正比例函数教学设计(通用14篇)
作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么什么样的教学设计才是好的呢?下面是小编精心整理的正比例函数教学设计,希望能够帮助到大家。
正比例函数教学设计 1
教学目标:
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学重难点:
进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学准备 :
实物投影
教学预设:
一、概念复习:
1、提问:怎样的两个量成正、反比例?
根据学生回答板书字母关系式。
二、书本练习:
1、第9题。
(1)观察每个表中的数据,讨论前三个问题。
要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
(2)组织学生讨论第四个问题。
启发学生根据条件直接写出关系式,再根据关系式直接作出判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。
要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的'学生。
三、补充练习
1、对比练习:判断下列说法是否正确。
(1)圆的周长和圆的半径成正比例。( )
(2)圆的面积和圆的半径成正比例。( )
(3)圆的面积和圆的半径的平方成正比例。( )
(4)圆的面积和圆的周长的平方成正比例。( )
(5)正方形的面积和边长成正比例。( )
(6)正方形的周长和边长成正比例。( )
(7)长方形的面积一定时,长和宽成反比例。( )
(8)长方形的周长一定时,长和宽成反比例。( )
(9)三角形的面积一定时,底和高成反比例。( )
(10)梯形的面积一定时,上底和下底的和与高成反比例。( )
正比例函数教学设计 2
教学要求:
1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学过程:
一、复习铺垫
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、引入新课
我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。
二、教学新课
1、教学例1。
出示例1。让学生计算,在课本上填表。
让学生观察表里两种量变化的数据,思考。
(1)表里有哪两种数量,这两种数量是怎样变化的?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论。
提问:这里比值50是什么数量?(谁能说出它的数量关系式?)
想一想,这个式子表示的是什么意思?
2、教学例2
出示例2和想一想
要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。
学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?
比值1.6是什么数量,你能用数量关系式表示出来吗?
谁来说说这个式子表示的意思?
3、概括正比例的意义。
像例1、例2里这样的.两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。
4、具体认识
(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?
例2里的两种量是不是成正比例的量?为什么?
(2)做练习八第1题。
5、教学例3
出示例3,让学生思考
提问:怎样判断是不是成正比例?
请同学们看一看例3,书上怎样判断的,我们说得对不对。
强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
1、做练一练第1题。
指名学生口答,说明理由。
2、做练一练第2题。
指名口答,并要求说明理由。
3、做练习八第2题(小黑板)
让学生把成正比例关系的先勾出来。
指名口答,选择几题让学生说一说怎样想的?
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业。
正比例函数教学设计 3
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:
认识正比例关系的意义。
教学难点:
掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、自主探究:
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?
(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?
引导学生进行讨论,得出:
(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。
(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。
(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)
2.教学例2。
出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)
3.概括正比例的意义。
(1)综合例1、例2的共同点。
提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的.量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。
4、教学例3学生看书自学,小组讨论,集体交流。
(1)数量与时间是不是两种相关联的量?
(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?
(3)判断数量与时间是不是成正比例?
5、完成97页练一练。
三、巩固练习
1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?
2、做练习十一第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。
五、家庭作业
练习十一第2~6题。
正比例函数教学设计 4
教学目标:
1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正比例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点:
能根据数量关系式或图象判断两种量是否成正比例。
教学准备:
投影仪。
教学过程:
一、新课讲授
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4、0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出
①正比例关系的图象是一条经过原点的`直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
二、练习讲授
1、基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。
a、电是随着用电量的增加而增加;
b、电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系:路程÷时间=速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2、指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:
①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。
a、动手画一画,指名汇报图象特点。
b、组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
三、课堂作业
1、根据x和y成正比例关系,填写表中的空格。
2、看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
课堂小结:
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
课后作业:
完成练习册中本课时的练习。
板书设计:
正比例图像
图像:一条过原点的直线。
正比例函数教学设计 5
教学内容
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
教学目标
1、使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2、通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3、通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
教学重点
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
教学难点
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
二、自主探索,学习新知
1.教学例1
用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的`水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
2、教学试一试
教师:我们再来研究一个问题。
课件出示第52页下面的试一试。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)
3、教学议一议
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4、教学课堂活动
教师:请大家说一说生活中还有哪些是成正比例的量。
三、夯实基础,巩固提高
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
四、全课小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
正比例函数教学设计 6
【教学内容】
正比例
【教学目标】
使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】
投影仪。
【复习导入】
1、复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?
板书: =速度。
②已知总价和数量,怎样求单价?
板书: =单价。
③已知工作总量和工作时间,怎样求工作效率?
板书: =工作效率。
2、引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
【新课讲授】
1、 教学例1。
教师用投影仪出示例1的图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
①铅笔的。总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2、教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3、归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?
②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。
要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三:两个量的.比值一定。
4、用字母表示正比例的关系。
教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)
5、教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
【课堂作业】
完成教材第46页的“做一做”(1)~(3)。
答案:
(1) 比值表示每小时行驶多少km。
(2)成正比例。理由:路程随着时间的变化而变化。
①时间增加,路程也增加,时间减少,路程也随着减少;
②路程和时间的比值(速度)一定。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
正比例函数教学设计 7
【教学目标】
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
【教学重难点】
重点:
成正比例的量的特征及其断方法。
难点:
理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
【教学过程】
一、四顾旧知,复习铺垫
商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生独立完成后师提问:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)
二、引导探索,学习新知
1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。
(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:= = =…=3、5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的`单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?
两种量中相对应的两个数的比值一定,这是关键。
4、认识正比例图象。(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?
无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?
小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、P46“做一做”
2、练习九第1、3~7
正比例函数教学设计 8
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的'能力.
教学重点:
对于与正比例函数概念的理解.
教学难点:
根据具体条件求与正比例函数的解析式.
教学方法:
结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
正比例函数教学设计 9
教学内容:
成正比例的量
教学目标:
1. 使学生理解正比例的意义,会正确判断成正比例的量。
2. 使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:
正比例的意义。
教学难点:
正确判断两个量是否成正比例的关系。
教具准备:
多媒体课件
教学过程:
一、揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?
在教师的指导下,学生会举出一些简单的例子,如
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的.牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1. 教学例1
(1)出示例题情境图。
问:你看到了什么?生
杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝ 2 4 6 8 10 12
体积/㎝3 50 100 150 200 250 300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书
教师:体积与高度的比值一定。
(2) 说明正比例的意义。
① 在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示
像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例函数教学设计 10
教学内容:
两种相关联量的变化情况。p18上的内容。
教学目标:
1.结合具体目标,体会生活中存在着大量互相依存的变量,让学生知道其中一种量变化,另一种量也随着变化。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。教学重点:两种变化的量。
教学难点:
根据图表说明两种量的变化情况
教具准备:
直尺,三角板、课件等。
教学方法:
自主探究
教学过程:
一、揭示课题。
教师:在现实生活中,存在着很多相关联的量。其中一种量变化,另一种量也随着变化。今天我们就来研究这些量的变化情况。
二、探索新知
活动一:观察并回答。
1.下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。
2.上表中哪些量在发生变化?
3.说一说小明10周岁前的体重是如何随年龄增长而变化的?
小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。
4.体重一直会随年龄的增长而变化吗?这说明了什么?
说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的.。
5.教育学生要合理饮食,适当控制自己的体重。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1.图中所反映的两个变化的量是哪两个?
2.横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3.一天中,骆驼的体温最高是多少?最低是多少?
4.一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5.第二天8时骆驼的体温与前一天8时的体温有什么关系?
6.骆驼的体温有什么变化变化的规律吗?
活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。
1.蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。
2.如果用t表示蟋蟀每分钟叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。t
3.你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?
四人小组交流你收集到的信息,选派代表请举例说明
4.你还发现我们学过的数学知识中有哪些量之间具有变化的关系?
全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的
两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
三、深化练习。
找一找,生活中两种相关联的量,记录它们的变化情况。
四、作业。
下表是圆面积变化情况。
1.上表哪些量在发生变化?
2.圆的面积如何随着半径的增长而变化的?
正比例函数教学设计 11
一、章节:
《义务教育课程标准数学实验教科书》六年级下册第二单元。
二、学习内容:
1、介绍正比例的定义。
2、用描点连线的方法画出正比例图像。
3、判断两个量是不是成正比关系。
三、学习者分析:
正比例是小学生第一次接触到函数的概念,理解上会有些困难,需要大量生活中实际的例子和老师的引导来帮助学生的理解。同时正比例函数也是以后学习函数的基础,所以打好这节课的.基础至关重要。
四、教学目标:
1、知道什么是正比例,理解其定义以及含义,掌握正比例比值一定的特点。
2、建立数形结合的概念,会用描点法画正比例函数的图像,通过图像的特点是一条过原点的直线进一步理解正比例函数的性质。
3、建立函数的概念,懂得用y=kx的函数形式来表示正比例函数。
五、教学重点:
理解正比例函数的定义,掌握正比例比值一定的特点,会判断两个量是不是成正比。
六、教学难点:
学会用函数的形式来表达正比例,即y=kx,建立函数概念。 解决措施:给同学们下发网格纸,在网格纸上进行描点,连线,画出比值不同的直线进行观察,比较。
七、教具准备:
课件,表格
八、教学过程:
1、导入新课(时间5分钟)
2、独立思考环节(时间4分钟)
3、介绍正比例的定义(7分钟):两种相关的量,一种量变化,另一种量也随着变化如果这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例。
4、总结归纳,深究定义。定义中需要把握住的几方面:
(1)两种相关的量
(2)一个量随着另一个量变化
(3)两种量中对应的两个数比值不变。
5、列举例子(8分钟):让学生判断例子是不是为正比例,如果是,让学生指出两个相关的量是什么,哪个量的变化引起了另一个量的变化,比值是多少,强化这三个方面。
通过学生的回答,让同学们说说自己是怎么来判断的,从而归纳总结出判断两个量是不是成正比例的依据:
一看是不是相关量;
二看是不是能变化;
三看是不是商一定。
6、用函数形式表示正比例(6分钟)
7、结束语:到这里时间也差不多了,回顾这节课我们学习了什么是正比例,怎么判断是不是正比例,也用简洁的函数表达式写出了正比例。那么下节课我们就要来学习正比例的图像是怎么样的,他能帮助我们判断正比例关系吗?还有利用上面的表达式去解决一些实际问题。请同学们做好预习工作。今天的课就到这里,下课。
正比例函数教学设计 12
教学目标:
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法 :学生经历从具体实例中认识成正比例的量及正比例关系的过程,通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度 :在主动参与数学活动的过程中, 进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识,并乐于与人交流。
教学重点:
理解正比例的意义
教学难点:
能准确判断成正比例的量
教学具准备:
多媒体课件、P39页表格
教学过程:
一、游戏导入,激发兴趣
同学们,你们玩过石头、剪子、布的游戏吗?我们一起来玩这个游戏。 请大家听清楚游戏规则:同桌两人为一组,一边进行游戏,一边用画 “正” 字的方法记录自己赢的次数,赢一次得5分,时间30秒。听明白了吗?
做好准备,游戏时间30秒,预备──开始!
秒表计时,开始游戏,教师巡视。 时间到,我来了解一下做游戏的情况:
请同学们注意,赢1次我们记 5分。下面请大家算一算你可以得多少分? 谁愿意说说自己的得分?
学生边说,教师边在电脑表格上填上数据
二、 引导观察,启发思考
1、请大家仔细观察这张表,看看表中有哪几种数量?
2、学生抢答:
赢的次数是 1,得分是 5;赢的次数是 2 时,得分是10 赢的次数是 6 时,得分成了多少?
我们再倒过来观察:得分是 20,赢的次数是 4;得分是15的时候,赢的次数是3;得分是多少的时候? ,赢的次数是 2
3、通过抢答:你发现了什么?
4、引出“两种相关联的量”:得分随着赢的次数的变化而变化,像这样的两种量,我们把它们叫做相关联的量。(教师板书:两种相关联的量)
5、在现实生活中,我们常常会遇到两种相关联的量,当其中一种量变化时,另一种量也随着变化。就像现在我发现每位同学都精神抖擞的样子,老师也感到上课的精神倍增一样。
三、创设情景,观察实验。
1、课件出示实验情景图并设问:从这张情景图中,你能看到了什么? 谁来说说
学生汇报(6个大小相同的圆柱型烧杯,一把直尺,带颜色的水)
2、由于这个实验现场做起来比较麻烦,所以我们借助电脑来完成它,好吗?
要求:一边仔细观察,一边记录实验数据。
水的体积是200毫升时,引导学生猜一下水的高度是多少?
四、自主探究成正比例的量
1、观察变量
我们一块来看一下实验结果:(课件出示实验报告单)
仔细观察分析实验报告单,独立思考以下问题,然后在小组内讨论:(建议大家按一定的顺序观察、分析实验报告单,可以从左往右,也可以从右往左。)
(1)表中反映了哪几种量?
(2)水的高度和体积这两种量有变化吗?
(3)水的体积是怎样随着高度变化的?
小组汇报。(水的高度增加,体积随着增加,高度减少,体积随着减少,也就是说:一种量变化,另一种量也随着变化。)(板书:一种量变化,另一种量也随着变化)
2、引导学生研究“定量”
(1)由统计表中的这两种量,你还能想到什么?(结合学生的回答出示统计表。
(2)你会算底面积吗?请一位同学说出底面积的计算方法。(教师板书)
(3)通过计算底面积,你有什么发现?
(4)介绍“一定”底面积都相等,也就是体积和高度的比值都相等,这种情况,数学上叫做“一定”。板书:“一定”
3、认识“成正比例的量”
(1)再次观察统计表,每位同学先独立思考,然后小组讨论:
A、现在统计表中有几种量,哪种量是变化的?哪种量是不变的?
B、体积和高度,这两种量的变化有什么特征?
(2)汇报明确:高度和体积是两种相关联的量。高度增加,体积随着增加,高度减少,体积随着减少。体积和高度的比值一定。
(3)揭示成正比例的意义。(板书课题)
4、教学字母表达式
(1)描述正比例关系的这段话有点长,我们可不可以用字母表达式把它简明地表示出来?
如果用字母X和Y表示两种相关联的量,用K表示它们的.比值(一定),试着用字母表示出正比例关系。
(2)学生汇报:
(3)同学们能不能结合刚才的实验数据,在小组内说说X、Y、K表示什么?
5、自学讨论
(1)现在我们来看看课本上是怎样描述“正比例关系”的?自已勾一勾书,然后边读边思考:
判断两个量是否成正比例,需要具备哪些条件?然后在小组内讨论交流。
(2)汇报明确
(3)生产和生活中有很多相关联的量,有的成正比例,有的相关联,但不成比例。判断两种相关联的量是否成正比例,关键要看这两个量的比值是否一定,只有比值一定,这两个量才成正比例关系。
五、巩固练习,拓展提高
刚才大家学习的都很认真,下面老师想考考大家,愿意接受挑战吗?
1、第一关:出示课本41页“做一做”
第(1)、(2)独立解答,第(3)题小组讨论,然后组织交流。
2、第二关:老师在生活中收集了三个例子,其中只有一个是成正比例关系的,你能把它找出来吗?
小新跳高的高度和他的身高; 订阅《学生天地》的数量和总价; 正方形的边长和面积。
3、第三关:拓展练习(根据教学时间机动安排) 已知X-Y=0,X,Y成正比例吗
六、全课小结
通过这节课的学习,你有什么收获?
板书设计
成正比例的量
两个相关联的量,一个量变化,另一个量也随之变化
y(一定)} x?k(一定)
正比例函数教学设计 13
教学内容:
教科书第63页的例2,“练一练”和练习十三的第4.5题。
教学目标:
1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:
能认识正比例关系的图像。
教学难点:
利用正比例关系的图像解决实际问题。
教学准备:
多媒体
教学过程:
一、复习激趣
1、判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价
和一定,一个加数和另一个加数
比值一定,比的前项和后项
2、折线统计图具有什么特点?能否把成正比例的两种量之间的'关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?
二、探究新知
1、出示例1的表格
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像
3、展示、纠错
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
三、巩固延伸
1、完成练一练
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题
先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。
3、练习十三第5题
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
四、反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
五、作业
完成《练习与测试》相关作业
正比例函数教学设计 14
教学目标:
1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:
结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学关键:
理解成正比例的两个量的意义。
教学过程:
一、复习准备:
口答
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
课件出示:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的`观察,把数据填在表中。
2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。
特点是:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的。
4、正方形的面积与边长的比是边长,是一个不确定的值。
学生在小组内练说发现的规律,初步感知正比例的判定。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。
5、正比例关系:观察思考成正比例的量有什么特征?
小结:
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。
追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)
(2)字母表达关系式。
如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)
(3)质疑。
师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
三、巩固练习
(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
2、根据小明和爸爸的年龄变化情况
把表填写完整。父子的年龄成正比例吗?为什么?
(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。
1、判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由
4、画一画,你会有新的发现。
彩带每米4元,购买2米、3米…彩带分别需要多少钱?
①填一填:(长度:米,价格:元)
②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?
板书:
正比例的意义
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的路程÷时间=速度(一定)总价÷数量=单价(一定)=k(一定)
【正比例函数教学设计】相关文章:
正比例函数教学设计02-13
正比例函数教学设计04-17
正比例函数教学设计(9篇)03-11
正比例函数教学设计11篇04-17
正比例函数教学反思04-22
《正比例函数》教学反思02-07
《正比例函数》教学反思04-22
正比例函数的教学反思06-25
《正比例函数》教学反思优秀02-02