《找质数》教学设计

时间:2024-10-22 10:11:11 晶敏 教学设计 我要投稿

《找质数》教学设计(精选10篇)

  作为一名为他人授业解惑的教育工作者,有必要进行细致的教学设计准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。我们应该怎么写教学设计呢?下面是小编精心整理的《找质数》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《找质数》教学设计(精选10篇)

  《找质数》教学设计 1

  教学目标

  1、在用小正方形拼长方形的活动中,经历探索质数和合数的过程,理解质数和合数;

  2、能正确判断质数和合数;

  3、培养学生的动手能力,感受数学文化的魅力。

  教学重点:

  目标1

  教学难点:

  目标2

  教学课时:

  1课时

  一、复习导入

  师:同学们上新课之前我们先来复习一下上一节课的内容“找因数”,通过上一节课的学习,我们知道找因数的方法有哪几种?

  生:拼长方形和想乘法算式。

  师:是的,找因数的方法有两种,第一种是用拼长方形的方法。第二种是用想乘法算式的方法。现在请同学们翻开课本10页,用拼长方形的方法完成课本第10页的“拼一拼”,并把结果写在表格里。

  二、讲授新知

  活动一、自主探索,理解概念

  1、动手拼一拼:

  2、汇报交流

  3、师:请大家认真观察这些数的因数,你有什么发现?哪位同学愿意和大家分享一下你的发现。

  预设:有的数的因数就只有两个。(引导学生说出这两个因数是1和本身),而有的除了1和本身外,还有其他因数。

  师:观察得真仔细,同学们都是火眼金睛,真了不起!现在我们就把这些数按因数的个数来分一分。

  第一类:只有1和本身两个因数:2、3、5、7、11

  第二类:除了1和本身还有其他因数:4、6、8、9、10、12

  师:同学们,你们知道吗?数学家把这样的一类数叫做质数,把这样数叫做合数。(师板书)谁能说说什么叫质数?什么叫合数?(同桌交流)

  (学生概括)(多请几个学生来概括,加深印象)

  板书概念:一个数只有1和它本身两个因数,这样的数叫做质数。

  一个数,除了1和它本身还有别的因数这样的数叫做合数。

  (提示:质数只有这些吗?(不止)可以用省略号表示。合数只有这些吗?(不止)也可以用省略号表示。)

  师:刚才大家按因数的个数把数分为质数和合数,那1呢?1该怎么办呢?它是质数还是合数?

  生:1既不是质数也不是合数。

  师:是的,因为1只有本身一个因数,所以1既不是质数也不是合数。

  活动二、应用概念,进行判断

  师:在认识了质数和合数后。现在请同学们讨论一下:判断一个数是质数或者合数和什么有关呢?(引导学生从定义入手思考)

  生:因数的个数

  师:真棒,那到底应该怎样判断一个数是质数还是合数呢?有没有具体的方法呢?

  (预设:这个问题比较难,如果学生无法作答,可以引导学生从定义入手思考)汇报交流

  预设:

  生:一个数的因数只有1和它本身,找不到其他的因数了,这样的数就是质数

  生:一个数的因数除了1和它本身外,还能找到其他的因数,那这个数就是合数

  生:一个数除了1和本身外,只要能再找到一个别的因数就足以证明这个数是合数了。

  生:一个数只要能找到它的3个因数,就是合数了。

  师:同学们的`表现都很好!我们在判断一个数是否是质数时,只要找到能除了1和本身外,一个别的因数就可以证明这个数是合数了,如果找不到第三个因数,那么这个数就是质数了。

  现在请同学们判断一下下面这几个数哪些是质数,哪些是合数?

  12、25、29、51、60、216、513

  学生思考

  汇报交流(引导学生说出自己判断的方法:如可以结合2、3、5倍数的特征,从判断它是否是2、3、5的倍数入手)

  师:真聪明,通过这个练习,我们发现判断一个数是质数还是合数可以先用2、3、5倍数的特征来判断这个数是否有因数2、3、5,如果有的话那么这个数就一定是合数。如果用2、3、5还是没有办法判断的话,还可以用7、11这样比较小的质数去除一下,看他们是否具有因数7、11。掌握了这种方法后,我们再来判断几个数。

  13、21、30、31、77、83、218、711

  学生动手

  汇报交流(1-100的质数:2、3、5、7、11、13、17、19、23、27、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97)

  三、小结:通过今天的学习,我们认识了两位新朋友:质数和合数,也掌握找质数的方法。今天这节课老师感到很开心,因为我们班同学表现都非常好,让我们用掌声结束今天的课。

  (如果时间充足可以让学生谈收获)

  四、作业

  1、p11探索活动

  2、猜号码

  老师的qq;529a55bc,请同学们根据提示猜猜老师的qq号码。

  提示:其中①a既是偶数也是质数;②b是最小的合数;③c是10以内最大的质数。

  《找质数》教学反思

  《找质数》这一部分知识的内容与学生的生活经验联系不多,所以学生十分困难用自己的经验进行知识的建构。因此,为了在教学中使学生更加准确地理解质数、合数的概念,本节课的设计以数学活动为主。

  根据教材的特点及学生实际的情况,本节课我确定的教学重点是理解质数和合数,教学难点是正确判断质数和合数。

  教学中,在讲解难点时,我主要是让学生自己探索,通过拼长方形的方法找到1——12的因数,之后让学生观察这些数的因数的特点,最后让学生用自己的语言概括质数和合数。

  而在突破难点上,我先引导学生总结出判断一个数是质数还是合数的条件:除了1和本身外,是不是有第三个因数,如果有就是合数,如果没有就是质数。在学生认识这一点后,我便出示练习一,在练习一中的大部分数都是2、3、5的倍数,同时在学生汇报答案时,我又引导学生总结出找第三个因数的方法即根据2、3、5倍数的特征去找。在完成这个练习后,学生就掌握了找第三个因数的方法,也等于掌握了判断一个数是质数或合数的方法。

  本节课的不足:结合本节课的教学情况分析,本节课的第一个环节“用拼长方形”的方法找因数花费了太多时间,这直接导致后面的课有点紧,针对该问题,我觉得可以把这一活动放在课前预习,让学生在预习时先完成,然后再在课堂上交流。

  《找质数》教学设计 2

  教学目标

  1、通过拼长方形的活动,经历探究质数、合数的过程。

  2、理解质数、合数的意义。

  会正确迅速判断一个自然数是不是质数或合数。

  培养学习学习数学的兴趣

  内容分析

  教学重点:

  会正确迅速判断一个自然数是不是质数或合数。

  教学难点:

  理解质数、合数的意义。

  教学准备

  12个小正方形、学号卡片

  教 学 流 程

  个性化设计

  1、创设情景,导入新课

  师:同学们,我们生活在数学的世界中,在我们的周围能找到许多有意义的自然数,那么谁能很快说出一句含有自然数的`话?(要求后面的同学不要重复说过的数)

  生1:我叫王杰,今年12岁了。板书:12

  生2:再过几天,就是第23个教师节了,……板书:23

  生3:我们家一共有4口人。板书:4

  生4:我们学校一共有14位教师,其中有8位男教师,板书:14

  …………

  师:老师也说一句行吗?我儿子今年10岁了,板书:10

  师:同学们说了这么多有趣的自然数,谁能根据前面所学把这些数分类呢?(依据是否是2的倍数)板书:奇数和偶数

  师:关于自然数还有一种分类方法,大家想不想知道,……

  2、操作探究

  (1)拼长方形,完成如下表格:

  要求:分别用1、2、3、……、12个小正方形拼长方形能拼多少种?边操作边记录,完成表格。

  (2)小组交流,补充完善表格。

  (3)观察比较表中各数的因数,你发现了什么?记录下来。

  (4)全班交流、归纳。

  (5)师引出“质数、合数”的概念。板书:自然数(依据因数的个数)分为质数、合数和1三类。

  上节课大家已经尝试过用12个小正方形拼长方形,这节课继续拼长方形,找出1~12各个数的全部因数。并填入表中进行观察和分析。

  引导学生发现有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形。

  强调“1”不是质数,也不是合数。

  同桌合做完成课后习题,有困难的教师及时帮助。

  教 学 流 程

  个性化设计

  (6)比较:质数与合数有什么不同?

  思考:1为什么既不是质数也不是合数?

  3、巩固练习、强化新知

  (1)说一说 下面哪些数是质数,哪些是合数?

  1、9、8、0.2、11、13、1.2、15、0、16、10、4、18

  (2)议一议 下面的说法对吗?

  一个自然数不是质数就是合数;

  质数的个数是无限的;

  质数都是奇数;

  (3)想一想 在1-20中:

  既是质数又是偶数的是( )

  既是合数又是奇数的是( )

  既不是质数又不是合数的是( )

  自然数中最小的质数是( ),最小的合数是( )

  4、游戏

  学号是质数的同学请站起来,说一说为什么?

  学号是合数的同学请举起右手,说一说为什么?

  学号既不质数也不是合数的同学举起你的双手。

  最小的质数与最小的合数两位同学握一下手。

  《找质数》教学设计 3

  教学目标:

  1、在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

  2、能正确判断质数和合数。

  3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。

  教学重、难点:

  1、理解质数和合数的意义。

  2、能正确判断质数和合数。

  教学过程:

  一、复习。

  1、请学生说说找一个数的全部因数的方法。

  2、分别说出8、11的全部因数。

  二、探究新知。

  1、动手操作。

  请学生拿出准备好的'学具,按照教材第10页的要求完成表格。

  2、汇报。

  3、思考:

  观察所填表格上的数,有什么特点?

  (有的能拼一种,有的能拼两种,还有能拼三种的;能拼一种的对应的因数是1和它本身,能拼两种和两种以上的对应的因数除了1和它本身,还有其它因数。)

  4、根据分类揭示质数和合数的意义。

  根据2~12各数的因数特点进行分类,可以怎么分?

  学生交流,教师引导。

  将2、3、5、7、11这些数分为一类,像这样一个数的因数只有1和它本身的数叫做质数;

  将4、6、8、9、10、12这些数分为一类,像这样一个数的因数除了1和它本身外,还有其它因数的数叫做合数。

  数字1既不是质数也不是合数。

  三、讨论判断质数、合数的方法。

  1、尝试判断:2、13、51、37、52、93这些数中哪些是质数?哪些是合数?

  学生独立思考完成。

  2、交流判断方法。

  51、93是3的倍数,所以它们的因数除了1和它本身外还有3,所以是合数;

  52是偶数,它的因数还有2,也是合数;

  2、13、37这几个数除了1和它本身外,找不到第三的因数,所以是质数。

  3、归纳总结方法。

  只要找到除了1和它本身外的一个因数,这个数就是合数;

  除了1和它本身找不到其它因数,这个数就是质数。

  四、探索活动。

  教材第11页第1题。

  请学生用“筛法”找100以内的质数,引导学生有步骤、有目的地操作。

  教师介绍这种方法是两千多年前希腊数学家埃拉托斯特尼发明的,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机操作。这样可以使学生了解数学发展的历史,感受数学文化的魅力,丰富学生对数学发展的认识。

  教材第11页第2题。

  本题引导学生通过操作、观察、探索规律。

  第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?

  引导观察:第2、4、6列除2外,其它数都是2的倍数,这些数的因数除了1和它本身外,还有2,所以不是质数;第3列除了3外其它数都是3的倍数,所以因数还有3,也不是质数。

  第(3)题,用6除一个大于6的自然数,如果余数是0、2、4,那这个数肯定是2的倍数;如果余数是3,那这个数肯定是3的倍数。所以余数只能是1或5。

  五、小结。

  《找质数》教学设计 4

  一、教学目标

  1.在教学活动中,帮助学生理解质数和合数的意义。

  2.培养学生的观察、比较、抽象、概括能力。

  3.使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

  二、教材分析

  教材按前一节“找因数”的编写思路编写而成,用小正方形拼长方形的方法,引导学生认识质数与合数。教材“用12个小正方形拼长方形”作为示范,引导学生继续拼长方形,找出2—12各个数的全部因数,并填入表中进行观察和分析。引导学生发现有的只能拼成一种长方形,这样的数只有1和它本身两个因数,有的能拼成两种或两种以上的长方形,这样的数有两个以上的因数。在讨论交流的基础上,将这些数分为两类,以揭示质数与合数的概念,进而认识1既不是质数,也不是合数。

  三、学生分析:

  五年级每个班大约有六十名学生,这些学生大部分来自于学校附近小区居民的孩子,一小部分是借读生。由于受不同环境的影响,学生思维还是存在一定的'差距。在学习此部分内容时,大部分孩子都能很快理解并掌握。

  四、教学设计:

  (一)游戏引入新课

  师:我们一起来玩一个拼图游戏,你们愿意吗?下面我先说一说游戏的要求是:每个小组都有一袋大小相等的正方形,但是每个小组小正方形的个数都不一样,请你将袋中所有的小正方形拼成一个长方形或稍微大一点的正方形。比比哪个组设计的方案最多,请把你们的设计方案记录下来。

  (学生动手操作,教师巡视,纠正错误。)

  学生汇报,教师进行板书。学生汇报的内容可能如下:

  1 × 9

  9

  3 × 3

  1 × 24

  2 × 12

  3 × 8 24

  4 × 6

  师:那这个组就是咱们今天拼图比赛的设计冠军。你们同意吗?为什么?

  (有11块小正方形的小组不同意,因为只有一种设计方案。教师板书: 1 × 1111)

  师:还是这11块小正方形,大家帮助他们想想还有其他设计方案吗?

  师:哪个组也遇到了与他们组同样的困难?

  (板书:29、7、13、17。)

  师:为什么它们只有一种设计方案呀?(它们只有1和它本身两个因数)

  板书:29、7、13、17的因数。

  师:指合数说,为什么它们不是一种设计方案?(它们都有两个以上约数)

  师:如果重新比赛,让你们自己选择小正方形的个数,你们肯定不会选择哪些数?为什么不选择11、29、7、13、17呢?(因为它们只有两个因数)

  师:看来你们选择的标准是根据数的因数的个数,我这还有几袋小正方形,(出示信封1-12),请你马上写下它们的因数。

  板书可能的情况:1:1

  2:1,2

  3:1,3

  ·······

  12:1,2;2,6;3,4;

  师:请你仔细观察每个数因数的特点,并把这些数分类。

  (学生进行小组讨论,讨论后学生汇报的情况是:①按数自身奇偶性分类②按因数个数的奇偶性分类③按因数的个数分类。)

  师:根据第③种分类的方法,移动1~12这些数,将出现下面的分类。

  板书: 1 2 4

  3 6

  5 8

  7 9

  11 10

  12

  师:你能给这两类数取个名字吗?

  (学生起名,师提出质数与合数并板书)

  师:谁能用自己的话说说什么叫质数、合数?

  师:你们按因数的个数可以把这些数分成质数与合数,“1”怎么办呢?

  板书:“1” 既不是质数也不是合数

  师:你现在能迅速判断出一个数是质数还是合数了吗?

  (媒体出示一组数据)

  师:组内商量商量,你们组喜欢挑质数就把质数挑出来,喜欢挑合数就把合数挑出来。看哪个组挑的又快又准。

  (学生汇报,教师板书如下:质数: 2、3、23、31、37、41、47;合数:25、33、49、51、63、74、36、70;既不是质数也不是合数的:1)

  师:你们为什么都不挑1呀?

  师:(拿着1)1放在这边行吗?(指质数)放在这边行吗?(指合数)怎么办?为什么?

  师:刚才我发现有的组在选择合数时判断得非常快,能给大家介绍一下经验吗?

  生:一个数的因数除了1和它本身,再找到第三个因数就可以判断出这个数是合数。

  师:我们已经初步认识了质数和合数,接下来利用刚学过的知识做一个游戏,高兴吗?

  (二) 游戏活动

  1、 猜电话号码

  师:下面我们搞一个猜电话号码的活动,每个同学先听清楚要求,根据老师提示的要求从左到右写数,并认真做好记录。下面活动开始:

  ⑴10以内最大的既是偶数又是合数。

  ⑵10以内最小的既是质数又是奇数。

  ⑶10以内最小的质数。

  ⑷10以内最大的质数。

  ⑸10以内最小的合数。

  ⑹这个数既不是质数也不是合数。

  ⑺10以内最大的偶数。

  ⑻10以内最大的既是奇数又是合数。

  (学生汇报:电话号码是83274189)

  2、 自我介绍

  师:下面做的活动是自我介绍。根据自己的学号说说这个数的特性,能说多少就说多少?如:我是1号,1是奇数,它既不是奇数又不是合数;我是9号,它是自然数,整数,是奇数,又是合数。

  (学生开展小组内的自我介绍,然后安排班内的交流)

  我是20号。它是偶数,也是合数,既能被2整除,又能被5整除。

  (三)小结与质疑

  师:通过今天这节课的学习,你有什么收获?你还有什么要问的?

  (四)动脑筋出教室

  师:请最特殊的数出教室(1号)请既是奇数又是合数的出教室;请质数出教室;请既是偶数又是合数的出教室。

  五、教学反思

  “找质数”这一部分知识的内容与学生的生活经验联系不多,所以学生十分困难用自己的经验进行知识的建构。因此,为了在教学中使学生更加准确地理解质数、合数的概念,本节课的设计以数学活动为主。

  在数学活动中,学生通过观察,试验,归纳获得数学猜想,并进一步证明,能有条理地表达自己的思考过程,认识数学与生活的联系,体验数学活动中的探索与创造,感受数学的严谨及数学结论的确切。

  《找质数》教学设计 5

  教学目的:

  1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

  2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。

  3.使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创。造。

  教学重点:

  在教学活动中,帮助学生理解质数和合数的意义。

  教学难点

  培养孩子的观察,通过探索找出寻找质数的简单的方法。

  教具准备:

  投影仪、小正方形纸片等。

  学具准备:

  小正方形纸片、方格纸等。

  教学过程:

  一、揭示课题:

  师:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找因数。

  板书课题:找质数。

  什么样的数是质数?质数有什么特征呢?

  二、组织活动,探索新知。

  (一)活动一:拼一拼

  1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

  (同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)

  2、学生汇报,教师填表

  小正方形个数(n)

  拼成的长方形种数

  n的因数

  2  3 4  5  6  7  8  9  10  11  12  3

  1,2,3,4,6,12

  (1)让孩子观察左表中各数的因数,看看有什么发现?

  (2)结合上面的发现,将2—12各数分为两类,说一说这两类数分别有什么特点。

  3、介绍:一个数只有1和它本身两个因数,这个数叫做质数;一个数除了1和它本身以外还有别的因数,这个数叫做合数。

  4、你有问题要问吗?1是质数还是合数呢?

  (二)活动二:探索活动

  1、1—100中哪些数是质数?

  一位聪明的`数学家想出了一个寻找质数的简单方法。在书的右表中:

  (1)划掉1;

  (2)划掉除2外所有2的倍数;

  (3)划掉除3,5,7外所有3,5,7的`倍数,如此做下去,剩下的就是质数。

  2、书第11页第2题

  在表中圈出所有的质数,并回答下列问题:

  (1)除了2、3两个质数外,其余的质数都分布在哪些列中?

  (2)把这个表扩大到90,在看此时质数的分布情形是怎样的。

  (3)笑笑发现了一个有趣的结果:把最小的两个质数相乘得到6(2乘3得6),用6去除其他的质数,余数一定是1或5。这个结果对吗?试一试。

  (学生按照方法在表中试着做一做,再用彩笔将质数圈起来。)

  (三)活动三:你知道吗?

  让孩子介绍课外知识。

  三、总结。

  通过今天这节课的学习,你有什么收获?你还有什么要问的?

  板书设计:

  课题:找质数

  小正方形个数(n)

  拼成的长方形种数

  n的因数

  《找质数》教学设计 6

  [教学目标]

  1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

  2、能正确判断质数和合数。

  3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。

  [教学重、难点]

  1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

  2、能正确判断质数和合数。

  [教学准备]

  学生、老师小正方形若干个。

  [教学过程]

  一、动手拼长方形,揭示质数、合数的意义

  1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。

  2、引导学生观察并提出问题:“这些小正方形有的只能拼成一种长方形,有的'能拼成两种或两种以上的长方形,为什么?”

  3、揭示质数、合数的意义

  组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。

  从概念出发理解“1既不是质数,也不是合数。”

  二、讨论判断质数、合数的方法。

  1、尝试判断:2、8、9、13、51、37、91、52 是质数还是合数

  先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”

  2、归纳方法:

  只要找到一个1和本身以外的因数,这个数就是合数。如果除了1 和它本身找不到其他的因数,这个数就是质数。

  三、探索活动:

  第1题:

  用“筛法”找100以内的质数。引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。

  介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。

  第2题:

  本题引导学生通过操作、观察,探索规律。

  第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?

  引导观察:因为2,4,6列除2外,其他数都是2的倍数,这些数除1和本身外还有2这个因数,所以不是质数。第3列的数除1和本身外还有3这个因数,所以不是质数。第(3)题理由:用6除一个大于6的自然数,如果余数是0、2、4,这个数肯定是2的倍数;如果余数是3,这个数肯定是3的倍数。

  [板书设计]

  找质数

  拼长方形表格 一个数除了1和它本身以外还有别的因数,这个数就叫合数。一个数只有1 和它本身两个因数,这个数叫做质数。

  1既不是质数,也不是合数。

  《找质数》教学设计 7

  【活动目标】

  1、引导幼儿动手脑操作、探索,来发现图片、某些物品的中心点,从而知道某些物品有中心点的原理。

  2、通过活动激发幼儿对数学活动的探索兴趣,能积极、主动地参与到活动中来。

  3、引发幼儿学习的兴趣。

  4、培养幼儿比较和判断的能力。

  【活动准备】

  绳子、圆形纸片、正方形纸片等。

  【活动过程】

  一、引起幼儿兴趣、引出课题

  1.出示一根绳子,请幼儿来找出它的中心点。

  2.教师小结:小朋友想的办法又快又好,准确地找到这段绳子的中心点。

  二、幼儿操作、探索寻找圆的中心点

  1.老师为每个小朋友准备了一个圆形的纸片,请你来找找看圆的中心点在哪?

  2.幼儿动手脑进行操作、探索,寻找圆的中心点,用笔点好。

  教师巡回指导、检查,进行个别辅导。

  3.请幼儿来介绍操作过程和结果。

  你是怎样找到中心点的?你的圆的中心点在哪?

  4.教师小结:小朋友操作、探索的方法、结果,并选出最佳的操作方法和最准确的操作结果。

  5.请幼儿再试试:学用刚才最佳的方法操作。

  三、幼儿操作、探索寻找正方形的中心点

  1.请幼儿动手脑操作、探索寻找正方形的中心点

  2.幼儿动手脑进行操作、探索,寻找正方形的中心点,用笔点好。教师巡回指导、检查,进行个别辅导。

  3.请幼儿来介绍操作过程和结果。

  你是怎样找到中心点的?你的正方形的中心点在哪?

  4.小结:边对边、角对角对折,两条线的交叉点就是它的中心点。

  四、幼儿探索寻找圆形队列的中心点

  出示:九个圆片排列成的正方形。

  刚才我们是用对折的方法找到的中心点,现在这九个圆片排列成的方形,不能折,那么,它的`中心点在哪里呢?

  1.请幼儿动脑后讲出中心点的位置,并说出理由。

  在中间的圆心上,横的中心线与竖的中心线交叉的地方就是它们的中心点。

  2.出示:八个圆片排列成的长方形。那么,它的中心点在哪里呢?

  3.请幼儿动脑后讲出中心点的位置,并说出理由。

  在两条中心线的交叉的地方就是它们的中心点。

  五、幼儿操作探索其他物品的中心点

  1.那么,你知道我们桌子的中心点在哪儿吗?

  2.请幼儿与同伴一起合作操作,探索、测量出桌子的中心点。

  3.让幼儿来介绍与同伴合作的操纵过程和结果。

  《找质数》教学设计 8

  教材分析:

  “质数和合数”是九年义务教育小学数学五年级(上)第一单元的内容,在教材第10~11页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。

  教学目标:

  1、使学生根据因数和倍数的意义,会判断一个数是质数还是合数;

  2、培养学生观察、比较、概括和判断能力;

  3、向学生渗透“对立统一”的辨证唯物主义观点。

  教学重点:

  理解质数和合数的意义。

  教学难点:

  正确判断一个数是质数还是合数。

  教学准备:

  课件

  教学教法:

  新课程的数学教学强调:要培养学生用数学眼光、数学知识、方法去分析事物,思考问题。本课我主要采用“探究性学习指导法”,把“有意义的思考方法和习惯思维”放在教学首位,构建探索型的教学模式,充分体现“以学生发展为本”的教育理念。

  教学过程:

  一、谈话引探,导入新课。

  如:(1)、用哥德猜想引出课题。

  (2)、结合自然数1—20的因数具体说说。(这样直奔主题的教学,为学生探究知识和巩固知识留下了足够的时间和空间。)

  二、自主学习,探究新知。

  首先让学生利用课件很快找出1~20各数的因数,铺垫探底。然后讨论怎样给这些数进行分类,怎样分比较合理?(把学生的思维导向于有意义的思考。)学生根据所学的知识有按偶数、奇数分的,有按2、3、5的倍数分的、也有按10以内、10以外的数分的等等,对于学生的分法,教师给于了鼓励,引导学生看书上怎么分的,观察因数的个数,以 “因数个数”的多少来分,学生很快以“只有一个约数的、只有两个约数的、有两个以上因数”分为三类。教师及时出示课件,然后让学生列举出相应的数。这时教师明确告诉学生;像2、3、5、7、11这样只有两个因数的数就叫质数。让学生通过观察每个质数的因数特点概括出质数的.意义,并且要求学生按照质数的意义自己找出一些质数,找准确了说说找质数的方法(突出教学的重点)。同样道理,合数的意义就迎刃而解了。紧接着让学生看一个因数的数是谁?书上是怎么给它下定义的?然后出示一些数,让学生判断哪些数是质数?哪些数是合数?判断正确了让同学们互相交流判断方法,为什么又对又快?(从而突破教学难点。)

  三、应用知识、巩固知识。

  1、让学生根据学习资料,把1~20这20个数按照奇数、偶数、质数、合数进行分类,分类完成之后互相交流这些数之间的联系和区别。如2既是质数又是偶数;9、15既是奇数又是合数。(既巩固了新知识,又加强了知识之间的横向和纵向联系。)

  2、出示闯关题,有填空、选择、判断、游戏,内容丰富、形式多样,闯关成功给予奖励。(目的是激发学生的学习兴趣,提高学习效率。)

  3、小组合作学习制作100以内质数表,课件出示学习要求

  (1)独立思考制作方法

  (2)小组交流方法

  (3)动手制作

  (4)汇报展示。

  4、课件出示100以内质数表,学生熟记。(便于今后的应用。)

  5、 全课总结、课外延伸。

  师生共同回忆这节课所学知识之后听一则数学信息。歌德猜想之一:任何一个大于4的偶数,都可以写成两个奇数(或素数)之和。并让学生了解到这个猜想目前证明得的是我国数学家陈景润,可惜离成功只差一步便离开了人世。听完后谈感想。(让学生的学习动机、学习兴趣、情感价值观得到进一步的提升。)

  《找质数》教学设计 9

  教材分析:

  本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基础对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“找因数”的编写思路编写本课,用小正方形拼长方形的方法,引导学生认识质数与合数。

  教学目标:

  1.在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数与合数的意义;

  2.能正确判断一个数是质数或合数;

  3.在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;

  4.在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。

  教学重点:

  理解质数与合数的意义。

  教学难点:

  能正确判断一个数是质数还是合数,体会数学学习的方法。

  教学学情:

  学生已经有了利用小正方形拼摆长方形找因数的经历,为本节课再次通过小正方形拼摆长方形找质数的学习打下了良好基础,只是学生的思维水平还存在一定的差距,在学习的过程中还会出现快慢之分。

  教法学法:

  新课标指出,教师只是学生学习活动组织者,引导着,合作者,因此在本课中,我主要采用引导发和趣味法进行教学,以求最大限度的调动学生学习的`积极性。而学生则主要采用动手操作法、观察分析法和讨论法进行学习掌握新知的。

  教学过程:

  本课的教学设计是在充分尊重教材编写的基础上有所创新,力求体现新的教学理念与思想。在此,我主要采用的是趣味教学法。

  学生的认知活动将受课堂情绪因素的影响,宽松,活跃,和谐的教学氛围能成为学生大胆探索,勇于创新的催化剂所以本节可,我的'设计主要体现在一个字—趣。

  一、课前导入互动。

  我与学生做了个猜年龄的游戏。老师今年30岁,有个学生的年龄是老师年龄的因数,问这个学生可能有多大?通过这个游戏拉近了师生的距离,并且在学生猜年龄的过程中通过找30的因数,需要调动头脑中关于因数的知识,也为今天的学习做了很好的知识铺垫。

  二、新课呈现

  在新课教学中,我以做拼图游戏引入,先让学生分别用2个,4个和12个小正方形拼长方形,看看可以分别拼成几个长方形。在学生说出结果后提出质疑“是不是小正方形的个数越多,拼成的长方形个数就越多呢?”在学生给出否定的回答后,再让学生通过举反例加以论证。然后再抛出一个问题:“那与什么有关呢?”让学生进行猜想,当学生说出与因数个数有关时,接着让小组合作,分别摆出由2—12个小正方形组成长方形并填写书上表格(课件出示)在学生完成表格后,在引导学生观察表格思考:(ppt出示)

  1、观察上表格各因数,你会有什么发现;

  2、结合你的发现将2—12各数按因数进行分类并说说这两类数分别有什么特点。(这点可以不说,直接出示),

  然后让学生自学书本,看看数学上把具有这类特点的数分别叫什么数。从而达到理解这一概念的目的。(这一环节让学生经历了猜想—验证—概括—理解的学习过程,是学生对质数、合数的概念达到理解的目的。)

  三、练习

  在练习部分,老师先出示1—100的表格,(课件出示)让学生说说他是如何判断一个数是质数还是合数的,引导学生学以致用,会用概念去判断。在教知识的同时也交给了学生学习的方法。在学生兴致勃勃的对这些数进行判断时,是迅速抛出:“1,是质数吗?”这一问题引出学生的争论。接着让学生根据标准的不同对自然数进行分类,从而能使学生很自然的把奇数与偶数、质数与合数加以区分。(这也是引导学生自主构建知识体系的一个重要环节,学生自己探究的知识,其乐趣溢于言表。)接着我有设计了难易程度不同的练习题以适应不同学习层次的学生的需求。

  总之,整堂课以学生为主题,教师为主导,通过引导学生“’猜想—验证—概括—理解”的学习过程,建构自己的知识体系,积累了数学学习的方法,丰富了学生的情感体验,激发了今后学习数学的兴趣与动力。

  四、小节

  让学生畅谈收获与体会。

  板书设计:

  在板书设计上我力求简介明了,能突出重点。

  我的说课完毕,谢谢。如有不到之处,敬请各位领导批评指正。

  《找质数》教学设计 10

  【教材简析】

  本节课是北师大版小学五年级上册第一单元“倍数与因数”的第5节“找质数”。本节课是在学生已经学习了2,3,5的倍数特征以及掌握了找一个数的因数的方法的基础上进行教学的,通过本节课的学习,为后续学习公因数、约分、公倍数、通分奠定基础。这节课的知识目标是结合具体活动,认识、理解质数与合数的意义,并能运用质数与合数的概念正确判断一个数是质数或合数。

  通过教材提供具体的操作材料,实现了学生活动式课堂的学习生活,学生积累了丰富的感性认识,符合学生的学习心理,同时有利于教师以学生自主活动为主体,以合作学习为学习形式,改变学习方式,引导学生经历、感受探索的过程。

  首先让学生感觉到有不同类的存在,分类的标准是因数的个数,在活动中感受因数个数不同,把数分为不同种类的数,是本节课的重点,引导学生找到因数个数的特征,并把因数个数作为分类的标准,是本课的难点。

  【学生分析】

  为了了解学生对概念的认识到底掌握到什么程度,在进行教学设计前,我做了一个前测,调查问卷是这样的:

  下面的数学名词,按你知道的程度画符号。

  结果显示: 10人根本没听说过“质数”这个词,15人听说过,但不是很明白。其余16人认为自己已经知道质数是怎么回事了,9人认为自己非常理解。

  所以在质数合数概念呈现之后,我为学生提供一个开放的问题,给出1~20个数,让学生重新认识这些数,并得出一些规律性的结论。这个活动为学生提供了广阔的思考时空,放手让学生去探究,关注有差异的学生去发现,实现自己的学习过程,得到不同的发展,并在辨析中,明确概念、加深理解。

  【教学目标】

  1、通过用小正方形拼长方形的活动中,引导学生感受因数个数是自然数分类的标准,理解和掌握质数与合数的概念,并能运用概念,判断一个数是质数或合数。

  2、通过操作活动和合作学习,培养学生合情推理以及抽象概括的能力。

  3、通过了解质数研究的历史和学生感受多个角度认识数,感受数学文化的魅力。

  【教学过程】

  (一)故事引入,激发学习欲望

  教师给学生讲一段故事:在二百多年前有一位德国的中学数学教师,他特别热衷研究数学问题,有一次他发现了一个神奇的数学现象,提出了一个猜想(画面1),但不知道对不对,就向当时最著名的数学家欧拉请教,不能发短信,更不能发伊妹儿,就写信。数学大师冥思苦想后,在回信中写道:说我确信你的论断是对的,但我无法证明它(画面2)。这个猜想轰动了整个数学界,数学家们跃跃欲试,但谁都没证明出来。直到四十二年前,我们中国的一位数学家也进行了研究,他的成果一直保持着世界领先记录,离成功只有一步之遥,但也没有完整证明出来。再后来,在2000年,英美两国曾悬赏100万美元,奖励能证明这个猜想的人,但至今未果。(画面3)这个猜想太神奇了。想知道这个猜想吗?学完这节课我们就能了解它了。

  (二)拼长方形比赛,感知因数个数

  1、师引领示范拼摆长方形,明确游戏要求

  教师用4个小正方形拼成2种长方形,并向学生说明其中拼成的正方形也是特殊的长方形。

  2、玩摆长方形游戏,初步感受影响拼长方形种数的因素,并大胆提出猜想

  (1)提出任务,小组探索

  师:我用4个小正方形最多能拼出2种不同形状的长方形,你能不能也像刚才那样,用手里的小正方形拼成长方形?师给每个小组都准备了一些小正方形,每组的块数不一样,把所有的小正方形都用上,拼成长方形。

  问题:比一比,哪个小组拼成长方形的方案最多。小组成员要分工合作,把方案记录在表格里。

  (老师在课前给不同的小组发放了不同数量的长方形,分别是3、7、9、10、11、12、18、24。学生活动开始,教师巡视)

  (2)小组汇报,全班交流

  ①汇报

  学生汇报小正方形个数分别是3、7、9、10、11、12、18、24能拼成几种不同的长方形,老师根据学生的汇报,填在黑板的'表格里。

  小正方形的总个数 长摆( )个 宽摆( )个

  ②引发认知冲突

  师在学生汇报完24个小正方形能拼成4种长方形后,认为这组方案最多,是这次比赛的冠军,学生一定会强烈反对。

  ③师追问:你们为什么不同意?学生可能回答老师给每个组发的小正方形的个数不同。

  ④引导学生大胆猜想

  师提问:请大家仔细观察黑板表格,你们认为是什么影响到了设计方案的多少?

  学生发表想法,影响设计方案多少的因素可能会有:①数的大小 ② 奇偶性 ③因数个数

  (3)师小结:

  通过刚才的`讨论,我们猜测设计方案的多少受到了一些因素的影响,有的认为数大方案多,有的认为偶数比奇数方案多,还有的认为和因数个数有关。是不是像你们猜想的那样,到底什么因素最终决定设计方案的多少呢?我们再试一次,好不好。

  3、玩抢数游戏,进一步感受因数个数决定设计方案的多少,验证数学猜想

  (1)宣布要求,合作探究

  师:刚才是老师分给你们的数,不公平,这次老师这有一些数,你们自己挑,看哪个好要哪个。

  活动要求:数比较大,设计方案时可以摆,可以不摆,探究有几种方案后,也把结果记录在表格里。每个小组只挑一个数研究,把结果记录在表格里。

  (教师贴出几个数:45(2个)、48(2个)、59(2个)、62(2个)下面挂着小正方形袋),

  (学生活动,教师巡视)

  (2)学生自主发表看法,师生多方对话,深入交流

  师:刚才每个小组用自己挑的数,设计方案,结合我们刚才的猜想,现在你有什么发现?试着用手里的数据来举例说明。

  (学生可能提出数大不一定方案多,偶数不一定方案多,教师相机引导,给学生交流创造的空间,掌握举一个反例就可以推翻一个猜想的推理方法,逐渐清晰结论。)

  师小结:看来和因数个数有关系,我们一起来研究研究。

  (三)研究因数情况,尝试分类,概括质数与合数概念

  1、重新梳理,概括质数特征

  (1)全班同学看表格,分别说出3、7、9、10、11、12、18、24的因数有哪些?有几个?

  其实我们刚才长摆几个,宽摆几个,就是这个数的因数。

  (2)提出问题:如果这次我们重新选,只给你一次机会,看谁设计方案多,黑板上这些数,你一定不选哪个数?(给学生理性梳理的时空,学生可能回答不选3、7、11、59)

  追问:为什么不选这些数,请同学们在小组里交流交流各自的想法。

  (学生可能回答:像3、7、11、59这几个数只能设计出一种长方形,或说这样的数只有2个因数,教师适时提出质数的名词,并说一说什么样的数是质数。)

  (3)小结数形结合,形象感受质数特征

  我们用质数摆出的长方形,你有什么体会?(教师分别出示数量是3、7、11、59,摆出长方形的样子,都是细长条的一种长方形。)

  2、学生自主归纳,概括合数概念

  教师引导学生归纳黑板上剩下这些数的特点,概括出合数概念。

  3、初步运用概念,判断一个数是质数还是合数

  问题:刚才学习了质数和合数,说一说51是质数还是合数,你是怎么想的?

  (51这个数学生容易引起争议,爱混淆,在辨析中深入理解质数合数概念,学会初步运用概念看一个数是质数或合数,需要看因数的个数,如果只有1和它本身两个因数,这个数就是质数,如果再找到其他一个,那这个数就是合数。)

  (四)设计开放性问题,引导学生利用已有知识主动观察与思考,发现规律

  1、宣布任务

  师:从我们上一年级开始,就在和数打交道,已经是老朋友了,这学期我们又研究了数的特征,结合这节课我们学习的质数和合数的知识,再来重新认识这些数。

  屏幕出示小组学习单:

  请你从不同角度观察这些数,你有什么发现或结论,写在下面的横线上。

  1 2 3 4 5 6 7 8

  9 10 11 12 13 14 15 16

  17 18 19 20

  发现或结论

  2、学生汇报

  在学生汇报过程中,教师相机引导辨析明确每个观点,并以小组的名义写在黑板上,鼓励学生发现问题的积极性。

  在此过程中重点处理:

  (1)1既不是质数也不是合数;

  (2)偶数除2以外都是合数

  (五)师生共同经历提出歌德巴赫的过程,感受数学的神奇

  师:我们学过的奇数、偶数、质数、合数,他们之间有着密切的联系,但是特别有意思的是,我们能不能把从4开始的偶数写成两个质数相加的形式。

  师生共同从4开始写:4=2+2 6=3+3 8=3+5 10=3+7 12=5+7 14=7+7

  16=5+11 18=7+11 20=7+13 22=17+5

  提出问题:观察上面式子,能提出猜想吗?

  师介绍哥德巴赫猜想。

  有人把歌德巴赫猜想比做数学皇冠上一颗璀璨的明珠,这颗明珠到现在还没有被摘取,因为质数太神奇了,是永恒的迷。关于神奇的质数,要知详情,请看这本书(出示图片),这里面讲述的数学故事和数学知识一定会令你着迷,老师相信在不久的将来,我们同学也能加入探索科学之谜的队伍。

  (六)全课总结:说说今天的收获。

  (七)完成练习题第1、2、4

  自我问答:这节课看起来简单,学生学习特轻松。但在作业中出现的问题五花八门。

【《找质数》教学设计】相关文章:

《找质数》教学设计9篇04-11

质数教学设计01-05

质数教学设计02-17

找质数教学反思教学反思12-02

《找质数》教学反思(精选16篇)03-26

《找质数》教学反思(9篇)03-23

《找质数》教学反思9篇03-05

质数和合数教学设计05-08

质数教学设计(15篇)02-17