→运用新知)→课后提升。
教学环节
课前自学:
任务一
教师:微信群交流预习任务分析梳理教学内容,制定任务单,将学习资源上传至蓝墨云班课,编制测试题。
学生:
1、在微信群接收预习任务。
2、登录蓝墨云班课,查看学习任务单,了解自学要求,明确重点、难点,明确本次课程的教学内容。
任务二:
教师:
1、课前教师将微课“轴对称和中心对称图形”上传至蓝墨云班课。
2、教师启用蓝墨云班课的“头脑风暴”区。让学生观看微课后上网浏览、下载生活中轴对称和中心对称图片并上传至云班课里的头脑风暴区。
3、课前教师根据学生上传的图片情况备课。整理学生分享的图片,精心挑选整合到课堂资源中。
学生:
1、课前学生登录蓝墨云班课观看微课“轴对称和中心对称图形”。
2、学生上网浏览、挑选喜爱的轴对称和中心对称图片并上传至云班课的头脑风暴区。拓宽学生想象和思考空间,集思广益,诱发集体智慧,激活学生的创意与灵感。
任务三
教师:
1、课前教师将微课“函数的奇偶性”上传至蓝墨云班课。
2、教师启用蓝墨云班课的“答疑讨论”区。引导学生讨论点的坐标关于坐标轴、原点对称的点的坐标特征;偶函数、奇函数的图像特征。
3、关注学生在平台上的讨论,及时解答学生的疑惑,梳理学生讨论的.问题,为课堂教学做准备。
学生:
1、课前学生登录蓝墨云班课观看微课“函数的奇偶性”。
2、在答疑讨论区讨论点的坐标关于坐标轴、原点对称的点的坐标特征;偶函数、奇函数的图像特征。学生做好课前准备。
课堂教学
一、兴趣导入
欣赏对称美视频展示:对称美就在我们身边。
教师课前将学生收集的轴对称和中心对称图片制作成视频借助ppt进行展示,兴趣导入本节课。
二、知识回顾
检验学生课前学习情况教师利用蓝墨云班的抢答功能完成对课前知识的考查。教师借助蓝墨云班课的抢答功能对学生课前学习“点的对称性”和“图像法判断函数的奇偶性”进行考查。学生登录蓝墨云班课的抢答功能区进行抢答。对课前自学的知识点“点的对称性”和“图像法判断函数的奇偶性”进行知识内化。利用蓝墨云班里的抢答功能完成对课前知识的考查,使课前与课中的知识衔接水到渠成。
二、探索新知
(一)探索新知1:师生共同探索偶函数的定义
教师:
1、引导学生在几何画板上作出函数f(x)=x2的函数图像。
2、教师引导学生观察f(x)=x2图像上关于y轴对称的两个点的坐标特征。
3、教师引导学生得出偶函数的定义。
学生:
1、学生在几何画板上作出函数f(x)=x2的函数图像。
2、在教师的引导下观察f(x)=x2图像上关于y轴对称的两个点的坐标特征。
3、在教师的引导下得出偶函数的定义。
(二)探索新知2:
教师:学生分组探索奇函数的定义教师对学生小组的探究活动适时给予帮助。
学生:
1、学生在几何画板上作出f(x)=x3的函数图像。
2、学生分小组探索f(x)=x3图像上关于原点对称的两个点的坐标特征。
3、各小组进行阐述。
4、类比偶函数定义得出奇函数的定义。几何画板在偶函数的基础上,学生作出了f(x)=x3的图像,类比得出奇函数的定义。
(三)探索新知3
教师:教师引导学生分组讨论函数定义域关于原点对称是函数具备奇偶性的前提条件PPT展示两个函数图像。
学生:
1、观察教师给的两个函数的函数图像。
2、分小组讨论函数是否具备奇偶性。
3、得出函数具备奇偶性的前提条件是:函数定义域关于原点对称。
三、巩固新知
例题讲解定义法判断函数奇偶性归纳做题步骤
教师:
1、教师讲解课本例4的第1.3两个小题。
2、引导学生归纳用定义法判断函数奇偶性的步骤,并启发学生提炼关键词一看二求三判断。
学生;学生在教师的引导下归纳判断函数奇偶性的步骤,并提炼关键词一看二求三判断,便于记忆。
四、运用新知
课堂练习:
定义法判断函数的奇偶性(图像法进行检验)
教师借助蓝墨云班的小组活动对学生的做题情况进行评价。
1、学生分小组合作交流每组一题(例4的2.4两个小题和练习3.2.2第2题的四个小题)然后将答案拍照上传至蓝墨云班课的小组活动中。各小组成员自评、互评。
2、利用几何画板绘制上述函数的函数图像利用图像法检验结果。几何画板蓝墨云班课感受由“数”到“形”再由“形”到“数”的转化关系,最后理解定义。
五、课堂小结
用思维导图的形式引导学生进行总结学生从知识、方法两方面进行总结。
课后提升作业
根据学生学习能力的不同从阅读、书写、网络三个层次布置课后作业。
1、请学生课后再次阅读教材(P54——P59)
2、作业本上完成教材P58习题3.2A组第2.3题
3、请学生课后登录云班课完成“测试活动(函数的奇偶性——课后)”
4、利用软件设计一个轴对称或中心对称图案发送到云班课的“小组任务(轴对称或中心对称图标——课后)蓝墨云班课根据学生学习能力的不同从阅读、书写、网络三个层次布置课后作业。学生能多角度、多维度、科学地完成作业为后续学习,专业提升打下基础。
《数的奇偶性》教学设计 9
设计理念
目前 “解决问题的策略”的教学中存在的问题是,教师偏重于就题讲题,学生的自主探索浮于表层,实际缺少独立获取知识的机会,也就是缺少侧重于探索、发现性的数学思考的机会。本节课以“突出学生的主体地位,关注学生的发展”为出发点,在开放的氛围中,让学生主动从事观察、猜测、实验、归纳等探索、发现性的.思维活动,发现加法中数的奇偶性的变化规律,使学生充分感受与体验“发现问题—提出问题—初步猜想—举例验证—得出结论”的研究方法,在自主探索的过程中真正理解和掌握数学思想、数学方法,培养学生处理信息、分析问题、解决问题的能力以及积极探索的科学精神。
教学内容
《义务教育教科书 数学》五年级下册第50-51页。
学情与教材分析
本节课的教学内容是在学生认识了倍数和因数,学习了 2、3、5的倍数的特征后安排的一个专题活动——数的奇偶性(活动2),主要是要通过探索活动,让学生发现加法中数的奇偶性的变化规律,并在活动中体验研究方法,提高推理能力。这一单元的知识较具抽象性与严谨性,前后联系紧密,因此安排这一专题探究活动既能很好地调动学生学习的积极性,又能使学生在活动中体验数学问题的探索性和挑战性,培养学生养成科学的研究态度和学习方法,使学生体会到学习有价值的数学的乐趣。
教学目标
1、让学生在探究过程中,发现加法中数的奇偶性变化规律。
2、通过观察、猜想、分析、讨论、归纳等活动,让学生经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律,体验“发现问题——初步猜想——举例验证——得出结论”的研究方法,提高分析、解决问题的能力及合情推理能力。
3、让学生在游戏及探究过程中,感受生活中存在数学规律,体会数学规律发现与形成的过程,培养学生勇于探索的科学精神和严谨的学习态度。
教学过程
创设情境,提出猜想,初步建模
1、明确游戏规则,揭示课题。
摸奖规则:
1、每人只能摸一次奖;
2、摸奖时,从箱子里任意摸出两个球,把球上的数相加,算出结果,找到对应的奖区。摸完奖后,把球放回箱里。
组织讨论:符合什么条件的人能中奖?
结合学生的回答复习奇数、偶数,揭示课题。
2、组织游戏,猜测揭秘
①学生摸奖,提出问题:都中不了奖,是不是箱子里只有偶数?
②摸球验证,提出猜想:偶数加偶数等于偶数?
师:偶数加偶数等于偶数,这只是我们的初步猜想,如何来进一步验证这个结论是正确的呢?
3、举例验证“偶数+偶数=偶数”的正确性,得出结论
师:举例验证是数学研究中十分重要并且卓有成效的方法。
①组织讨论:如何举例验证?应该举什么样的例子验证?如果举例相加的结果都是偶数,说明什么?如果不是,又说明什么?
②举例验证。
③得出结论:偶数+偶数=偶数
4、小结:刚才咱们只是用摸奖球上的数相加的方法初步得出“偶数加偶数可能等于偶数”,现在通过举例进一步验证了这个结论是正确的。
《数的奇偶性》教学设计 10
教学目标:
了解奇偶性的含义,会判断函数的奇偶性。能证明一些简单函数的奇偶性。弄清函数图象对称性与函数奇偶性的关系。
重点:
判断函数的`奇偶性
难点:
函数图象对称性与函数奇偶性的关系。
教学过程
一、复习引入
1、函数的单调性、最值
2、函数的奇偶性
(1)奇函数
(2)偶函数
(3)与图象对称性的关系
(4)说明(定义域的要求)
二、例题分析
例1、判断下列函数是否为偶函数或奇函数
(1) (2)
(3) (4)
例2、证明函数 在R上是奇函数。
例3、试判断下列函数的奇偶性
三、随堂练习
1、函数 ( )
是奇函数但不是偶函数 是偶函数但不是奇函数
既是奇函数又是偶函数 既不是奇函数又不是偶函数
2、下列4个判断中,正确的是_______.
(1) 既是奇函数又是偶函数;
(2) 是奇函数;
(3) 是偶函数;
(4) 是非奇非偶函数
3、函数 的图象是否关于某直线对称?它是否为偶函数?
【《数的奇偶性》教学设计】相关文章:
数的奇偶性教学设计10-11
“数的奇偶性”教学设计05-24
《数的奇偶性》教学设计10-01
“数的奇偶性”教学设计(6篇)05-23
“数的奇偶性”教学设计6篇08-16
《数的奇偶性》教学设计(精选9篇)05-20
《数的奇偶性》教学反思10-13
《数的奇偶性》教学反思10-11
《数奇偶性》说课稿07-25