圆的周长教学设计

时间:2024-09-17 02:30:08 教学设计 我要投稿

圆的周长教学设计合集15篇

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教学设计,借助教学设计可以让教学工作更加有效地进行。如何把教学设计做到重点突出呢?以下是小编为大家整理的圆的周长教学设计,欢迎阅读与收藏。

圆的周长教学设计合集15篇

圆的周长教学设计1

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  学重点:正确计算圆的周长。

  教学难点:理解圆周率的意义,推导圆周长的计算公式。

  教具准备:多媒体课件、系绳的小球。

  学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳

  一、以旧引新,导入新课

  1.复习正方形的周长。

  ①复习周长的意义。什么叫周长?(学生汇报后,课件演示周长的意义)。

  ②复习正方形周长的意义。(课件演示小花狗围着正方形跑一圈正方形的周长闪动红色)要求小花狗所跑路程,实际上就是求这个正方形的什么?

  2.揭示圆的周长。

  (1)(课件演示小白狗围绕圆形跑一圈圆形的周长闪动黄色)要求这只小白狗所跑的路程实际上又是求这个圆的什么?(圆的周长,揭示课题)你能说说什么叫圆的'周长吗? (教师完成板书,学生读书)

  (2)同位用自己带来的圆形实物互相口述圆的周长。

  二、探索圆周长与直径的关系

  1、动手操作,合作交流。

  师问:我们知道了什么叫圆的周长,那么怎样测量圆的周长呢? 可以用什么工具来测量?

  ①请同学们拿出你们带来的测量工具,以四人小组为单位,想办法测量你手中圆的周长并做好填表记录,(边量边交流测量方法)让我看哪个小组做得最棒。(教师巡视操作过程)

  周长(C)直径(d)周长与直径的关系( )

  ②请四人小组上台演示操作过程,边操作边说方法。

  2、探索圆周长与直径的关系(课件演示填表)

  (1)请同学们看屏幕的表格,认真观察比较一下,想一想圆的周长跟什么有关系?

  (2)讨论:究竟圆的周长与它的直径有什么关系呢?

  (小组汇报)引出圆周率

  任何圆的周长总是它的直径长度的3倍多一些。(板书)

  3、揭示圆周率的概念。

  (1)师:科学家的大量准确测量和精确计算得出,表示这个3倍多一些的数,是一个固定不变的数,这个固定不变的数叫什么?请自学99页第二自然段。(叫做圆周率)什么叫圆周率呢?用哪个字母表示。谁能说一说(指导读写π。)

  (2)了解圆周率的历史。(课件演示圆周率的历史,对学生进行思想教育和爱国主义教育。)

  关于圆周率还有一段历史呢。请同学们打开书看99页下面小的方字,想:通过看书你知道了什么? 我国古代著名数学家祖冲之在计算圆周率方面做出了什么贡献?这个结果比外国数学家得到这个结果整整早了一千多年,可见我国古代人民的智慧和力量。但随着科学技术发展,外国数学家利用计算机已经计算到小数点后一亿多位,我国现在又落后了。哪我们还有机会超过外国人吗?没错只要我们努力学习将来一定会让中国走在世界前列。

  (3)推导圆周长的计算公式。

  (1)师:通过刚才的探索,我们已经知道圆的周长与直径的关系了,你能推导出圆周长的计算公式吗?(小组讨论)

  (2)学生汇报讨论结果,板书:圆的周长=直径×圆周率

  那么要求圆的周长,你必须知道什么?(直径或半径)你会求吗?

  4. 应用圆的周长公式,解决简单的应际问题。

  出示例1(学生自学并独立完成)。教师检查自学情况,请一名同学上台板演。教师评点。

  5看书、质疑

  (1)若将例1的直径改为半径,会求它的周长吗?

  (2)及时反馈,完成第100页(练一练1、2)。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.解答练习二十一第2题(课件演示)

  3.测量一圆形实物直径,计算它的周长。

  4、扣展练习

  (1)画一个周长12.56厘米的圆

  (2)思考题。(课件出示两只蜜蜂分别在一个大圆和两个小圆上走一圈)大圆的周长和两个小圆的周长之和同样长吗?为什么?

  四、总结全课,学生互评。

  这节课你学到了什么?谁的表现最佳?

  板书设计:

  圆 的周长

  围成圆的曲线的长叫做圆的周长

  任何圆的周长总是直径的3倍多一些(圆周率)

  例1、一块圆形铝片的直径是5厘米,它的周长是多少?

圆的周长教学设计2

  【教学资料】

  课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

  【教学目标】

  1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

  2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

  3、培养学生创新思维潜力。

  4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

  【教学重点】

  探索圆的周长公式

  【教学难点】

  对圆周率π的理解

  【学具准备】

  每四个学生一组

  1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

  2、直尺一把

  3、细绳一条、两根长31.4厘米的细铁丝

  4、实验表格

  5、计算器

  【教具准备】

  实物投影议、电脑

  【教学过程】

  一、设疑导入、培养创新意识

  1、电脑演示:有甲、乙两学生争论。

  甲说:“我脑袋大。”

  乙说:“我脑袋比你在大。”

  师:“如果你是裁判员应如何评判,两人才能都服气?”

  2、学生四人小组讨论

  请学生说一说自己的方法

  甲生:“看谁的脑袋大。”

  师:“如果看不出来怎样办?”

  乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

  师:“十分好!很有创意。”

  丙生:“用绳绕头一周,测量绳的长度。”

  师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

  二、动手尝试操作,探求新知

  1、动手尝试操作

  (1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

  圆的周长c(厘米)

  直径d(厘米)

  周长÷直径(c÷d)

  1

  2

  3

  4

  (2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

  讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

  (3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

  2、探索规律

  (1)师将填好的实验表格在实物投影议上出示。

  学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

  (2)思想教育

  师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

  教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

  师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

  生:“不能”。

  师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

  (3)推导圆周长公式

  师:“从公式看出,明白什么条件能够求出圆周长?”

  生:“直径、半径。”

  师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”

  三、圆周长公式的应用(尝试练习)

  1、出示例1

  学生尝试练习,找学生板演,师生共同讲评。

  2、完成例1下面的“做一做”。

  3、出示例2

  学生尝试练习,找学生板演,师生共同讲评。

  4、完成例2下面的“做一做”题目。

  5、第8页练习二的1、2、3题。

  四、再次尝试操作、第二次创新

  1、求出人脑袋的横切面的半径

  (1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?

  (2)四人一组互相合作,动手测量,计算时可利用计算器。

  (3)将运算的结果对全班公布,并说明理由。

  2周长相等的正方形、圆,谁的面积大

  (1)组织学生将长为31.4厘米的'铁丝折成正方形和圆形,比一比谁的面积大?

  师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

  (2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

  五、全课小结

  1、这天我们学习了什么资料?

  2、经过这节课的学习,你有什么收获?

  3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

  六、作业

  第9页练习二中的第9、10、11题。

  板书设计

  圆的周长

  围成圆的曲线的长叫圆的周长

  c=πdc=2πr

  例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (生板演)3.14×0.95

  =2.983

  =2.98(米)

  答:这张圆桌面的周长约是2.98米。

  例2、一个圆形水池,周长是37.68米。它的直径是多少米?

  (生板演)解:设水池的直径是X米。

  3.14×X=37.68

  X=12

  或:37.68÷3.14=12(米)

  答:水池的直径是12米。

圆的周长教学设计3

  一,指导思想和理论依据:

  新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。

  根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。

  二,教材与学习分析:

  教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。

  三,教学目标,关键和难点:

  1,知识和技能:

  学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。

  2,工艺和方法:

  (1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。

  (2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。

  3,情绪和态度:

  (1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;

  (2)结合引进pi,使学生受爱国科学精神的教育。

  (3)在解决问题的过程中,增强意识的应用。

  教学重点:

  学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的`计算方法。

  理解pi。

  教学准备:

  ⒈圆形对象实物,课件。

  ⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。

  四,教学方法:

  1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。

  2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。

  五,主要教学环节和设计:

  通过以下链接教授本课:

  一,创造形势,初步认识

  二,合作交流,探索新知识

  三,实际应用,解决问题四,谈论收获,课外推广

  六,教学过程:

  第一个链接:创建情境,初步感觉的分裂:

  哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。

  老师:了解如何计算今天的圆周长。

  这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。

  第二环节:合作交流,探究新知识

  (A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。

  1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。

  2,分析矩形,正方形和圆周的圆是否不同?

  3,指的是手指,他们自己手在圆片的圆周上的描述。

  设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。

  (B)探讨计算方法的周长

  圆周计算公式中扣除这个内容,我安排了三个链接:

  1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?

  预设几种情况:

  (1)滚动用绳子包起圆圈并拉直;

  (2)折叠圆纸几次,然后测量计算;

  总结:以上几方法律是改变歌曲是直的。

  课件展示地球图片。

  如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。

  设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。 2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。

  (1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。

  老师:圆的圆周是否与它相关?

  圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。

  (2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。

  老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?

  请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。

  面板报告:

  健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。

  老师:通过计算你发现什么?

  健康:每个圆的圆周是其直径的三倍。

  问题:它不是所有的圆周和它的直径有这种关系吗?

  最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。

  老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?

  健康:

  老师:你对pi有什么认识?

  这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)

  设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。

  (3)得出结论:你知道计算方法的周长吗?

  健康:知道。黑板公式:c =πd,c =2πr

  设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。

  第三环节:实际应用,解决问题

  这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。

  1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。

  2,设计三者有一定的实践梯度:①d = 5米,c =?

  ②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?

  ①π= 3.14()

  ②大圆的圆周小于小圆的圆周。 ()

  ③圆的圆周是其半径的2π。 ()

  意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。

  第四个链接:谈论收获,课外推广操作:

  赤道象地球带,长约40,000公里。你知道地球的半径是多少?

  设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。

  你有什么?(引导学生学习内容,学习方法,情感体验等)。

  七,黑板设计:

  圆周

  圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)

  C =πdA:车轮向前滚动一周,行驶62.8英寸。

圆的周长教学设计4

  【教学目标】

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  5、培养学生的观察、比较、分析、综合及动手操作能力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、问题导入

  同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。

  二、探究新知

  看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)

  同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。

  请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。

  请同学们拿出你手边的圆,同桌互相指一指它的周长吧。

  三、合作探究

  老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!

  好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。

  老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。

  四、找出关联

  同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。

  我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?

  五、合作解疑

  请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。

  好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)

  好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的.同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。

  请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。

  六、知识渗透

  说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。

  七、公式推导

  既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。

  请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。

  八、解决问题

  1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。

  2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)

  这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。

  3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?

圆的周长教学设计5

  设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  教学内容:

  《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》

  学情与教材分析

  本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  教学目的

  1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。

  2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。

  3、在探究中体验成功,增强信心。

  4、结合圆周率的教学,激发学生的爱国热情。

  教学准备

  老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  教学过程:

  一、创设情境,导入新课

  1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。

  2、想一想

  (1)要求轿车所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?

  (2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。

  3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?

  【设计意图:利用课件演示,引导学生逐步认识圆的`周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】

  二、引导探索,展开新课。

  1、感知、测量:用手摸圆的一周<纸剪的圆>

  (1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?

  (2)利用学具操作,用不同方法测量圆的周长。

  (3)想一想:用这些方法测量圆的周长有什么共同特点?

  [设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]

  2、合作研究:圆的周长与直径有什么关系?

  (1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的周长吗?圆的周长可能与它们有关?

  (2)比一比:同桌合作,用绕圆一周的彩带跟学具的圆的直径比一比,看它们有什么关系?

  (3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。

  【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】

  (4)、议一议:计算结果有不同,你发现了什么?

  (5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?

  【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】

  3、认识圆周率

  (1)揭示圆周率的概念

  这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。

  指导读写

  (2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。

  4、推导圆的周长的计算方式

  (1)问:已知一个圆的直径,该怎样计算它的周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

  (2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r

  (3)问:转动木条形成的圆的周长你会求吗?

  (4)小结:要求圆的周长,一般需要知道它的直径或半径。

  【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】

  三、初步运用,巩固新知

  1、辨析、判断<课件>

  (1)圆的周长是它直径的3倍多一些 ( )

  (2)圆的周长是它直径的3.14倍 ( )

  (3)圆的周长是它直径的∏倍 ( )

  2、教学例1 <课件>

  (1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?

  (2)学生尝试,反馈评价。

  3、完成第91页中间的“做一做”。

  【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】

  四、全课总结、

  1、请学生说说收获。

  2、回放两车比赛的课件;算一算,哪辆车跑的路程长?

  3、生活中的数学

  师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)

  设计思路

  着名教育学家布鲁纳指出“探索是数学的生命线”。本设计求为学生创设“探究——发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华。

  一、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,

  是一种“再创造”的过程,在这个过程中,实践操作是最基本、最重要的手段和方法之一。本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  二、在探究中发现

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过量一量、想一想、猜一猜等活动,让学生在亲身经历数学知识的操究过程中发现知识、理解知识、应用知识。这样学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  三、在经历圆周率的研究历史中,渗透数学文化和数学思想。

  在教学设计中,学生通过动手实验,得出圆的周长和直径的比值,进而介绍祖冲之的研究成果,最后,介绍看守代关于圆周率的研究成果。在这个过程中,使学生经历了圆周率的研究史,渗透数学文化和数学思想方法。同时,使学生产生情感的共鸣、丰富学生的情感体验,发展学生的情感、态度和价值观。

  四、在实践中体会到知识的价值

  在教学设计中,让学生用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  作者简介:

  郑蓉,现任教于浦城县新华小学,1971年出生,大专学历,小学高级教师,担任校数学教研组组长,县学科带头人。

圆的周长教学设计6

  一、教学内容:

  圆的周长计算方法与应用

  二、教学目的:

  1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作能力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  三、教学重点:

  1.理解圆周率的意义。

  2.推导出圆的周长的计算公式并能够正确计算。

  四、教学难点:

  理解圆周率的意义。

  五、教学过程:

  (一)创设情境,引入新课

  1、用多媒体出示:龟兔赛跑路线图。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

  b.什么是圆的周长?请你摸一摸你手中圆的周长。

  3、师:今天我们就来研究圆的周长。并出示课题。

  (二)引导探究,学习新知

  1.推导圆的周长公式

  (1)学生讨论

  a.正方形的周长跟什么有关系?有什么关系?

  b.你认为圆的周长和什么有关系?

  (2)猜测

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?

  (3)动手操作

  a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

  师:看哪一组配合好,速度快,较精确。开始!

  b.汇报小结。

  师:用实物投影展示整理的表格。

  师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?

  2.认识圆周率、介绍祖冲之

  (1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14

  (2)介绍祖冲之

  3.归纳圆的周长公式

  (1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  师板书:C=πd

  (2)圆的'周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr

  师问:圆的周长分别是直径与半径的几倍?

  (三)巩固应用,强化新知

  1.求下面各圆的周长。

  1)d=2米2)d=1.5厘米

  2.求下面各圆的周长。

  1)r=6分米2)r=1.5厘米

  3.判断题

  (1)π=3.14 ( )

  (2)计算圆的周长必须知道圆的直径( )

  (3)只要知道圆的半径或直径,就可以求圆的周长。 ( )

  4.选择题

  (1)较大的圆的圆周率( )较小的圆的圆周率。

  a大于b小于c等于

  (2)半圆的周长( )圆周长。

  a大于b小于c等于

  5.课堂反馈

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  6.实践操作

  请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。

  (四)课堂总结,梳理知识

  师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

  反思:

  “圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。

  1.动手实践,探究圆周长的测量方法。

  怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。

  当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。

  学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。

  2.探究圆周长与直径的关系,寻找圆周长的计算方法。

  在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。

  学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。

  在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。

圆的周长教学设计7

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义。

  2.通过对比分析掌握圆周长的计算公式。

  3.能用圆的周长的计算公式解决一些简单的数学问题。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:推导圆的周长的计算公式,准确计算圆的周长。

  难点:理解圆周率的意义。

  【教学过程】

  一、情景引入

  出示一块钟表

  问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

  学生猜想。

  教师演示小秒针的运动过程,证实学生的猜想是否正确。

  问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

  生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

  师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

  (设计目的:通过学生身边的实物引入新课,能充分的.调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  二、动手量一量

  学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

  物品名称

  周长

  直径

  1号圆

  2号圆

  3号圆

  4号圆

  教师评价学生小组合作的情况。

  (设计目的:强调学生的小组合作意识)

  师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

  学生展示小组的成果。

  (设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

  三、对比分析

  师:观察一下我们得到的几组数据,你发现什么规律了吗?

  学生自由谈。

  学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

  师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

  课件展示圆的周长的测量方法。

  (设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

  课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

  (设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

  小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

  你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

  学生自由谈。

  我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计目的:通过学生讲故事渗透爱国主义思想)

  小结2:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  圆的周长(用字母C表示)计算公式:C=πd或C=2πr

  四、动手做一做

  下面我们来看看怎样应用圆的周长计算公式来解决问题。

  1.计算圆的周长

  实物投影展示学生的解题过程

  (设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

  2.一个圆形喷水池的半径是5m,它的周长是多少米?

  (设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

  3.小组交流错误原因。(可让其他学生避免同样的错误)

  (设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

  4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

  (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

  五.你能说说在这一节课中你有什么收获吗?

  可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

  六、课外合作:

  小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

  (设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

圆的周长教学设计8

  一、教学目标:

  1.知识目标:在具体的情境中,结合已有的知识经验认识什么是圆的周长。

  2.能力目标:通过测量和计算,了解圆的周长与直径的比为定值,推出圆的周长计算公式,并会运用公式解决现实问题。

  3.情感目标:在观察、实验、猜想、验证等活动中,渗透解决问题的一般方法,进一步展学生的转化策略和推理能力;结合圆周率的学习,对学生进行爱国主义教育。

  二、教学重、难点:

  重点:推导并总结出圆周长的计算公式。

  难点:深入理解圆周率的意义。

  三、教学准备:

  电脑课件、一元硬币、茶叶筒或易拉罐、圆形硬板、纸杯、直尺、水彩笔、细线、小组测量记录表、计算器、剪刀、三角板

  四、教学过程:

  (一)、创设情境,引起猜想:

  1.复习长方形、正方形周长公式。讨论正方形周长与其边长的关系:

  长方形周长=(长+宽)×2正方形周长=边长×4教学反思:应温故知新,注意知识点掌握的连贯性,同时为讲解圆的周长做铺垫。

  2.激发兴趣

  出示课件:同学们,我们已经认识了美丽的图形圆,什么是圆的周长?周长和圆的直径有什么关系呢?

  (1)我们的村长在卖村里的树的时候,他用手拃一拃树的周长,就能知道树的直径,估计出树的体积,他是怎样算出直径的呢?同学们想知道吗?今天我们就来探究一下,看看会有什么收获。

  (2)看这是圜丘坛俗称祭天台,及细观察,共有三层。上层直径30米,中层50米,下层70米。你发现了什么信息?根据这些信息你能提出什么问题?

  3、认识圆的周长

  圆的周长又指的是什么意思?(围成圆的曲线的长)出示课件

  从准备的一元硬币、茶叶筒、易拉罐、纸杯、圆形硬板等物品中找出一个圆形来,并指出这些圆的周长。

  4.讨论正方形周长与其边长的关系

  (1)根据已学知识总结正方形的周长总是边长的几倍?

  出示课件:正方形周长=边长×4

  正方形周长÷边长=4(固定值)(2)那么圆的周长与什么有关系呢?

  5.讨论圆周长的测量方法

  (1)讨论方法:刚才我们已经解决了正方形周长的问题,可以测量再计算;而圆的周长呢?各小组同学选出你手中的一个圆形物品来试一试,测量圆的周长,看看你们有哪些好的方法?

  (2)汇报交流总结:

  ①“绳绕法”——用细线缠绕实物圆一周并打开,然后再把绸带拉直测量长度;

  ②“滚动法”——把实物圆沿直尺滚动一周,数出直尺上的刻度差

  ——还可以先用水彩笔在硬币的圆周长上涂上颜色,然后将硬币在纸上沿直尺滚动一周,测量纸上留下的痕迹的长度;

  ③“剪圆”——先用剪刀沿着纸杯圆口剪下一条,剪得越细越好,

  然后测量纸条的长度;

  (3)小结各种测量方法:把曲线化成直线进行测量是我们数学中常用的方法。

  出示课件

  转化曲→

  直

  (4)创设冲突,体会测量的局限性

  刚才大屏幕上圜(yuán)丘坛有三个圆,这三个圆的周长还能用刚才的方法进行实际测量吗?(不能)那怎么办呢?有没有一种更为简单的方法呢?(5)明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。出示课件:圆周长的计算方法6.合理猜想,强化主体:

  (1)我们能不能像求正方形周长那样找到求圆周长的一般方法呢?正方形的周长与它的边长有关,而且周长总是边长的4倍;你认为圆的周长与它的什么有关?(半径、直径)向大家说一说你是怎么想的?(2)正方形的周长总是边长的4倍,再看这幅图,出示小黑板,猜猜看,圆的周长大概应该是直径的几倍?说明道理:(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)(3)小结并继续设疑:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?出示课件:圆周长÷直径=?

  老师请各小组讨论:要想研究圆的周长与直径的倍数关系需要做哪些工作?根据学生的'回答老师出示探究建议:①测量圆的周长和直径;②记录数据;③进行计算;④得出结论。

  (二)实际动手,发现规律:

  (1)明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,每组同学可以从桌上物品中选出2-3个圆形进行测量,把数据和结论填入表格里,组长记录并计算,其他组员测量,最终求出一个平均值。

  (2)学生动手操作,教师巡视指导。(3)集体反馈数据(选取3~4组实验结果)2.发现规律,初步认识圆周率

  (1)看了几组同学的测算结果,你有什么发现?

  (2)虽然倍数不大一样,但周长大多数是直径的几倍?刚才同学们已经对大小不同的圆进行了比较准确的测算,能够得出一个什么结论?

  出示课件:三倍多一些。 3.介绍祖冲之,认识圆周率

  (1)到底是三倍多多少呢?早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,而这个值就是圆周率,知道他叫什么吗?请同学们看一段资料:

  出示关于圆周率的资料。

  (2)看后激励:同学们今天自己动手也发现了这一规律,老师相信同学当中将来也会产生像祖冲之一样伟大的科学家。(3)了解误差

  我们将为我们班有像祖冲之一样伟大的科学家而感到骄傲,可不知同学们想过没有,为什么我们现在的测算结果都不够精确呢?那是因为测量和计算过程中存在着误差:

  如:测量误差、读数误差、尺子刻度不一致、细线弹性不一致等等,通过这段文字资料你能确定圆周率的值了吗?圆周率是一个无限不循环小数,用希腊字母π表示,实际计算中π取近似值3.14。

  出示课件:圆周率用π表示,π=3.141592653……

  实际计算中π≈3.14 4.总结圆周长的计算公式

  (1)如果知道圆的直径,你能计算圆的周长吗?追问:那也就是说,圆的周长总是直径的多少倍?(π倍)

  出示课件:圆周长÷直径=π(圆周率)

  圆周长=直径×圆周率C

  =

  π d(2)如果知道圆的半径,又该怎样计算圆的周长呢?板书: C

  = 2πr (三)、巩固应用,形成能力1.判断

  a.圆周率就是圆的周长除以直径所得的商。()b.圆的直径越长,圆周率越大。()c.π=3.14()2.计算:出示课件:分别求d=4厘米、r=1.5分米圆的周长3.解决实际应用

  (1)一辆自行车车轮的直径是0.6米。车轮滚动一周,自行车前进多少米?

  (2)摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?

  (3)一个木桩的横截面周长是37.68厘米。它的直径是多少厘米?(四)、课内小结,扎实掌握

  (1)通过今天的学习,你有什么收获?

  (2)现在知道老村长是怎么求出树的直径了吗?

  (五)、课外引申,拓展思维

  出示课件:小明的妈妈在自家的墙根下建了一个花坛(如图)。你能计算出花坛的周长吗?

圆的周长教学设计9

  课时目标:

  ⒈理解圆的周长和圆周率的含义,初步理解和掌握圆的周长的计算公式,并能正确计算圆的周长。

  ⒉培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。

  ⒊结合祖冲之的资料,对学生进行爱国主义的教育。

  重点:

  理解并掌握圆的周长的计算方法

  突破方法:

  让学生利用实验的手段,通过测量、计算、观察发现圆的周长和直径的关系,理解并掌握圆的周长的计算方法

  难点:

  理解圆周率的意义

  突破方法:

  观察交流实验报告单,发现规律,理解圆周率的意义

  教学过程:

  一、复习:

  1、老师在黑板上画了一个长方形和一个正方形,谁能用红笔描出它的周长并写出字母表示其周长公式。

  2、当你看到这两个周长公式时,你们发现了什么?

  生:长方形的周长与长和宽的和有倍数关系

  正方形的周长与边长有倍数关系

  3、那就说明我们研究长方形或正方形的周长时,主要考虑两个方面:

  它与什么有关?有什么样的关系?

  今天我们就带着这样的问题来学习圆的周长(板书课题)

  二、新授:

  1、师出示一个圆,请大家看,老师手里有一个圆,你知道圆的周长是指的哪部分吗?

  谁来动手摸一摸,指一指

  那么什么是圆的周长呢?圆是由什么线围成的?课件展示什么是圆的周长。

  板书:围成圆的曲线的.长是圆的周长

  2、今天老师带来一些圆,请你们各个组来测量这些圆的周长,不管用什么样的方法,只要能够得到圆的周长就可以了,请你们一律用厘米作单位,我们每个小组桌上都有一张小表格,请你们将测得的周长填在第一栏里,请小组分工合作。

  师:你们是怎样测得圆的周长呢?哪位同学到前面来给大家讲一讲,同时演示。

  (一) 用卷尺直接绕圆一圈(卷尺与起点重合)

  (二) 把圆放在直尺上滚一圈得到圆的周长.(在圆上固定一点,在尺子上滚动)

  (三) 拿线绕圆一周,再将线拉直,量出线的长度就是圆的周长.

  (学生在演示时,老师主动说我来帮你,你也是在小组合作中完成的)

  那刚才我们同学不管是通过绳子还是把圆放在尺上滚得到圆的周长,最后都是测量一条直的线段的长,但我们开始已经知道圆的周长是一条曲线的长,这就说明我们是把曲线化为一条直线段来测量,那是不是所有的圆都可以用这个方法来测量它的周长呢?想一想,为什么?

  (生:不行,有的圆特别小,不好滚动,有些特别大)

  师:如我们转动的吊扇、转动的摩天轮,它在转动时也是形成一个圆,但这个圆能通过刚才的方法来测量它的周长呢?(不能直接测量)那看来,我们刚才所有的测量周长的方法都有一定的局限性。

  看来,我们也需要像研究长方形和正方形一样来找到一种作为普遍的公式能够直接计算周长,那现在大家想一个问题:圆的周长与什么有关(请大家认真看屏幕)通过观察这三幅图,你发现了什么?

  (直径越长,周长越长)

  看来直径确实能决定圆的周长,是这样吗?

  请同学们继续刚才的测量,先前已经得到圆的周长,接下来我们来测量圆的直径,找出圆的周长和直径的关系。

  请同学们继续合作,把桌上的表格填好(注意,周长除以直径,如果除不尽时保留两位小数。)

  (有人测量、有人计算、有人填表,分工非常明确)

  填完之后,小组内同学互相说说,你们发现了什么?

  哪个小组最快填完,老师把这一组的结果填在黑板上。算完之后,请你们仔细看看,有没有算得跟这个组不一样的。(生:有)

  师:这是什么原因呢?是我们计算不对吗,还是别的原因呢?(误差)那你们小组讨论出的结论是周长与直径有什么关系呢?

  (生:每个圆的周长都是它直径的三倍多一些)

  是不是所有的圆,它的周长都是直径的三倍多呢?

  请大家看大屏幕,这是我们三个直径不同的圆,让我们看看它们是不是也有我们同学刚才所说的倍数关系呢?

  (动画的形式,演示圆的周长与直径的倍数关系)

  看来,我们同学得到的结论是正确的,确实每个圆的周长都是它直径的三倍多一些,说明圆的周长与直径确实有倍数关系,我们把这个固定不变的倍数叫做圆周率,用字母“π”表示,(板书)请大家看屏幕,这里是有关于圆周率的介绍(出示课件)

  看完这段话,你们有什么感想?(古代有无数的数学家为此付出了很多的心血,为我们古代数学家感到自豪,为我们的民族感到骄傲)

  现在请同学们打开数学书第63面中间一段文字,看完之后,还有什么新的收获(还知道关于圆周率的什么知识)圆周率是一个无限不循环小数,在实际应用中一般取它的近似值为3.14。

  现在同学们知道怎样来计算圆的周长吗?有公式吗?

  如果用C表示圆的周长,就有:

  C= πd 或C= 2πr

  这两个公式都可以用来计算圆的周长

  三、巩固练习

  1、求下面各圆的周长:

  ①直径为6㎝ ②半径为5㎝

  2、接下来,咱们去生活中看看,能不能利用我们刚才学到的知识去解决生活中的问题呢?

  出示例1:一辆自行车轮子的半径大约是33㎝,这辆自行车轮子转一圈,大约可以走多远?(结果保留整米数)小明家离学校1㎞,骑车从家到学校,轮子大约转了多少圈?

  3、判断练习:

  (1)只要知道圆的直径或者半径就可以求圆的周长()

  (2)π=3.14()

  (3)大圆的圆周率比小圆的圆周率大()

  (4)圆周率就是圆周长除以直径的商()

  (5)圆周长是半径的2π倍 ()

  四、总结:这节课我们学习了很多有关圆的周长的知识,那你们说说都有什么收获?

  生:答

  师:同学们有收获,就是老师最大的收获。

  板书: 圆的周长

  围成圆一周的曲线的长叫做圆的周长

  周长 直径周长/直径的比值 圆周率π

  (保留两位小数)

  38 12 3.17C= πd

  258 3.133倍多一些 或C= 2πr

  196 3.17

圆的周长教学设计10

  【教学目标】

  1、让学生明白什么是圆的周长。

  2、理解并掌握圆周率的好处和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

  5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、培养学生的观察、比较、分析、综合及动手操作潜力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、激情导入

  1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

  2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

  二、探究新知

  (一)复习正方形的周长,猜想圆的周长可能和什么有关系。

  1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

  2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

  3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

  4、猜想:你觉得圆的周长可能和什么有关系?

  (二)测量验证

  1、教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

  2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ②观察数据,比较发现。

  提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  3、比较数据,揭示关系

  正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

  (三)介绍圆周率

  1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

  2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

  3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

  圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

  (四)推导公式

  1、到此刻,你会计算圆的周长吗?怎样算?

  2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的`∏倍,是一个固定不变的数。

  3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

  三、运用公式解决问题

  1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、钟面直径40厘米,钟面的周长是多少厘米?

  4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  四、课堂小结

  透过这节课的学习你想和大家说点什么?

  这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。

圆的周长教学设计11

  教学目的

  1、理解圆周率的意义。

  2、理解周长的概念,并掌握圆周长的计算公式和推导过程。

  3、能运用公式求圆的周长或直径、半径。

  重点

  圆的周长计算公式的推导,能利用公式正确的计算。

  难点

  深入理解圆周率的意义及圆周长计算公式的推导。

  教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格

  一、复习导入(4分钟)

  (一)出示菜板和圆桌图

  师:

  1、这两个都是什么平面图形

  2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)

  3、还有什么不同?(圆的大小不同,圆的半径不同)

  4、也可以说是圆的直径不同。

  (二)出示图与对话框

  师:

  1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)

  2、问:铁皮的长度实际上就是圆的什么?

  预设:

  1、圆一周额长度(这个长度就是圆的周长)或

  2、圆的周长。

  二、新课教授

  (一)活动一:摸圆的周长(3分钟)

  师:

  1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。

  2、从哪里开始到哪里结束?

  预设:

  1、从这个地方开始,也在这里结束。

  2、小结:起点和终点是同一点。

  3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)

  4、围成圆的一周的曲线的长是圆的周长。

  (二)活动二:周长的测量(4分钟)

  师:

  1、曲线图形的周长你会测量吗?(不会)

  2、同方谈论一下,你想要怎样测量。

  3、1生说绕绳法。他的.方法听懂的举手。

  预设:

  1、听懂人多,师演示一下。

  2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。

  师:

  1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。

  2、教师观察指导。

  (三)汇报演示(4分钟)

  师:

  1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。

  2、这个办法有什么缺点?(不精确会产生误差)

  3、除了这个方法还有没有其他办法?

  预设:

  1、生能主动说出。

  2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)

  3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。

  师:

  1、生自己操作

  2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。

  3、测量中英注意什么?有误差吗?听懂的同学举手。

  4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)

  (四)动图播放绕绳法和滚动法

  1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。

  2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。

  3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)

  4、为什么?(圆的大小或圆的半径、直径不一样)

  三、猜想并探索(15分钟)

  (一)猜想(4分钟)

  1、直径不一样周长就不一样,那周长和直径有什么关系呢?

  2、你想把周长和直径怎样比?(周长除以直径、周长减直径)

  3、可以研究周长和直径吗?(不可以,每依据)

  4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)

  5、用你想用的方法研究一下周长与直径的关系。

  6、生在黑板上记录“周长÷直径”、或“周长减直径”。

  (二)探索(8分钟)

  1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。

  2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。

  3、它叫圆周率,读作π,通常计算式取3.14。

  (三)公式推导(3分钟)

  1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)

  2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?

  3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)

  四、巩固练习(10分钟)

  (一)基础题一道

  (二)能力提升两道

  (三)拓展题一道

  五、课后作业布置

圆的周长教学设计12

  教具、学具准备:

  多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。

  教学过程:

  一、 认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?

  (生齐鼓掌!)

  师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?

  (围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?

  (板书课题:圆的周长)

  (4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  二.测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)

  (2)师:除此以外,还有别的方法吗?

  方法二:把圆放在直尺上滚动一周。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的`长就是什么……?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

  三、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的什么有关系?

  (圆的周长与直径有关系。)

  师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。

  (生实际测量、计算、填表)

  3.展示汇报

  师:哪一个小组愿意来汇报你们的数据。

  师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)

  师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?

  4.揭示规律

  师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!

  屏幕出示图3:

  师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?

  (圆的周长总是它直径的3倍多一些)

  师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。

  5.介绍小知识。

  师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)

  五、揭示圆的周长计算公式

  师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?

  (测量出它的直径)

  师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)

  师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)

  (板书:C=πd)

  师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?

  (板书:C=2πr)

  练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?

  学生独立计算。汇报:唐老鸭跑的路程更远。

  六、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (课件出示)

  (1)学生独立完成,汇报,弄清列式的依据。

  (2)小结:已知直径求周长可直接套用公式。

  2.通过媒体演示指导学生完成"做一做"作业。

  饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?

  小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.

  五、总结,质疑,看书内化。

  师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。

  六、巩固练习。

  1.判断。

  (1)圆周率就是圆的周长和直径的比值。

  (2)π=3.14。

  (3)半径的长短决定圆周长的大小。

  (4)同圆中,周长是直径的π倍。

  2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?

  3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?

  4.求半圆的周长:d=6厘米(图略)

圆的周长教学设计13

  一、教学目标

  【知识与技能】

  掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

  【过程与方法】

  通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

  【情感态度与价值观】

  积极参与数学活动,培养学习数学的兴趣。

  二、教学重难点

  【重点】圆的周长的计算公式。

  【难点】圆的周长公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

  学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

  教师明确,圆一圈的长度即为圆的周长。

  引入课题——圆的周长。

  (二)探索新知

  1.探索发现

  学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

  学生汇报测量结果及测量方法。

  教师引导学生思考,圆的周长大小与什么有关。

  学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

  教师明确直径是半径的2倍,可看其中一项即可。

  2.探索圆的周长与圆的直径关系

  小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

  小组汇报分享测量结果,教师板书。

  学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

  学生汇报通过多次测量计算比值总在3.1左右。

  教师讲解:实际圆的`周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

  给出圆周率的特点:

  (1)是一个无限不循环的小数;

  (2)我国伟大的数学家祖冲之将其精确到小数点后七位;

  (3)现在为了方便只要取小数点后两位即可。

  (三)应用新知

  问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?

  教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

  (四)小结作业

  提问:通过本节课,你有什么收获?

  课后作业:回家找一个圆形,借助直尺测量,计算出周长。

  四、板书设计

  略

圆的周长教学设计14

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的`秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商.

  (2)圆的直径越大,圆周率越大.

  (3)圆的半径是3厘米,周长是9.42厘米.

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识。

圆的周长教学设计15

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  教学重点

  正确计算圆的周长。

  教学难点

  理解圆周率的意义,推导圆周长的计算公式。

  教具准

  多媒体课件三套、系绳的小球。

  学具准备:

  塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

  教学过程:

  一、以旧引新,导入新课

  1.复习长方形、正方形的周长。

  我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

  2.揭示圆的周长。

  (1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

  (2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

  二、动手操作,引导探索

  1.测量圆周长的方法。

  (1)提问:你知道了什么是圆的周长,还想知道什么?

  我们先研究怎样测量圆的周长,请同学们分组讨论一下。

  把你们讨论的结果向大家汇报一下?学生边回答边演示。

  (2)教师甩动绳子系的小球,形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

  2.认识圆周率。

  (1)探讨圆的周长与直径的关系。

  ①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

  请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

  课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

  提问:你们是怎么看出来的'圆周长跟直径有关系?

  ②学生测量圆周长,并计算周长和直径的比值。

  圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

  生测量、计算、填表。在黑板上出示一组结果。

  请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  ③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

  这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

  (2)揭示圆周率的概念。

  通过以上的观察你发现了什么?

  任何圆的周长总是直径的3倍多一些。

  那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

  (3)了解让中国人引以为自豪的圆周率的历史。

  关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

  很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……

  3.推导圆周长的计算公式。

  根据刚才的探索,你能总结出圆周长的计算公式吗?

  学生推导圆周长计算公式:c=πd;c=2πr。

  要求圆的周长,你必须知道什么?(直径或半径)

  4.运用公式计算。

  (1)求下面各圆的周长,只列式不计算。

  课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)

  (2)出示例1。

  ①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?

  ②学生尝试练习,反馈评价。

  ③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第112页“做一做”。

  (4)看书质疑。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.测量一圆形实物直径,计算它的周长。

  3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)

  四、总结全课,储存新知。

  这节课你自己运用了哪些学习方法,学到了哪些知识?

  五、思考题。

  课件演示:大圆的周长和两个小圆的周长之和同样长吗?

【圆的周长教学设计】相关文章:

《圆的周长》教学设计10-22

圆的周长教学设计09-06

《圆的周长》教学设计04-16

圆的周长教学设计05-10

《圆的周长》教学设计10-22

《圆的周长》教学设计06-21

(精华)圆的周长教学设计08-30

《圆的周长》数学教学设计05-07

圆的周长优秀教学设计03-08

数学《圆的周长》教学设计02-25