三角形的面积教学设计
作为一位优秀的人民教师,很有必要精心设计一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们应该怎么写教学设计呢?下面是小编精心整理的三角形的面积教学设计,希望能够帮助到大家。
三角形的面积教学设计1
【教学内容】
探索活动(二)《三角形的面积》教材第25页——26页
【教学目标】
知识目标:①使学生经历、理解三角形面积公式的推导过程。
②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。
【教学重点】
理解三角形面积计算公式,正确计算三角形的面积 理
【教学难点】
理解三角形面积公式的推导过程。
【课前准备】
三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。
教师准备多媒体课件一份、演示教具一套
【教学进程】
一 复习引入
1、出示课件
师:比一比,下面两个图形哪个面积大?
生:观察 比较 说说你是怎么比较的
师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。
2、回顾平形四边形面积公式的推导
师:谁能告诉老师平形四边形面积公式推导过程
生答后,师课件演示
师:在这个过程,我们运用了一个什么数学思想。
生:转化
师板书:转化
师:现在,我们已经掌握了几种图形的面积公式了呢?
生答后,师简要小结
3、设疑,引入新课
小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识
师板书:三角形的面积
二、探究新知
1、知识猜想
师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?
生讨论、作答(可能和底、高有关)
2、动手实践
一组学生拿出直角三角形学具
二组拿出锐角三角形学具
三组拿出钝角三角形学具
四组拿出任意三角形学具
剪一剪、拼一拼,你能发现什么?
师巡回检查、指导
3、实践汇报
各组汇报实践结果
一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。
二组:两个完全一样的锐角三角形也可拼成一个平行四边形。
三组:两个完全一样的'钝角三角形也可拼成一个平行四边形。
四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。
各组就实践汇报展开讨论。
4、演示总结
师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?
出示课件(演示1两个完全一样的三角形拼成平行四边形)
师引导生观察
(1)、拼成的平行四边形和原三角形面积有什么关系?
生:平行四边形面积是三角形面积的2倍。
(2)、平行四边形的底和高与三角形的哪些部分有关?
生:平行四边形的高等于三角形的高;
平行四边形的底等于三角形的底
师小结并板书
平等四边形的面积= 底 × 高
三角形的面积= 底 × 高 ÷ 2
出示课件(演示2一个三角形剪拼成平行四边形)
师:观察平行四边形面积与原三角形面积有何关系?
生:相等
师:平行四边形的底和高与三角形底、高有什么关系?
生:平行四边形的底等于三角形的底
平行四边形的高等于三角形的高的一半
师小结并板书
平行四边形面积= 底 × 高
三角形面积= 底 × 高 ÷ 2
三角形的面积=底×高÷2
字母表示: S=ah÷2
5、师生一起回顾三角形面积公式的推导过程
6、基本练习
师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?
生:能
师:好那大家帮他算一算
生解答,师巡回检查
强调:1、注意运用公式 2、注意面积单位
三、巩固检测
1、出示课件
师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?
生答、师订正
师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?
生独立完成
师统一订正
2、出示课件
师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?
生板演 师讲解订正
四、回顾总结
师:学完这节课,你都有些什么收获呢?
生讨论、作答
师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。
附:【板书设计】
三角形的面积
平行四边形面积 = 底 × 高
转化
三角形面积= 底 × 高 ÷ 2
S= a×h÷2
三角形的面积教学设计2
一、导入新课:
上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积
二、探究新知:
(一)操作引入
1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。
2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。
(二)公式推导
1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。
2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。
3、长方形的长与这个三角形的底是什么关系?板书
4、长方形的宽与这个三角形的高是什么关系?板书
5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。
6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?
7、操作验证(学生小组完成)
结论:等腰直角三角形的面积是拼成的正方形面积的一半。
钝角三角形的面积是拼成的平行四边形面积的'一半。
8、推导公式:生答:通过实验我们知道,等底等高的三角形是它所拼成图形面积的一半,所以三角形的面积=底×高÷2。
三、拓展练习
刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。
1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)
2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。
3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。
4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。
5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。
四、课堂小结
出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
1、你从这节课学到了哪些知识?
2、你认为计算三角形面积需要注意什么?
三角形的面积教学设计3
教学内容:
《探索活动(二)三角形面积》
教学目标:
在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。
教学重点:
三角形面积公式的建立;利用分割与旋转进行图形转化
教学难点:
三家形面积公式的概括;利用分割与旋转进行图形转化
教法设计:
教学媒体的准备:
学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。
教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。
教学过程设计:
一、温故孕新,提出问题
⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?
学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式
教师提问:谁能说一说平行四边形面积计算公式的推导过程?
学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。
(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)
⒉教师利用课件出示教材p25主题图
教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。
(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)
⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:
三角形面积
教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。
(设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)
二、观察对比,设想转化
⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,
预计学生可能提出以下两种方案
⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)
⒉教师利用电脑课件再出示一个平行四边形(如右图),
引导学生与三角形进行观察对比,
思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。
(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)
三、动手操作,体验转化
⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)
在转化过程中的三角形和平行四边形有什么关系?
教师引导学生分析思考的含义
⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。
⒊学生汇报探究的成果
预计有以下几种情况:
⑴拼:
①用两个完全相同的三角形拼成一个平行四边形
教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?
完全相同——形状,面积都相等(板书)
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
②通过割补把一个三角形拼成平行四边形
教师提问:为什么选择两条边的中点连线进行分割?
(原因:平行四边形的'对边相等)
总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。
教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⑵剪:将一个平行四边形剪成两个三角形
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?
学生思考,口述,
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)
(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)
四、建立公式,实践应用
⒈归纳公式
教师谈话:请同学们打开教材p25,学生阅读教材。
教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上
三角形面积=___________________________
如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:
s=_______________
学生思考,交流,填写,口述,教师板书
三角形面积=底×高÷2;s=ah÷2
⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?
⒊回归问题:
教师谈话:现在我们能求这个三角形的面积了吗?
学生重新审题,独立完成,口述,教师板书
4×3÷2=6(cm2);答:它的面积6cm2。
⒋巩固练习:完成教材p26试一试。
学生独立完成,板演,教师订正
(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)
作业设计:
⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。
⒉完成教材p26练一练第1题。
板书设计:(略)
三角形的面积教学设计4
教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。
学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。
教学目标
1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。
教学重点
在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
教学难点
培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。
学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。
教学过程
一、复习准备:
1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?
谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:
长方形的面积=长×宽。
平行四边形的面积=底×高。
2、出示红领巾。
(1)教师:这条红领巾是什么图形,它的.面积是多少?你能猜一猜吗?
(2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。
二、合作探究:
1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?
2、探究三角形面积计算公式。
教师:我们学习过哪些求面积的方法?(数方格和转化的方法)
教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。
①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)
②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)
三、探讨交流。
1、组织全班学生进行交流,说明推导公式的过程。
2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。
3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。
4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。
5、引导转化小组学生总结三角形面积的计算公式,同步板书:
两个相同的三角形=一个平行四边形。
平行四边形的面积公式=底×高。
三角形的面积公式=底×高÷2。
用字母表示公式:s=ah÷2。
6、教学例题2。
四、巩固练习。
(1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。
(2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?
三角形的面积教学设计5
教材分析
本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。
学情分析
学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。
教学目标
知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。
教学重点和难点
1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。
2、理解三角形面积计算公式的推导方法。
教学过程
一、 创设情境,导入新课
1、 同学们,上一节课我们学习了平行四边形面积的计算你还能记住求平行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?
2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。
板书:三角形的面积
二、 讲授新课
1、上节课,我们在研究平行四边形的面积公式时,是把平行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?
2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?
(锐角三角形、直角三角形、钝角三角形)
3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?
4、拼图推导公式,按三角形类别的不同,可以有以下几种方法
⑴、两个完全一样的锐角三角形
提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?
两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形面积的2倍,因为平行四边形的'面积等于底乘以高,所以三角形的面积等于底乘以高除以2。
老师把图形贴在黑板上,再请说推导过程,并板书:
平行四边形的面积= 底 × 高
三角形的面积= 底 × 高÷2
⑵、两个完全一样的钝角三角形
两个完全一样的钝角三角形拼成一个平行四边形
⑶、两个完全一样的直角三角形
两个完全一样的直角三角形拼成一个长方形。
5、小结:我们用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?
板书:s=ah÷2
三、巩固练习
5、练习:出示教材第85页的例2,请学生独立完成,指明板演。
6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。
四、课堂小结
提问:这节课我们探索了那些知识?学到了些什么?
这节课我们主要通过用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。 这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
五、思维拓展
教材第87页第6题。
六、布置作业
教材第87页第3题。
三角形的面积教学设计6
教学内容:
人教版义务教育课程标准实验教科书五年级上册第84—86页。
教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、
教学目标:
1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的探索过程。
教具准备:
课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程
一、复习旧知,导入新课。
1、我们学过求哪些图形的面积,计算公式是什么?
2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。
3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?
师:是的,要先计算一条红领巾的`面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。
二、动手操作,探求新知。
1、 猜一猜。找关系
师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?
生:和它的底和高有关。
2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?
2、 想一想。找关系
师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?
3、 拼一拼,摆一摆,比一比。找关系
师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。
学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。
汇报。可能摆出正方形,长方形,平行四边形,
思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?
归纳:两个完全相同的三角形,可以拼出一个平行四边形。
师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?
引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?
4、 画一画,算一算。找关系,得结论。
师:请同学们画出平行四边形的一条高,你发现了什么?
生:平行四边形的高也是三角形的高,底也是三角形的底。
师:那么,我们刚刚得出的结论还可以怎样写?
三角形的面积=底×高÷2
用字母表示三角形的面积。
5、 应用公式,解决问题。
现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。
教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?
学生独立计算,集体订正。
三、练习巩固。
1、 独立完成85页做一做。
2、 完成86页练习的1、题。
3、 完成86页练习的3题。
4、判断下列说法是否正确。
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。( )
(5)两个三角形一定可以拼成一个平行四边形。( )
5、求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。
四、拓展提高:
1、这节课,你有什么收获?还有那些不懂的地方?
2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?
五、板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
三角形的面积教学设计7
教学内容:
人教版五年级上册第五单元第84~87页内容
教学目标:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:
理解三角形面积公式的推导过程。
教学准备:
多媒体课件、三角形学具。
教学过程:
一、创设情境,引出课题
课件出示一个平行四边形。
师:这是什么图形,你会计算它的面积吗?说一说怎么算。
根据学生的回答,板书:平行四边形的面积=底×高
师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?
学情预设:学生一般有以下两种分法:
师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?
学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。
师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)
师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)
师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:
从不会计算面积的图形中揭示课题,激发学生的探究兴趣。
板书课题:三角形的面积
二、自主探索,得出公式
1、动手实验。
师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。
学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。
【设计意图】:
给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。
2、学生代表上台演示汇报
师:你是如何推导出三角形的面积公式的?谁来给我们演示?
演示一:把两个完全一样的三角形拼成平行四边形。(如下图)
师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?
根据学生的回答,教师板书如下:
三角形的'面积=平行四边形的面积÷2=底×高÷2
展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)
师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。
根据学生的回答,教师板书如下:
三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积
(1)计算红领巾的面积
师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)
(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。
(学生练习后讲评订正)
(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))
师:都是这样做的吗?为什么不用3.2×3÷2呢?
(因为3.2分米不是3分米对应的底。)
师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?
(3.2×3.75÷2)
师:通过这道题的解答,你明白了什么?
师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。
师:请看屏幕。(多媒体出示)
师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示各标志的含义)
师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
【设计意图】:
通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
(学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)
五、布置作业:
课本P86--87页第2、4、5题
三角形的面积教学设计8
教学目标
及重点难点
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学准备(含资料辑录或图表绘制)
板书设计
教后记
教和学的过程
内容教师活动学生活动
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的`乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。
三角形的面积教学设计9
教材分析:
三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。
设计思路:
本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。
采取小组学习的.教学形式,为学生营造一种宽松、自由的探索氛围。
教学准备:
1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;
2、 量具一张,铅笔一支,剪刀一把;
3、 视频展示台、电脑、实物投影仪。
教学过程:
一、揭示课题
师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?
我们是怎样发现这一计算公式的?
①学生回忆公式推导过程。
②电脑动画演示。
小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。
揭示课题——三角形面积的计算
二、探究新知
1、学生操作
每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。
a、 学生动手操作;
b、老师巡视。
学生把自己的发现用教具贴在黑板上。
2、汇报、交流
师:观察这些图形,你发现了什么?
a、 学生在小组内互相说。
b、指名说。
3、推导公式
师:根据你们的发现,你能推导出三角形面积的计算公式吗?
学生小组讨论,说说自己是怎样推导的。
教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。
4、小结
刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。
说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?
板书:三角形的面积=底×高÷2
=a h÷2
附板书设计:(略)
三角形的面积教学设计10
教学目标
1、通过画图、观察、思考和计算,引导学生进一步体会三角形面积与它等底、等高的平行四边形的关系。
2、让学生看图计算面积或先在图中测量必要的数据后计算面积,并应用公式解决简单的实际问题、发展空间观念。
教学重难点
应用公式解决简单的实际问题
课前准备
小黑板和多媒体展台
教学过程
一、复习导入
1、口算:书P(17)、4
(口算卡片出示)
2、复习计算公式:
(1)三角形面积的计算公式是怎样的?字母表达式呢?
(2)为什么要“÷2”?拼成的平行四边形的两个三角形有什么关系?(板图)
(3)拼成的平行四边形的底和高与三角形的底和高有什么关系?
(4)中一个三角形的面积与平行四边形的面积有什么关系?
3、揭题“三角形面积的计算”。
二、探究新知
1、完成练习三P(17)、5
(小黑板出示)
(1)、问:平行四边形的面积计算公式是怎样的?平行四边形的面积与什么有关?
(2)、观察、思考:图中哪几个三角形的面积是平行四边形面积的一半?为什么?(可采用小组讨论的方式)
(3)、汇报、交流,师适当提示小结。
2、完成练习三P(17)、6
(1)鼓励学生独立画图。
(2)思考:
A、每个小方格表示1平方厘米,你还知道些什么?
师生活动
思考与调整
B、画出的三角形的面积是9平方厘米,那么三角形的底和高必须满足什么条件?
C、要使底和高的乘积是18,底和高分别是多少呢?
(3)、师适当小结。
3、补充习题(小黑板出示)
有一块三角形菜地。底是20米,高是18米,王师傅打算每平方米种4棵大白菜,这块菜地一共可收成多少棵大白菜?
(1)、让生试做。
(2)、让生说说解题思路。
(3)、集体订正。
4、完成练习三P(18)、9
问:测量时要注意些什么?
明确:红领巾要拉直,高的'确有讲究,一次不够测量要注意,要有人记录数据。
5、完成练习三P(18)、10
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
6、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
三、巩固深化
全课小结。
作业:练习三P(18)7、8
教学得与失:
课题
梯形面积的计算
三角形的面积教学设计11
教学目标:
1、知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)
教师提出问题:
⑴红领巾是什么形状的?(三角形)。
⑵你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。
板书:三角形的面积
[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]
二、探索新知
1、寻找思路:(出示一个长方形)
师:(1)长方形面积怎样计算?
(2)怎样可以把这个长方形平均分成两份?
有三种方法:
方法一:方法二: 方法三:
师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)
每个三角形面积与原长方形的面积有什么关系?
[设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
生:长方形的面积=长×宽
生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。
板书:三角形的面积=底×高÷2(直角三角形)
师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]
2、分组操作、讨论,合作学习。
(1)提出操作和思考要求。
学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。
小黑板出示讨论问题:
①用两个完全一样的三角形拼一拼,能拼出什么图形?
②拼出的图形的面积你会计算吗?
③拼出的图形与原来三角形有什么联系?
(2)学生以“四人小组”为单位进行操作和讨论。
[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]
平移
旋转180°
合拼
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)
[设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]
(3)学生上讲台板演。
①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形) (两钝角三角形) (两直角三角形)
平行四边形平行四边形长方形
②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过动手操作,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)
师:每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:每个三角形的面积是拼成的平行四边形的面积的一半。
生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)
[设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]
3、讨论与归纳公式
(1)讨论:(小黑板出示问题)
①、三角形的底和高与平行四边形的底和高有什么关系?
②、怎样求三角形的面积?
③、你能归纳出三角形的面积计算公式吗?
[设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的.理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
(2)归纳公式。
学生讨论、汇报:
因为:三角形面积=拼成的平行四边形面积÷2
所以:三角形面积=底×高÷2
教师板书:三角形面积=底×高÷2
师:为什么要除以2?
生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半
师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书:s=ah÷2
[设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]
4、看书质疑。
师:你能说说,课本中是怎样得出三角形的面积计算公式的?
(充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)
师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?
如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)
三、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1、计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
生:……
师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?
学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)
12.5 cm
2、独立完成p85做一做。
学生板演,教师点评。
[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
四、深化理解、应用拓展
1、课本86页的练习第1题。 (课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?
(先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)
3、判断题
(1)三角形面积是平行四边形面积的一半。 ( )
(2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。 ( )
4dm
2。5dm
3dm
4、求右图三角形面积。
(要计算上图的三角形面积,强调三角形的底和高一定是对应的。)
5、课本86页第3题:已知一个三角形的面积和底
(如右图),求高。
师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?
(生讨论汇报,再计算、反馈。)
6、做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?
[设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
五、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说图意:
生:……
师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。
[设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]
六、课外作业
课本第87页“练习十六”第5、6、7题。
板书设计
三 角 形 的 面 积
平行四边形的面积=底×高
s=ah÷2
=100×33÷2
=1650(cm)
三角形面积=底×高÷2
s=ah÷2
教学反思:
本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。
一、小组结合动手操作
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。
三、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。
三角形的面积教学设计12
教材简析:长方形、正方形、平行四边形、三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系,而且在推导面积计算公式的过程中也有着密切的联系。三角形面积的计算是学生在充分认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其公式推导的方法与平行四边形面积计算公式的推导方法有相似之处,都是将图形转化成已学过的图形,探索研究未知图形与已学图形之间的联系,从而找出面积的计算方法。几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径,学生掌握了三角形面积的计算方法和获取这些知识的能力后,又为进一步学习梯形面积、圆的面积打下了良好的基础 。
教学内容:人教版小学数学第九册第69—73页《三角形面积的计算》。
教学目标:
1、认知目标
经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标
通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、 情感目标
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学媒体:多媒体课件、实物展示台等。
教学准备:剪刀、方格纸、长方形、平行四边形、各种不同类型的三角形等 。
教学过程:
一、 创设情景,引入探索。
师:同学们想不想到王老师生活的城市和学校的绿化带去参观一下?好,请跟我来!(点击课件出现各种形状的花坛其中包括三角形的花坛,最后画面定格在学生们测量花坛的情形中)咦?这些同学遇到了什么问题?原来他们想知道这些花坛的面积,那我们能不能帮帮他?
生:能(学生踊跃回答,但在回答三角形的花坛面积该怎样求时出现了疑问)
师:同学们想不想知道这个三角形花坛的面积啊?(想)那就得知道应该怎样求三角形的面积呀?我们这一节课就一起来探究这个问题好吗?(教师板书课题:三角形面积的计算)
[教学一开始,教师给学生提供了学校校园场景,让学生从场景中发现问题、提出问题,引出长方形、平行四边形的面积公式及计算方法,并让学生说说平行四边形面积公式的推导过程。当学生说出三角形花坛要求出三角形的面积时,很自然地引入了课题,激起了学生探究新知的欲望。]
二、自主探索,合作交流。
师:上一节课我们通过自主探索已经找出了平行四边形面积的计算方法,大家可以从中得到一些启发,这一节课我相信只要你们继续发挥自己的聪明才智就一定可以自己找到三角形面积的计算公式。
1、谈话启思。
师:请大家拿出你们课前所寻找到的你们认为实验需要的素材,自行确定研究方案,希望同学们发挥自己的想象,可以拼,可以折,还可以摆。小组里的同学可以互相合作、讨论,看哪一些小组能找到三角形面积的计算方法。讨论结束之后我们将开一个现场发布会还要颁发小组和个人的“杰出发现奖”!
[让学生在课前寻找需要实验的素材,课中自行确定其研究方案,真正实现了根据学
生的需求进行教学,充分发挥了学生的主观能动性]
2、操作探索。
(1)小组合作探索、操作。
(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)
3、开始现场发布会,展示学生的`拼摆情况。
师:好,大家刚才的讨论热烈而认真,我看到很多小组都已经找到了三
角形的面积计算方法那我们就来现场发布吧!哪个小组先来把你们的成果展示给大家?好,你们先来。(学生在实物展示台上进行展示)
生:我们小组是用数方格的方法找到三角形的面积。
师:那你们是如何数的呢?
生:方格纸上每一格代表一平方厘米,不满一格的按半格数,所以我们数出这上面的三个三角形面积都是24平方厘米。
师:恩,可以,数方格也是一种方法,让我们来看一下电脑博士是怎么说的?(点击课件,通过动画展示数方格的过程)数的很正确!哦?别的小组有不同意见?
生:我们认为这种方法太麻烦!如果三角形面积再大一点的话就不好使用了。
师:这么说你们有更好的方法?好先请这一组的同学先上位,你们来展一下你们的成果,怎么样?
生:好,我们拿的是两个完全一样的锐角三角形
师:你们怎么知道它们完全一样呢?
生:因为如果把它们叠在一起的话,会发现它们完全重合,然后我们将其
中的一个三角形进行旋转,会拼成一个平行四边形。
师:哦!你们真善于发现!那你们的结论是什么呢?
生:我们还发现这个拼成的平行四边形的底等于这个锐角三角形的底。高 等于这个三角形的高。因为每个锐角三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个锐角三角形的面积=底×高÷2
师:哇,你们说的太好了!老师一定要拥抱一下你们!我们一起来看看电脑博士是怎么说的?(课件演示整个重合→旋转→平移的过程,并说出推导过程)恩,和电脑博士说的一样,你们真不简单!老师要颁发给你们一个杰出发现奖!同学们为他们鼓掌祝贺吧!并把你们的成果贴在黑板上。其他小组也要来展示,好,你们小组来。
生:我们用的是两个完全一样的钝角三角形,也可以拼成一个平行四边形,推导过程跟上一组一样,我们的结论是钝角三角形的面积=底×高÷2 师:好的,我们来看一下电脑里有没有这种方法?(课件演示)你们的方法也很好。
生:我们小组是用两个完全一样的直角三角形也可以拼成一个平行四边形,我们的结论是直角三角形的面积=底×高÷2
生:我们小组用的同样是直角三角形,但我们拼成的是一个长方形。这个拼成的长方形的长等于三角形的底,长方形的宽等于三角形的高,所以直角三角形的面积=底×高÷2,并且我们还发现如果我们用两个完全一样的等腰直角三角形还可以拼成一个正方形,但结论也是一样的
生:我们小组是用一个平行四边形。沿着对角线将它分成两个完全一样的三角形,这一个三角形的面积=底×高÷2
生:我们是用一个长方形沿着对角线将它分成两个完全一样的 直角三角形,结论也是三角形的面积=底×高÷2
[点评:教师放手让学生去发现,并让学生充分发表自己的观点,各抒己见,学生们的积极性已经完全被调动起来了。教师在课堂上,及时点拨、鼓励学生,学生的个性得到了充分的张扬,创造思维能力也得到了很好的培养。]
师:好,同学们你们真了不起!找到了这么多的方法,如果大家觉得还有什么好办法,我们可以在下一节实践活动课继续讨论。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形可以拼成一个平行四边形,(将平行四边形的贴图贴在黑板上)而平行四边形也可以分成两个完全一样的三角形(将三角形的贴图贴在黑板上)这种方法在数学上叫做转化法
板书:平行四边形的面积=底×高 三角形的面积=底×高÷2
如果用字母S表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?(板书:S=ah÷2)
3、评价体验。
师:你们通过自己的努力找到了三角形面积的计算方法,老师也为你们自豪!瞧,连智慧姐姐也来到了我们的课堂,(动画演示)她带来了一些问题想考考大家,你们愿不愿意接受这样的挑战?
生:愿意!
四、实践运用,拓展创新。
1、 先指出下面每个三角形的底和高,再分别算出每个三角形的面积。
2、 根据题中所给的条件,你能算出下面哪个三角形的面积?
3.先指出下面每个三角形的底和高,再分别算出它们的面积。
[这组练习题,着重训练学生正确判断三角形的底和高,并有意识地把斜边当作高,让学生辨别,可以增强学生的判断能力。第2题的图形可以有多种方法计算面积,但是必须是这个图形的底和相应的高。这些练习题对于培养学生空间观念是十分有益的。] 下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?
4.你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?
五、质疑调节,总结延伸。
师:通过这节课的探索学习,你有什么收获?
生:我们知道了三角形的面积计算方法,还会用它来进行计算。
生:这节课我们通过自己动手动脑得出来了三角形的面积公式,我真是太高兴了!
[在探索学习活动中,培养学生的探索意识、合作意识和创新意识。体会数学问题的探索性,并获得积极的、成功的情感体验。]
六、布置作业,课后探索。
1、 我们的红领巾是先烈们用自己的鲜血染成的,现在你知道怎样求一条红领巾的面积了吗?
2、 当小小设计师:你能为学校的操场设计一个绿化面积是15平方米的三角形花坛吗?请你以厘米为单位在图中空白处设计绿化带,看谁设计的合理漂亮。
[3、 在拓展练习中,一方面注重以巩固本节课所学的知识为重点,另一方面又注意联系学生的生活实际,量红领巾底和高求红领巾面积,为学校的操场设计一个三角形花坛等实践活动,培养学生运用三角形面积计算公式解决简单实际问题的能力。]
教后反思:
《数学课程标准》中指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,教师应该让学生在具体的操作活动中进行独立思考,发现问题、提出问题,并与同伴进行交流。几何初步知识的教学,要求教师引导学生通过观察、测量、拼摆等实验活动,达到掌握图形特征和面积计算的方法,培养学生的空间观念。按照这一教学理念,在《三角形面积的计算》整个课堂教学过程中,我采取了操作、讨论、讲解、归纳的方法,让学生既掌握三角形面积计算公式的推导过程,又学会运用转化的思想方法探索规律,从而培养学生应用旧知识解决新问题的能力。具体表现在以下几点:
1、创设问题情境,激起学生探究欲望。
教学一开始,先复习了平行四边形的面积公式及计算,并让学生说说平行四边形面积公式的推导过程。然后教师拿出两个大小不一样的三角形,问:这两个三角形哪个面积大?学生显然能直接看出哪个三角形的面积大,接着教师跳跃性地提出问题:“大多少?”激起学生探究的欲望,让学生主动提出必须先算出三角形的面积,自然而然地引入课题:三角形面积的计算。
2、加强学生动手操作、合作交流。
新课程标准中要求学生尽可能多的参与知识形成的过程。因此,教学中不能只通过简单的试验观察就说明每种图形的计算方法,教师要善于创设研究问题的情境,充分利用和创造条件,引导学生在参与研究知识的形成过程中,自己想问题、寻方法、得结论。三角形面积公式的推导,是适合学生探究的学习材料,因此,本堂课我设计了两个实验来探索三角形面积的计算方法。实验一:让学生把长方形和平行四边形剪成两个完全一样的三角形,思考并分析三角形面积与原来图形面积的关系,学生发现一个三角形的面积是原来长方形或平行四边形面积的一半。实验二:要求学生动手做实验,在每个方格表示1平方厘米的方格纸上剪出两个完全一样的三角形,用这两个三角形拼拼试试,让学生动手操作时,一方面启发学生把三角形转化为已经会计算面积的图形,另一方面引导学生主动探索三角形与所拼成的平行四边形之间有什么样的联系,并通过填表、观察,发现规律,找出面积的计算方法,这样学生在理解的基础上掌握面积的计算公式,创造思维也得到了很好的发展。
3、运用多媒体技术,激发学生学习兴趣。
在学生动手操作把两个完全一样的锐角三角形拼成一个平行四边形时,先让学生自己说说是怎样拼的,然后用计算机动态演示拼的过程,“重合、旋转、平移”,使学生直观地感知平移和旋转的含义及其对图形的位置变化的影响,充分调动了学生的学习兴趣,发展了学生的空间观念。在练习设计中,让学生观察、比较两个三角形的面积是否相等,然后把其中一个三角形的顶点在平行线上移动,使学生清楚地看出,等底等高的三角形形状不同,但是面积都相等,运用了多媒体技术能有效地化静态为动态,化抽象为具体,化难为易。
总之,在课堂教学中,教师要真正地把创造还给学生,使课堂焕发生命力,才能让教育成为充满智慧的事业,才能有效地使学生学会学习,学会发展,学生创造。
总评:
《数学课程标准》中强调:让学生在活动过程中体验数学、经历数学,逐步“会学”,发展学生的思维。学生参与了动手实践、合作交流,达到让学生自主学习,自由探索的效果。正如数学教育家波利亚所说的:“学习任何知识的最佳途径,都是由自己去发现、探索、研究,因为这样理解更深刻,也最容易掌握其中的内在规律、性质和联系。”
王伟老师整节课的教学具有开放性和指导性,在教学中教师所采用的数学素材,是学生熟悉的、经历过的内容,不仅激发了学生的学习兴趣,激活了学生的生活经验,也激起了学生的探索欲望,调动了学生的思维,形成跃跃欲试的态势,促进了学生探索意识的形成。学生探索的素材,是学生课前自己寻找的所需要实验的素材,在课中由学生自己自行确定其研究方案,真正实现了根据学生的需求进行教学。学生参与的每一个活动,每一次讨论,每一个思考都是自觉的展开与进行的,充分体现了学生的主体性,从而使学生成为数学知识的主动建构者,实现了师生的有效互动,王伟老师的数学课堂成为了学生发展自我、张扬个性的天地。
三角形的面积教学设计13
【教学内容】:
人教版五年级上册第六单元第91~92页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:
理解三角形面积公式的推导过程。
【教学准备】:
每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。
【教学过程】:
一、汇报演示
师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?
师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?
师:为什么买这一块呢?
师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?
师:谁能说说三角形面积怎么求:三角形面积=底×高÷2
师:为什么它的面积是底×高÷2呢?
生:到前面展示三角形拼平行四边形过程。
夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。
师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?
师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?
师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?
师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。
(一)判断题。
1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。
2、两个完全一样的直角三角形一定可以拼成正方形。
3、面积相等的两个三角形一定等底等高。
(二)选择题。
1、下面平行线间的3个三角形大小关系正确的.是()
A、ABC面积大B、BCD面积大C、BCE面积大D、同样大
2、求右图中三角形面积正确列式为()
A、4.8×5÷2B、4×5÷2C、4×4.8
师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!
(三)解决问题
1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。
一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?
一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?
拓展延伸:
思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?
思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?
思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。
如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?
三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?
三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?
三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?
三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?
三角形的面积教学设计14
教学内容:
三角形的认识
教学目标:
1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的不同给三角形分类。
2.培养学生观察能力和动手操作能力。
教学重点:
正确认识三角形及其分类。
教学难点:
正确掌握画三角形高的方法。
教学过程:
一、联系生活,课前调查
课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片。
二、创设情境,导入新课
1、课件出现教材情境图,说说在图中看到了什么图形。
2、让学生说说生活中见到的三角形
投影展示:学生展示收集到的.有关三角形的图片。
3、演示课件三角形出示下图
4、导入新课
教师导入:看来生活中的三角形无处不在.关于三角形你还想了解它什么?
整理学生发言,并提出以下学习目标
(1)什么叫三角形?
(2)三角形有哪些特征?
(3)三角形具有什么特性?
(4)三角形怎样分类?
今天我们就一起来认识三角形。(板书课题:三角形)
三、师生互动,引导探索
1、教学三角形的意义。
(1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并
互相交流一下,知道了什么?
(2)继续演示课件三角形
教师:看一看哪组和你摆的一样,它们是三角形吗?
(3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?
(4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成
的。(板书:围成)
(5)揭示概念
教师启发同学互相补充,口述三角形的含义。(教师板书)
(6)练一练:继续演示课件三角形
2、教学三角形的特征
(1)自学:①三角形各部分名称叫什么?
②三角形有几条边、几个角、几个顶点?
(2)继续演示课件三角形出示三角形各部分名称。
教师提问:什么叫三角形的边?三角形有几条边?
同桌讨论:这些三角形都有哪此共同的特征?
三角形的面积教学设计15
教学内容:
九年制义务教育课本数学五年级第一学期p84—85。
教学目标:
1、理解三角形面积计算公式的推导过程。
2、 掌握三角形面积的计算方法。
3、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力。
4、培养学生在生活实际中发现问题、独立思考、创新思维,用旧知识转化为新知识来解决新问题的能力。
教学重点:
理解三角形面积计算公式的推导过程。
教学难点:
理解三角形面积是同底(长)等高(宽)长方形面积的一半。
教学准备:
教学软件、三角形学具。
教学过程:
一、复习铺垫。
1、数一数下图中有几个直角三角形。
2、我们学过计算哪些图形的面积?(长方形和正方形)
怎么计算他们的面积?
根据学生回答板书:
正方形的面积=边长×边长
长方形的面积=长×宽
3、出示:你会计算它的面积吗?
10 3
4 4
103 10
想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。
二、创设情景,引入新课。
师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建“绿色学校”的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?(电脑演示)
根据学生回答板书:三角形面积
师:你会计算它的面积吗?你会计算那些图形的面积?
师:能不能把三角形转化成学过的图形呢?
二、动手操作,推导公式。
1 请学生从老师提供的材料中,任意选取一个或两个三角形,以小组为单位,通过剪一剪、拼一拼、折一折,看能不能把三角形转化成我们已经学过的图形。
根据学生汇报媒体演示:
(1)两个直角三角形拼成一个长方形。
(2)两个锐角三角形剪拼成一个长方形。
(3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。
2 师提问:
(1)拼成的长方形面积与原来每个三角形的面积有什么关系?
(2)长方形的长和宽分别是原三角形的那部分?
媒体演示后板书:s长= 长× 宽
s三=底 × 高÷2
(3)三种情况的分析。
钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的'方法转化成长方形?
学生讨论后交流,演示。(电脑演示)
对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。
3 师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。
师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?
媒体演示:
(1)将一个直角三角形折成长方形。
(2)将一个锐角三角形剪拼成长方形。
都同样得出三角形的面积=底 × 高÷2。
师:如果用母s表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作s= a×h ÷2。
问:同学们,根据公式,要求三角形的面积需要知道哪些条件?
(三角形的底和高)
三、公式运用,巩固练习。
1 通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?
媒体演示将土地标上底和高,请学生算出面积。
2 再请大家看这一题。
出示例1 一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。
指导学生的书写格式。
学生尝试练习,再看书核对。
3 计算下面三角形的面积。(单位:厘米)
1212 20xx
7
14 8 10
4.拓展练习。
电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。
问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。
四、总结。
今天同学们通过自己动手,学会了什么?
附板书:
三角形的面积
s正=a×a
s长= 长× 宽
s三= 底× 高÷2
s = a×h ÷2
【三角形的面积教学设计】相关文章:
三角形面积的教学设计02-23
三角形面积教学设计03-16
《三角形的面积》教学设计06-15
三角形的面积教学设计03-28
《三角形的面积》教学设计03-08
三角形的面积教学设计范本03-08
三角形的面积教学设计优秀03-14
三角形的面积教学设计【精】04-05
三角形的面积教学设计优秀03-13
【热】三角形的面积教学设计04-05