《圆的面积》教学设计

时间:2024-04-22 15:11:19 教学设计 我要投稿

《圆的面积》教学设计

  作为一名优秀的教育工作者,就有可能用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?以下是小编精心整理的《圆的面积》教学设计,欢迎阅读,希望大家能够喜欢。

《圆的面积》教学设计

《圆的面积》教学设计1

  一、教学目标

  1、知识与技能

  (1)知道圆的面积公式推导过程;

  (2)会用圆的面积公式计算圆的面积;

  2、过程与方法

  经历动手操作讨论等探索圆的面积公式的过程;

  3、情感态度与价值观

  积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

  学思想。

  二、教学重点:

  圆的面积的计算

  三、教学难点:

  推导圆的公式的过程;

  教具准备:多媒体课件、圆片、胶水、剪刀

  四、教学过程:

  (一)、创设情境,导入新知

  1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

  2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)

  3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

  4、设疑:那么圆的'面积怎样求呢?

  5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

  6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

  (1)、设疑导入,激起学生学习的兴趣.

  (2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.

  (二 )合作探究

  把圆形转化成以前学过的图形探究圆的面积公式

  师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

  (1) 学生动手操作;

  (2) 交流演示各组拼出的图形。

  (3)教师用课件演示。

  教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=

  问: 那么要求圆的面积必须知道什么条件?

  (三)解决问题

  (一)、已知圆的半径,求圆的面积

  例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

  (二)、已知圆的直径,求圆的面积

  例2、圆形花坛的直径的20 m,它的面积是多少平方米?

  (三)、已知圆的周长,求圆的面积

  例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?

  四 巩固练习

  1、判断对错:

  (1)直径相等的两个圆,面积不一定相等。。 ( )

  (2)两个圆的周长相等,面积也一定相等。 ( )

  (3)圆的半径越大,圆所占的面积也越大。 ( )

  2、根据下面所给的条件,求圆的面积。

  (1)半径3分米

  (2)直径20厘米

  五、知识拓展

  在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

  六、总结:学生谈收获

  反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

《圆的面积》教学设计2

  本节课内容是求圆的面积

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的.过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  略

《圆的面积》教学设计3

  本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

  接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

  1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

  2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

  3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

  4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

  运用圆的面积计算公式解决实际问题。

  理解把圆转化为长方形推导出计算公式的过程。

  多媒体课件及圆的.分解教具,学生准备圆纸片和圆形物品。

  一、创设问题情境,激发学生学习兴趣。

  1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

  2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)

  [设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

  二、合作交流,探究新知。

  1、出示圆:

  (1)让学生说出圆周长的概念,并指出来。

  (2)想一想:圆的面积指什么?让学生动手摸一摸。

  (揭示:圆所占平面的大小叫做圆的面积。)

  (3)对比圆的周长和面积,让学生感受他们的区别。

  同时引出课题——圆的面积。

  [设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

  2、推导圆面积的计算公式。

  (1)学生观察书本p67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

  (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

  [设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

  (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

  ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

  [设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

  ③当圆转化成近似长方形时,你们发现它们之间有什么联系?

  课件演示:

  师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份?又会是什么情形?

  ④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

  [设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

  (4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

  ①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

  ②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

  ③学生讨论交流:长方形的长是圆周长的一半,即a=c/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

  (5)小结:如果用s表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

  (6)学生打开书本p68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

  [设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

  三、实践运用,巩固知识。

  1、已知圆的半径,求圆的面积。

  判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

  =314×5×2=314(米)

  (学生先独立思考,再汇报交流,共同修改。)

  强调:半径的平方是指两个半径相乘。

  2、已知圆的直径,求圆的面积。(教学例1)

  ①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

  ②学生汇报计算方法,要强调首先算什么?

  ③打开书本p68补充例1。

  3、已知圆的周长,求圆的面积。(书本p70练习十六第3题)

  小刚量得一棵树干的周长是1256cm。这棵树干的横截面的面积是多少?

  ①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

  ②根据圆的周长公式,师生间推导出求半径的计算方法。

  ③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

  4、一个圆形溜冰场,半径30米。

  (1)这个溜冰场的面积是多少平方米?

  (2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

  提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

  [设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

  四、总结评价,拓展延伸。

  1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

  2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

《圆的面积》教学设计4

  设计过程:

  一、教材分析

  教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。

  二、学情分析

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  基于以上的教材和学情分析,我制定了以下的教学目标:

  三、教学目标

  1、认知目标:

  提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。

  2、能力目标:

  培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。

  3、情感目标:

  通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。

  教学重点:

  正确掌握圆面积的计算公式。

  教学难点:

  圆面积计算公式的推导过程。

  四、教学过程

  (一)创设问题情境,激发学生学习兴趣

  1、感知圆的面积:(课件出示一大一小的圆)

  师:圆的大小是由什么决定的?(板书:由半径决定)

  2、感知圆的面积有大有小:

  (选择两个面积不同的圆)

  师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。

  师:那谁能说说什么叫做圆的面积?

  (揭示:圆所占平面的大小叫做圆的面积。)

  [设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。

  (二)学生合作探索,交流操作经验

  1、初步感悟:

  (1)课件出示:书103例7图。

  师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?

  原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。

  通过数圆的面积,得到整圆的面积,然后把表格填完整。

  学生填表、计算,汇报

  小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的.面积的计算公式。

  2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。

  师:那么,这节课我们就来共同找出求圆面积的方法。

  3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)

  [设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。

  师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)

  [设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。

  4、师:刚才我们已经复习了以前我们利用平移、割、补等方法推导平行四边形面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?

  你想采用什么方法把圆转化成学过的图形?

  [设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。

  师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  [注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。

  师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)

  [设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。

  (三)利用课件演示,呈现经验总结

  [注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。

《圆的面积》教学设计5

  一、教材分析

  《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。

  二、学情分析

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  三、教学目标(课件)

  (1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。

  (2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。

  (3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。

  基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。

  教学难点:是圆面积计算公式的推导和极限思想的渗透;

  四、学情分析

  为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:

  1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。

  2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。

  3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。

  4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

  五、教学过程

  本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。

  (一)创设情境,激趣引入

  数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。

  (二)引导探究,构建模型

  第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:

  第一步:启发猜想,明确方向。

  鼓励学生进行合理的.猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。

  第二步:化曲为直,扫清障碍。

  首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。

  第三步:实验探究,推导公式。

  首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。

  第四步:展示成果,体验成功。

  在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。

  (课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。

  第五步:首尾呼应,巩固新知

  在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。

  四、分层训练,拓展思维

  为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。

  第一层:基本性练习

  1、求下面各个圆的面积。(课件出示)

  (1)半径为3分米;

  (2)直径为10米。

  (3)周长为13厘米。

  第二层:综合性练习

  2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?

  第三层:发展性练习

  3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?

  4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。

  (1)这个龙头最多可喷灌多大面积的草坪?

  (2)喷灌后至少可剩下的面积有多大?

  六、评价和反思

  这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。

《圆的面积》教学设计6

  一、教材内容分析

  人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。

  二、学情分析

  六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。

  三、教学目标知识与技能

  1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

  过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。

  2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观

  让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。

  四、教学策略选择与设计

  1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的'必要性,同时也激发了学生求知的欲望和学习兴趣。

  2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

  3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

  4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和

  教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。

  五、教学准备

  教学用具,圆形卡片学具

  六、教学过程

  关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流

  一、创设情境,揭示课题

  1,创设情境

  学校的花坛的半径为10米,我们能求出它的面积吗?

  2,揭示课题

  为了解决这个问题这节课我们一起学习“圆的面积”好不好?

  板书:圆的面积

  3,说一说

  师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?

  生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。

  二、动手操作,实践探究

  1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法

  2、动手操作,尝试转化

  1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?

  2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导

  3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)

  4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?

  3、探究联系,推导公式

  现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?

  1),猜测,再一次观察老师的示范

  2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品

  3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。

  4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。

  5),观察,小组讨论得出公式:(板书)

  长方形的面积 = 长 × 宽

  圆的面积 = 周长的一半 × 半 径

  S =πr ×r = πr2

  三、运用公式,解决问题

  1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识

  2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。

  四、课堂小结

  (一)组织交流

  回顾一下这节课我们学习的内容。

  (1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (二)总结

  平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、

  圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!

  七,板书设计圆的面积(1) 长方形的积 = 长 × 宽

  圆的面积 = 周长的一半×半 径

  S = πr×r = πr2 八、教学评价设计

  在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。

  《圆的面积》教学反思

  蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面

《圆的面积》教学设计7

  一、学习目标:

  1、通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能利用公式进行简单的面积计算,会解决简单的实际问题。

  3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

  重点:

  圆的面积公式的推导及应用公式计算。

  难点:

  圆面积公式的推导过程。

  二、教学准备:

  教学课件

  分成不同等份的圆形卡纸、纸板、胶棒

  三、教学过程:

  (一)、复习铺垫,导入新课:

  1、看到老师手中的圆,你能想到有关圆的什么知识?

  学生汇报。

  2、你们还想知道圆的什么知识?

  学生交流。

  3、那你知道什么是圆的面积吗?

  学习圆的面积的概念。

  请学生到台前比划比划。

  4、你已经会计算哪些平面图形的面积了?打开练习本写一写。

  全班反馈。

  师课件出示图形及公式。

  5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。

  学生汇报交流,教师课件演示。

  回忆平行四边形面积计算公式的推导过程。

  高宽

  6、总结方法:这些图形面积公式的推导过程有什么共同点?

  预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。

  师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?

  师板书:转化法

  (二)、利用转化,推导公式:

  1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

  学生操作。

  2、师:谁能告诉老师你们小组把圆转化成了什么图形?

  生到台前展示。

  预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。

  师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。

  师板书:操作法

  3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

  预设:生1:平均分的份数越多,拼成的图形越接近于长方形。

  生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

  4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。

  (1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?

  (2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?

  (3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?

  小组同学之间互相说说推导过程。

  5、全班演示、汇报:

  学生到台前演示交流。

  (1)把圆16等分拼成近似的平行四边形。

  (2)把圆32等分拼成近似的长方形。

  (=(r)

  ①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。

  ②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。

  教师课件演示。组织学生进行语言表述。

  (三)、认真练习,巩固新知:

  1、师:计算圆的面积一定要有什么条件?学生交流。

  2、课件出示练习题:

  (1)求下面各圆的面积。

  r= 3厘米

  d= 2分米

  C= 12。56米

  (2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)

  (3)圆形花坛的直径20m,它的面积是多少平方米?

  拓展练习:

  一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。

  (1)这头奶牛最多可吃掉多大面积的草?

  (2)奶牛吃不到的草坪的面积有多大?

  四、板书设计:

  学习方法:

  转化法

  长方形面积=长×宽

  操作法↓ ↓

  圆的面积=圆的周长的一半×圆的半径

  化曲为直S = πr × r

  平行四边形面积=底×高

  ↓ ↓

  圆的面积=圆的周长的一半×圆的半径

  S = πr × r

  五、教学反思:

  圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的.思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。

  (一)、重视自主探究,促进合作交流。

  让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

  引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。

  (二)、运用多媒体手段,激发学生学习兴趣。

  在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。

  (三)、练习设计适当,由浅入深地巩固新知。

  课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

《圆的面积》教学设计8

  教学内容:

  义务教育课程标准实验教科书第十一册P67-68

  教学目标:

  1、认知目标

  使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

  2、过程与方法目标

  经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、情感目标

  引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积计算公式的推导。

  学具准备:

  相应课件;圆的面积演示教具

  教学过程:

  一、创设情境,导入新课

  出示教材67页的情境图。

  师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)

  生1:我发现图上有5个工人在铺草坪。

  生2:我发现花坛是个圆形。

  师:哦,是个圆形。还有没有?请仔细观察。

  生:我发现一个工人叔叔提出了一个问题。

  师:这个问题是什么?

  生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”

  师:你们能帮他解决这个问题吗?

  师:求圆形草坪的占地面积也就是求圆的什么?

  师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

  [设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

  二、游戏激趣,理解圆面积的概念

  师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)

  生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。 师:圆所占平面的大小叫做圆的面积

  (板书:圆所占平面的大小叫做圆的面积)

  师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)

  [设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]

  三、探究合作,推导圆面积公式

  1、渗透“转化”的数学思想和方法。

  师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来?

  生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

  生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。

  师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

  生:这样就把一个不懂的问题转化成我们可以解决的问题。 师:对,这是我们在学习数学的过程当中的'一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

  师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

  2、演示揭疑。

  师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。

  师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

  师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

  [设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

  3、学生合作探究,推导公式。

  (1)讨论探究,出示提示语。

  师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

  ①转化的过程中它们的 发生了变化,但是它们的 不变?

  ②转化后长方形的长相当于圆的 ,宽相当于圆的 ? ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。

  师:你们明白要求了吗?(明白)好,开始吧。

  学生汇报结果,师随机板书。

  同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

  (2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

  (3)揭示字母公式。

  师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

  (4)齐读公式,强调r2=r×r(表示两个r相乘)。

  从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

  [设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

  4、公式运用,巩固新知。

  师:现在大家懂得计算圆的面积了吗?我们来试试看。

  四、应用公式,解决生活中的实际问题

  师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。

  师:(出示教材第67页的情境图)这是刚才课前发现的问题。 师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?) [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  五、练习反馈,扩展提高

  1、一个圆形茶几桌面的直径是1m ,它的面积是多少平方厘米?

  2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?

  六、全课总结

  同学们,这节课我们学习了哪些知识?你有什么收获?

  七、板书设计

  圆的面积

  圆所占平面的大小叫做圆的面积

  长方形面积= 长×宽

  = 半径

  S = πr ×r

  =πr2

《圆的面积》教学设计9

  1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

  2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

  3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  掌握圆的面积计算公式,能够正确地计算圆的面积。

  理解圆的面积计算公式的推导。

  一、回忆旧知、揭示课题

  1、谈话引入

  前些日子我们已经研究了圆,今天咱们继续研究圆。

  2、画圆

  首先请同学们拿出你们的圆规在练习本上画一个圆。

  3、比较圆的大小

  请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

  4、揭示课题

  我们把圆所占平面的`大小叫做圆的面积。(出示课题)

  二、动手操作,探索新知

  1、确定策略,体会转化

  (1)明确研究问题

  师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

  (2)体会转化

  怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)

  其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?

  预设:

  学生回忆平行四边形、三角形、梯形的面积推导方法。

  当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

  三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

  小结:

  你们有没有发现这些方法都有一个共同点?

  (3)确定策略

  那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)

  如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?

  ①引导学生说出沿着直径或半径,把圆进行平均分;

  ②师示范4等份、8等份的剪法和拼法;

  2、明确方法,体验极限

  (1)学生动手操作16等份的拼法;

  (2)比较每一次所拼图形的变化;

  (3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

  3、深化思维,推导公式

  (1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

  (2)交流发现,电脑演示圆周长和长,半径和宽的关系。

  (3)多让几个学生交流转化后的长方形和原来圆之间的联系。

  (4)根据长方形的面积公式推导圆的面积计算公式。

  三、运用公式,解决问题

  1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

  出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

  2、判断对错:

  (1)直径是2厘米的圆,它的面积是12.56平方厘米。( )

  (2)两个圆的周长相等,面积也一定相等。( )

  (3)圆的半径越大,圆所占的面积也越大。( )

  (4)圆的半径扩大3倍,它的面积扩大6倍。( )

  3、知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

  四、总结新知,深化拓展

  1、小结:

  通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

  2、拓展

  在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

  那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

《圆的面积》教学设计10

  教学目标:

  1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

  3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

  教学重难点:

  圆面积公式的推导。

  教学关键:

  弄清圆与转化后的近似图形之间的关系。

  教具:

  多媒体计算机。

  学具:

  每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

  教学过程:

  一、复习旧知、设疑导入

  同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

  微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

  二、动手操作、探索新知

  1、通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

  初步猜想:圆的面积相当于r2的3倍多一些。

  3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

  2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

  3、学生小组合作。

  (1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

  ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

  ②圆和近似的长方形有什么关系?(形状变了,但面积相等)

  ③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

  ④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

  ⑤你能推导出圆面积计算公式吗?

  (2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

  (3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的`和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

  4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

  三、看书质疑、自学例3,注意书写格式和运算顺序

  四、运用新知,解决问题

  1、一个圆的半径是5厘米,它的面积是多少平方厘米?

  2、看图计算圆的面积。

  3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

  4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据S=πr2求出面积。

  (2)可测圆的直径,根据S=π(d/2)2求出面积。

  (3)可测圆的周长,根据S=π·(c/2π)2求出面积。

  五、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  六、布置作业

  七、板书设计

  圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径

  S=πr×r;S=πr2

《圆的面积》教学设计11

  【教学目标】

  1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  1.CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的.面积)

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  3.探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  4.推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,谁能首先告诉老师,这个长方形的宽是多少?

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  二、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  2.完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

  三、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  四、课堂作业。

《圆的面积》教学设计12

  教学目标:

  使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

  引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

  培养学生认真观察、深入思考,积极合作的良好品质。

  通过合作探究活动,推导出圆面积公式。

  理解转化后的图形各部分与圆各部分的关系。

  圆形纸片多媒体

  (一)情境导入

  出示:圆桌照片

  师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

  生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

  师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

  怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

  【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务】

  (二)合作探究

  1、复习转化方法:

  师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

  师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

  师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

  师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

  1、圆转化成了什么图形?

  2、转化后图形的各部分与圆的各部分有什么关系?

  3、根据转化后图形面积公式试着推导出圆的面积公式。

  2、小组合作探究,师巡视,指导。

  【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。

  教师让学生带着3个问题进行自主探究的活动】

  3、汇报展示

  预设:

  学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的'公式:∏r2。

  学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

  学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

  板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

  【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】

  4、课件演示,体验极限、化曲为直等数学思想。

  5、资料介绍,感受数学文化,师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)

  生:一人板书,其他学生本上练习。集体订正。

  6、知识性小结:

  师:如果我们想计算圆的面积,必须知道什么条件?

  生:半径。

  师:还可以知道什么,也能求出圆的面积?

  生:圆的直径或圆的周长?

  师:怎么求?

  【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

  教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】

  (三)解决问题:

  1、口算下面各圆的面积。

  2、填写下表。

  半径直径周长面积

  2厘米

  6厘米

  6.28厘米

  3、某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?

  (四)全课总结

  板书设计:圆的面积

  转化平行四边形面积=底×高

  联系圆的面积=×r=×r

  =πr×r=πr2

  公式s=πr2

《圆的面积》教学设计13

  教学目标:

  1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算:。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算:。

  圆环的面积:。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的.性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1.说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

《圆的面积》教学设计14

  圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  探索并掌握圆的面积公式。

  探索推导圆的面积公式,体会“化曲为直”思想。

  投影仪,多煤体课件,圆形纸片。

  圆形纸片。

  一、创设情境。提出问题

  (投影出示p16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)——————

  2、用数方格的方法求圆面积大小

  ①投影出示p16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  1、根据圆里面的正方形来估计

  2、用数方格的方法来估计。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  指名汇报(学生在说的同时教师注意板书)

  请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]

  想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]

  观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的'1/2×半径即可。

  因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

  用字母怎么表示圆面积公式呢?

  s=∏rr还可以写作s=∏r2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  根据下面的条件,求圆的面积。

  r=6厘米d=0、8厘米r=1、5分米

  师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)

  四:拓展应用

  习题设计:

  1、填空:

  (1)圆的周长计算公式为( ),圆的周长计算公式为( )。

  (2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。

  (3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。

  2、判断:

  (1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]

  (2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14x1.52=3.14x3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5x2,而1.52=1.5x1.5]

  (3)直径相等的两个圆,面积不一定相等。( )

  (4)一个圆的半径扩大3倍,面积也扩大3倍。( )

  (5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )

  3、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据s=πr2求出面积。

  (2)可测圆的直径,根据s=π(d/2)2求出面积。

  (3)可测圆的周长,根据s=π.(c/2π)2求出面积。

  圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]

《圆的面积》教学设计15

  教学内容:人教版六数上第66页、67页

  教学目标:

  1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

  3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.

  2.会正确计算圆的面积。

  教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

  教学过程:

  (课前游戏)

  猜谜:前面有一片草地(打一植物)

  草地上来了一群羊(打一水果)

  草地上有一群羊,突然来了一群狼(打一水果)

  师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

  一、 导入:

  师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

  二、 认识圆的面积:

  1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

  师:圆表面的大小就叫做圆的面积。

  2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

  生:一个圆面积大,一个圆面积小。

  师:那你发现圆的.面积大小会与什么有关呢?结合这两个圆来好好观察观察。

  生:半径或者直径越长,圆的面积就越大。

  师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

  三、观察与尝试猜测:

  1.(出示正方形与圆的课件)

  师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多

  少呢?

  生:大正方形的面积是4r,小正方形的面积是2r。

  2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

  生:圆的面积比大正方形的面积小,比小正方形的面积大。

  师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

  生:3r。

  师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

  四、 小组合作、拼摆。

  1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

  生:底*高。S=ah。

  师:还记得平行四边形的面积计算公式是如何推导出来的吗?

  是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。

  师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222

  2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

  生:三角形或者等腰三角形。

  师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

  提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

  学生开始小组合作。

  3. 汇报合作结果。

  师:你们都拼成了什么样的图形?上台来展示一下吧。

  生分组上台展示。

  要求学生汇报自己是怎样拼的,拼成了一个什么图形。

  师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

  生:分得越多,越接近长方形。

  五、 面积计算公式推导:

  1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

  2.师:找到答案了吗?

  生:长是πr,宽是r。

  师:长方形的面积呢?请同学们在练习本上写一写。

  那圆的面积呢?也写一写,读一读吧。

  学生汇报。师板书。

  3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

  4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

  生:半径。

  师:知道什么也可以求出圆的面积呢?

  生:直径、周长。

  师:下面我们就来试一试吧!

  六、 巩固练习。

  1. 平方的口算练习。

  1 2 3 4 5 6 7 8 9 10 20 3022222222222 2

  2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

  3.圆形花坛的直径是20米,求圆形花坛的占地面积。

  学生先汇报思路,再在练习本上完成。

  4. 树干的周长是125.6米,求树干的横截面积是多少?

  学生先汇报思路,再在练习本上完成。

  七、 总结:

  师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

【《圆的面积》教学设计】相关文章:

《圆的面积》教学设计03-09

圆的面积教学设计04-03

圆的面积教学设计11-15

圆的面积教学设计12-25

《圆的面积》教学设计02-07

《圆的面积》教学设计优秀02-13

圆的面积教学设计优秀02-24

小学《圆的面积》教学设计08-09

圆的面积教学设计及反思03-13