《圆柱的表面积》教学设计

时间:2024-06-14 12:38:53 教学设计 我要投稿

《圆柱的表面积》教学设计[汇编15篇]

  作为一位优秀的人民教师,总不可避免地需要编写教学设计,借助教学设计可以更好地组织教学活动。那要怎么写好教学设计呢?下面是小编收集整理的《圆柱的表面积》教学设计,希望能够帮助到大家。

《圆柱的表面积》教学设计[汇编15篇]

《圆柱的表面积》教学设计1

  教学目标

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教学过程

  一、复习准备

  (一)口答下列各题(只列式不计算)。

  1.圆的半径是5厘米,周长是多少?面积是多少?

  2.圆的直径是3分米,周长是多少?面积是多少?

  (二)长方形的面积计算公式是什么?

  (三)回忆圆柱体的特征。

  二、探究新知

  (一)圆柱的侧面积。

  1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。

  2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。

  (二)教学例1.

  1.出示例1

  例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  2.学生独立解答

  教师板书: 3.140.51.8

  =1.75l.8

  2.83(平方米)

  答:它的侧面积约是2.83平方米。

  3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。

  (三)圆柱的表面积。

  1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

  2.比较圆柱体的表面积和侧面积的区别。

  圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

  (四)教学例2.

  1.出示例2

  例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  2.学生独立解答

  侧面积:23.14515=471(平方厘米)

  底面积:3.14 =78.5(平方厘米)

  表面积:471+78.52=628(平方厘米)

  答:它的表面积是628平方厘米。

  3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的.表面积。

  (五)教学例3.

  1.出示例3

  例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  2.教师提问:解答这道题应注意什么?

  这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

  3.学生解答,教师板书。

  水桶的侧面积:3.142024=1507.2(平方厘米)

  水桶的底面积:3.14

  =3.14

  =3.14100

  =314(平方厘米)

  需要铁皮:1507.2+314=1821.21900(平方厘米)

  答:做这个水桶要用1900平方厘米。

  4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  5.四舍五入法与进一法有什么不同。

  (1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。

  (2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

  三、课堂小结

  这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。圆柱的表面积在实际应用时要注意什么呢?

  归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

  四、巩固练习

  (一)求出下面各圆柱的侧面积。

  1.底面周长是1.6米,高是0.7米

  2.底面半径是3.2分米,高是5分米

  (二)计算下面各圆柱的表面积。(单位:厘米)

  (三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

  五、课后作业

  (一)砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

  (二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

《圆柱的表面积》教学设计2

  【教学目标】

  1、使学生理解圆柱体侧面积和表面积的含义。

  2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3、体验成功与失败的收获,体会合作的愉悦。

  【教学重点】动手操作展开圆柱的侧面积

  【教学难点】圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  【教具准备】圆柱表面展开电脑动画展示

  【学具准备】圆柱形茶叶罐、自制的圆柱体纸盒2个、剪子、尺子。

  【教学过程】

  一、创设情境,引起兴趣。

  1、同学们曾经自己研究出长方体和正方体表面积的计算方法,回忆一下,当时大家是怎样推导这些立体图形表面积的?(学生会想将图形表面展开)

  2、拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?

  怎样求这个茶叶罐用多少铁皮?(体会就是求圆柱表面积。在学生跃跃欲试的时候进行下一步的操作活动)

  二、自主探究,发现问题。

  研究圆柱侧面积

  拿出自制的圆柱体纸盒,1.猜想将它的侧面展开,会是一个什么样的图形。

  2.独立操作用自己喜欢的方式展开,验证刚才的猜想。

  “用自己喜欢的方式”展开可能会出现很多种可能,比如斜着剪、拐弯剪等,对各种可能情况的处理方式教师应该做到心中有数。

  3.观察对比观察这个图形各部分与圆柱体有什么关系?

  4.小组交流能用已有的知识计算它的面积吗?

  5、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积

  即长×宽=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧==C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2πr×h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的第二个圆柱纸盒用此法展开)

  研究圆柱表面积

  1、求茶叶罐用多少铁皮,就是求什么呢?如何求?试一试。

  学生测量,计算表面积。

  2、圆柱体的.表面积怎样求呢?

  得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

  3、动画:圆柱体表面展开过程

  三、实际应用

  1、填空

  圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

  2、要求一个圆柱的表面积,一般需要知道哪些条件()

  3、教材第六页试一试。

  四、回顾全课

  本节课你收获了什么,有什么遗憾。

  【板书设计】

  圆柱体的表面积

  圆柱的侧面积=底面周长×高→S侧=ch

  长方形面积=长×宽

  圆柱的表面积=圆柱的侧面积+底面积×2

《圆柱的表面积》教学设计3

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的.底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《圆柱的表面积》教学设计4

  教材内容和在本册教材中的地位:

  《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。

  学情分析:

  学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重难点:

  重点

  圆柱表面积的计算。

  难点

  圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。

  教学过程

  一、激趣导入

  (复习圆柱体的特征)

  师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

  师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

  引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

  二、目标定向

  1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、我能通过对已有知识的迁移,探索新知识。

  三、自主合作

  (一)圆柱表面积的意义。

  设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

  2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。

  (二)根据条件,计算圆柱的底面积。

  圆柱的底面是圆形,同学们会求它的面积吗?

  (三)圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  2、计算圆柱体的侧面积。

  (四)求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算?

  四、交流展示

  (一)汇报圆柱表面积的意义。

  底面积×2+侧面积=表面积

  (二)圆柱体侧面积的计算

  1、小组合作探究。(剪圆柱形纸筒)

  2、汇报交流研究结果,各小组展示。

  3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  (三)以小组为单位自己做例4,做完组长检查。

  五、拓展延伸

  1、求出下面各圆柱的侧面积.

  (1)底面周长是1.6米,高是0.7米

  (2)底面半径是3.2分米,高是5分米

  2、计算下面各圆柱的表面积.(单位:厘米)

  (1)底面直径是12米,高是16米

  (2)底面半径是3.2分米,高是5分米

  3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?

  板书设计

  圆柱的.表面积

  底面积=圆面积

  底面积×2+侧面积=表面积

  课后反思:

  我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。

  1、实践操作

  在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。

  2、精讲多练。

  新知的获得时间要短,课后的练习要从易到难。

  本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。

  数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。

《圆柱的表面积》教学设计5

  教学内容:练习六第3~9题。

  教学目标:

  1、使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱

  表面积计算的实际问题。

  2、在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。

  3、让学生进一步密切数学与生活中联系,能够初步学以致用。

  教学重点:

  能根据实际生活情况解决有关圆柱表面积计算的实际问题。

  教学难点:

  灵活运用所学知识解决实际问题的能力。

  教学准备:

  与练习六中的练习相关的图片。

  教学过程:

  一、复习引入

  1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

  2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

  二、基本练习

  1、出示练习六第3题,理解表格意思。

  2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后交流方法和得数。

  三、巩固练习

  1、完成练习六第4题。

  ⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

  ⑵各自练习后交流算法。

  2、完成练习六第5题。

  ⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

  ⑵各自练习后交流算法和结果。

  3、讨论练习六第7题。

  ⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

  ⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

  ⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

  你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

  ⑷各自计算,算后交流算法和结果。

  ⑸如果要做10顶呢?怎么算?

  3、讨论练习六第8题。

  ⑴出示题目,让学生读题,理解题目意思。

  ⑵讨论:塑料花分布在这个花柱的哪几个面上?

  要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

  算出上面和侧面的面积后,怎么算?为什么?

  4、讨论解答练习六第9题。

  ⑴出示题目,读题,理解题目意思。

  ⑵尝试列式。

  ⑶交流算法:

  这题先算什么?再算什么?最后算什么?

  怎么算一根柱子的侧面积的?为什么不要算底面积?

  四、小结

  通过本节课的学习,你学会了什么?

  学生交流

  五、作业

  完成《练习与测试》相关作业

  板书设计

  圆柱的表面积

  圆柱的体积

  教学内容:教科书第25~26页的例4、“试一试”、“练一练”。

  教学目标:

  使学生经历观察、猜想、操作、验证、交流和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。

  培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  教学重点:

  掌握和运用圆柱体积计算公式

  教学难点:

  圆柱体积公式的推导过程

  教学准备:多媒体

  教学过程:

  一、复习引入

  1、呈现例4中长方体、正方体和圆柱的直观图。

  2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱的体积怎么算?

  3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、教学例4

  1、观察比较

  引导学生观察例4的三个立体,提问:

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2、实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的.想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3、推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式:

  圆柱的体积=底面积×高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  三、教学“试一试”

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  四、巩固练习

  1、做“练一练”第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2、做“练一练”第2题。

  说说为什么要从里面量?如果从外面量算出的是什么?

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  学生交流

  六、作业

  完成练习与测试相关作业

  板书设计

  圆柱的体积

《圆柱的表面积》教学设计6

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:

  圆柱侧面积的计算。

  教学难点:

  圆柱体侧面积计算方法的推导。

  教法运用:

  本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:

  采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:

  圆柱体教具、多媒体课件。

  学具准备:

  圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

  - 1

  四、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  五、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计

  圆柱的侧面积=底面周长×

  高→S侧=ch ↓

  ↑

  ↑长方形面积=

  长

  ×

  宽

  教学反思

  这节课,我在学生的`认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

《圆柱的表面积》教学设计7

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:圆柱侧面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:采取引导—放手—引导的'方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:圆柱体教具、多媒体课件。

  学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

  二、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  三、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

  圆柱的侧面积 =底面周长 ×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

《圆柱的表面积》教学设计8

  教学目标:

  (一)知识目标

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力目标

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点:

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备:

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学过程:

  课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?

  生:我想对老师们说,我们一定会好好表现的,不会让你们失望。

  生:我们的课堂将比赛场更精彩……

  师:我坚信你们一定不会让老师失望的。

  一、引入新课:

  师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

  生:圆柱是由平面和曲面围成的立体图形。

  生:我还知道圆柱各部分的名称……

  生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  课件演示这一过程

  师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

  师:你还想知道什么呢?

  生:还想知道怎么求它的表面积......

  师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知

  师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

  指名学生摸其表面积,并追问:怎样求它的表面积?

  生:六个面的面积和就是它的表面积

  师:怎样求圆柱的表面积呢?(学生分组讨论)

  学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

  1、圆柱的侧面积

  师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

  小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

  师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

  课件展示其变化过程。

  师生小结:(教师板书)侧面积=底面周长×高

  (评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)

  师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)

  投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。

  (1)学生独立解答

  (2)投影呈现学生的解答,并让其讲清自己的'解题思路。

  师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

  生:底面周长和高

  师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

  2、圆柱的表面积

  师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

  教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

  指名学生说解题思路,

  师:这说明要计算圆柱的表面积需要抓出哪两个量?

  生:底面积和侧面积

  师生小结:圆柱的表面积=底面积×2﹢侧面积

  3、反馈练习

  师:想一想,应该先求什么?再求什么?请大家动手试一试。

  4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

  三、全课小结:这节课你有什么收获?

  你有没有想提醒同学们注意的地方?

  生:要注意单位,还要注意所要求得圆柱有几个底面……

  最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)

《圆柱的表面积》教学设计9

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的.高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

《圆柱的表面积》教学设计10

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1.创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2.探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的'面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?

  学生自由发言,

  师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  第21页的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

  3.巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4.课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。

  (1)测量的数据

  (2)计算过程及结果

《圆柱的表面积》教学设计11

  教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。

  教学目标:

  1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。

  2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。

  3、能正确运用公式计算圆柱的侧面积和表面积。

  教学重点:

  1、理解圆柱侧面积和表面积的意义。

  2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

  教学难点:能正确计算圆柱的侧面积和表面积。

  教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。

  预习作业:

  1、预习课本第21-22页的例2、例3。

  2、掌握圆柱侧面积和体积的计算方法。

  3、在作业本上完成第22页练一练第1题、第2题。

  教学过程:

  一、预习效果检测

  1、圆柱的侧面积=

  2、什么叫做圆柱的表面积?

  3、圆柱的表面积=

  4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。

  二、合作探究

  (一)、教学例1

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的.什么有关?有什么关系?

  使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  如果知道的是底面半径,怎么算呢?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  根据学生回答板书:圆柱侧面积=底面周长×高

  4、练习:完成“练一练”第1题。

  (二)、教学例3

  1、出示例3中的圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。

  算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  (三)、全课总结

  这节课我们学习了什么?(板书:圆柱的表面积)

  三、当堂达标检测

  1、完成练习六第1题。

  2、完成练习六第2题。

《圆柱的表面积》教学设计12

  教学内容:六年级第十二册

  教学课时:第二单元第二课时 教学目标

  1、认识圆柱的表面积,理解圆柱表面积的含义.

  2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.

  3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.

  重点:认识圆柱的表面积,理解圆柱表面积的含义.

  难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:

  1、圆柱体教具一个

  2、学生每人准备圆柱形模型两个;

  剪刀;

  教学过程:

  一、复习引入

  1、圆柱有哪些特征?它各部分名称叫什么?

  2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.

  3、引入新课。

  二、新课教学

  (一)出示学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  (二)圆柱的侧面积

  1、出示自学提示:

  (1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?

  (2)、推导出圆柱体侧面积的计算公式。

  小组合作注意:组长负责次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  3、推导公式。

  侧面积=底面周长×高

  4、口答

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。

  (二)、圆柱的表面积

  1、出示自学提示:(1)、思考怎样求圆柱体的表面积?

  (2)、讨论:求圆柱体的表面积需要知道哪些数据?

  小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  3、推导公式。

  圆柱的表面积=底面积×2﹢侧面积

  (三)运用公式计算。

  1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。

  2、求上面各圆柱体的表面积(分步口答)

  3、出示例3 学生独立完成.指名板演,然后小组内交流。

  教师:注意,这里不能用“四舍五入”法取近似值.在实际生活中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的`十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫进一法.

  三、课堂小结

  大家回顾一下今天我们学了什么内容?计算时要注意什么? 《圆柱的表面积》教学反思

  屏南实验小学 韦 斌

  整个教学过程,学生兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;

  引导学生在应用中加深认识,形成能力。

  动手实践,主动探索和合作学习是学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。

  本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。

  教师为学生提供了基本题以及多向思维的,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。

  总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。

  学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  自学提示:

  1、认真观察自己手中的长方形,思考这个 长方形与圆柱体的哪一部分有关系?

  2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽 等于圆柱体的(),因为长方形的面积等 于(),所以圆柱体的侧面积等于()。

  自学提示:

  1、思考怎样求圆柱体的表面积?

  2、讨论:求圆柱体的表面积需要知道哪些数据? 小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  求下面各圆柱体的表面积

  求下面各圆柱体的侧面积。(只列式不计算)

  1、底面周长1.6米,高是0.7米。

  2、底面半径是3.2分米,高是5分米。

  3、底面直径是10厘米,高是25厘米。

  目标检测:

  一个没有盖的圆柱形铁皮水桶,高 是24厘米,底面直径是20厘米,做这 个水桶要用铁皮多少平方厘米?

  (得数保留整百平方厘米)

  拓展题:

  一个圆柱体的侧面展开是一个边长为 25.12厘米的正方形,求这个圆柱体 的表面积。

  给下面的物体分类。

《圆柱的表面积》教学设计13

  教学过程:

  一、导入

  1、圆的半径是5cm,圆的周长是多少?面积呢?

  2、长方形的面积的计算公式是:(说一说,做一做)

  3、长方体和正方体的表面积怎么计算的?(小组交流汇报)

  4、那么圆柱的表面积该怎么计算?

  二、新授

  (一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)

  2、圆柱的底面积你会计算吗?(圆形面积s=πr2)

  3、圆柱的侧面积你会计算吗?

  ①圆柱的侧面是什么形状?(长方形)

  ②圆柱侧面(长方形)面积=长方形的面积=长×宽,

  圆柱侧面(长方形)的长=?

  圆柱侧面(长方形)的宽=?

  ③圆柱的侧面积=?

  (组内观察交流讨论汇报说明理由)

  4、小结:圆柱的表面=圆柱侧面积×圆柱的高

  (二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)

  ①求需要多少面料,就是求帽子的……?

  ②厨师帽是由那几个面组成的?

  (三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?

  三、练习(练习二)

  四、总结

  通过本课学习你有哪些收获?

  五、知识拓展

  1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?

  2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?

  板书设计:

  圆柱的表面积

  圆柱的表面积=两个底面的面积+圆柱的侧面积

  圆柱的侧面积=底面周长×圆柱的高

  教学目标:

  1、通过已知长方体、正方体的'表面积迁移到圆柱的表面积。

  2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。

  3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。

  重点难点:

  1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。

  2、灵活运用圆柱表面积公式,解决生活实际问题。

  教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱

  预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?

  教学反思:

  在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。

《圆柱的表面积》教学设计14

  预设目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重、难点:

  1、理解和掌握圆柱体的侧面积和表面积的计算方法。

  2、培养学生科学的学习态度。

  教学过程:

  一、检查复习,引入新课。

  1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

  3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1、侧面积的意义和计算方法。

  ⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

  ⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)

  小组讨论:有什么好办法求出圆柱的侧积吗?

  ⑶剪一剪自制圆柱,汇报交流结果。

  ⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?

  它的侧面积正好等于底面周长乘高的乘积。

  板书:圆柱的'侧面积=底面周长×高

  ⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

  小结:计算圆柱体的侧面积的方法是什么?

  ⑹做一做:

  课本76页例1及77页的第一题。

  2、表面积的意义及计算方法

  ⑴自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  ⑵练一练:(小黑板出示)

  ⑶小结:

  圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

  三、巩固练习,灵活运用

  1、自学课本,书77页例3。

  ⑴分小组讨论;

  ⑵学生反馈。

  2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?

  3、只列式不计算。

  小黑板出示题目。

  4、实践练习

  ⑴小组合作:测量并计算自制圆柱形实物的侧面积。

  ⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?

  ⑶测量:测量所需的数据。

  ⑷计算:根据量得的数据。列出相应的算式并算出结果。

  四、课堂小结:

  说一说你今天学会了什么知识?

《圆柱的表面积》教学设计15

  【教学内容】

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  【教学目标】

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  【教学重点】

  掌握圆柱侧面积和表面积的计算方法。

  【教学难点】

  运用所学的知识解决简单的实际问题。

  【教学准备】

  多媒体课件

  【自学内容】

  学习提示:

  (1)长方体、正方体的表面积指的是什么?

  (2)圆柱的表面积指的是什么?

  (3)圆柱的底面积你会计算吗?侧面积呢?

  (4)你知道侧面的形状以及长、宽与圆柱的关系吗?

  【教学预设】

  一、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40平方厘米,侧面积是25平方厘米

  (2)底面半径是2分米,高是5分米

  二、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3、理解圆柱表面积的含义。

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的`表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4、教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.4≈20xx(平方厘米)

  5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习

  1、做第14页“做一做”。(求表面积包括哪些部分?)

  2、练习七第6题。

  四、分享收获畅谈感想

  这节课,你有什么收获?

  五、板书:圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  例4:①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想

  反思与体会

【《圆柱的表面积》教学设计】相关文章:

《圆柱的表面积》教学设计07-22

圆柱的表面积教学设计02-18

《圆柱的表面积》教学设计05-16

圆柱的表面积教学设计02-23

《圆柱的表面积》教学设计07-22

《圆柱的表面积》教学设计优秀09-24

圆柱的表面积教学设计推荐02-17

圆柱的表面积教学设计实用07-28

《圆柱体的表面积》教学设计07-22

圆柱的表面积教学设计15篇02-26