《有理数》的教学设计
作为一名辛苦耕耘的教育工作者,时常需要用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。一份好的教学设计是什么样子的呢?下面是小编帮大家整理的《有理数》的教学设计,希望对大家有所帮助。
《有理数》的教学设计1
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的.重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标
1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:
(1)答错3题时:
(-4)+(-4)+(-4)=-12分
(2)答对5题时:4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
《有理数》的教学设计2
教学目标
1,经历探索有理数减法法则的过程;
2,理解有理数减法法则,渗透化归思想;
3,能较为熟练地进行两个有理数减法的运算;
4,能解决简单的实际问题,体会数学与现实生活的联系.
教学难点
1,通过实例引人有理数减法的法则;
2,转化过程中两类符号的改变.
知识重点有理数的减法法则,减法转化为加法的条件,把减数变为它的相反数。
教学过程(师生活动)设计理念
设置情境
引入课题同学们,在前面的学习中,我们知道生活中有许多地方需要用到有理数的加法,那么请同学们想一想,生活中有没有需要用减法的呢?
(学生思考,举例)小明同学前段时间就碰到过这样一个问题:某地一天的气温是一3~4℃,求这天的温差,可是他不会算,同学们能帮助他解决
这个问题吗?—提出课题.创设一个小明需要解决的问题情境,让学生主动地参与思考与探索。
分析问题
探究新知多媒体显示温度计及以下案例:
小红说:“我知道-3 ~ 4℃这一天的温差是多少度,
但我不知道4-(-3)该怎么算.”
问题1:你能从温度计上看出4℃比-3℃高多少摄
氏度吗?
先请同桌两位同学相互讨论交流,然后请2~3个学
生发言.
问题2:如何计算4-(-3)呢?
先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数
如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.、
即X+(-3) =4,因为7+(-3) =4,所以4-(-3) =7
(板书上述几个步骤,最后一步用彩色粉笔写出)
这时,教师可适时小结:
刚才,我们用多种方法得出了4- (-3) =7,可是,如果每次进行减法运算都要这样做的话,太麻烦了;看来我们还要继续努力,争取找到更简洁的方法.
问题3:请同学们想一想,4十?=7?
请学生回答,教师板书:4+(+3) = 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:
4(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?
学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:
1,把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
2,计算9-8,9+(一8),15一7,15+(一7),你发现了什么?
请小组代表全班汇报,教师在此基础上归纳:
有理数减法法则:减去一个数,等于加上这个数的相反数.
问题4:你能够用字母把法则表示出来吗?
[a-b=a+(-b)]
允许学生从不同角度观察得出温差为7℃,如
采用温度计从4℃数到零下3℃等,只要学生的方法合理,都应效励.
此处先让学生回顾加法与减法互为逆运算关
系,有助于学生理解4-(-3)=7.
通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。
此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆。
解决问题例1即教科书第27页例5.
先请学生思考并尝试解决,然后教师板书规范解答
之后引导学生反思:“通过这几道题目的计算,你能发现什么?”
(1,有理数的减法可以转化为加法;2,减正数即加负数,减负数即加正数。)
例2世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的.海拔高度大约是-155米,两处高度相差多少米?
请学生思考后,解决此问题(可请一名学生板演)
想一想:8848米有多少层楼高?渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。
让学生感受8848米这个高度,培养学生的数感。
课堂练习引导学生思考并讨论教科书第28页的“思考”
教科书第27页的练习
小结与作业
课堂小结通过这节课,你有什么收获?
本课作业教科书第31页习题1.3第11题
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.
2,在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。
《有理数》的教学设计3
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的`关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
《有理数》的教学设计4
教学目标:
1、在正数,负数及对小学里数的认识的基础上,经历探索有理数范围内的整数,分数的意义的过程,学会通过举例理解相关概念,会区分整数(正整数,零和负整数),分数(正分数和负分数)、
2、知道整数和分数统称为有理数,初步认识集合、
新知重难点:
重点:探索有理数范围内的整数,分数的意义、
难点:会区分整数(正整数,零和负整数),分数(正分数和负分数)、
教学过程:
一、新知生长点(这个环节:新知是建立在哪些已学知识点和相应知识点复习呈现的方法设计)
1、正数与负数
请任意写出3个正数,3个负数,并说明正数,负数的区别与联系、
方式:让学生动手写出后,举手回答、
强调:0既不是正数,也不是负数、
2、小学学过的数
你知道小学学过哪些数
方式:让学生独立思考动手写出名称,并举例、1分钟后,小组汇总展示、
讲解:自然数是整数,小数都可以化为分数、
二、新知探究点(这个环节:新知有哪些需要探究的知识点和相应知识点探究的方法设计)
1、整数与分数
由于负数的加入,现在的整数又指哪些数呢分数又指哪些数呢
(1)初中里你又学到了哪些数请举例说明、
(2)你能给小学里的整数(0除外)与分数取个新名吗
讲解:事实上小学里的数都是0或正数,为区分我们规定:
正整数:1,2,3,零:0、____
负整数:—1,—2,____
正分数:____,____,3、14,____
负分数:—____,—6、4%,____
强调:0是整数,不是分数;整数与分数统称为有理数,"统称"是指合起来总的名称的
意思;到现在为止我们学过的数都是有理数(圆周率π除外)、
巩固练习:
▲Ⅰ同座两生合作(也可以老师说出一些数,让学生判断):一人说名称,一人写相应的数、
▲Ⅱ判断题:
(1)0是整数,不是分数;(2)正数和负数统称为有理数;
(3)0是最小的.有理数;(4)整数和分数统称为有理数;
(5)自然数一定是正整数;(6)正整数和负整数统称为整数、
反思:小学学了0,正整数,正分数;初中学了负整数,负分数;
有理数可分两大类:整数与分数;有理数也可以分三大类正数,0,负数、
2、集合
讲解:把一些数放在一起,就组成了一个数的集合,简称"数集",、
注:这里集合概念只作简单描述,学生明白即可,不要加深、
集合一般用圆圈或大括号表示,因为集合中的数是无限的,所以要加上省略号、
巩固练习:教材P10练习、
三、新知检测点(这个环节:新知有哪些需要当堂检测的知识点和相应的题目的设计)
会区分整数(正整数,零和负整数),分数(正分数和负分数)、
1、—20xx不是()
A、有理数B、自然数c、整数d、负有理数
2、分别写出满足下列条件的数:
(1)三个负整数:____,____,____;三个负分数____,____,____ 、
3、下列说法中正确的是()
A、 —3、14是负分数,不是有理数B、 0是有理数,不是整数
c、 0既不是正数,也不是负数d、负整数不是整数
4、把下列各数分别填在相应的集合内:
20,—0、08,1,3、14,—2,0,—98,正数集合:{ };负数集合:{ };
整数集合:{ };分数集合:{ }、
四,新知拓展点(这个环节:新知有哪些需要拓展的知识点和相应题目的设计)
非正数非负数的意义:
1、判断:一个有理数不是正数就是负数()
零和负数统称为_______,零和正数统称为______、
2、已知下列各数:—5,+,0、62,4,0,—1、1,—6、4,—7,7、
其中正整数有,负数有,非负数有、
感受交集:
下面两个圈分别表示正数集和整数集,请在每个圈内填人8个数,其中有4个数既是正数,又是整数、这4个数应填在哪里你能说出这两个圈的重叠部分表示什么数的集合吗
五,回顾小结与布置作业
通过本课的学习,你有哪些收获
(1)现在问大家小学学了哪些数你如何回答呢(2)初中有新学了哪些数
小学学了0,正整数,正分数;初中学了负整数,负分数;整数可分三大类:正整数,0,负整数;分数可分两大类:正分数,负分数;有理数可分两大类:整数与分数、有理数也可以分三大类正数,0,负数、
作业:(1)复习,预习(要求略);(2)P17习题1、2第1题、
思考题:
观察下面依次排列的一列数,它的排列有什么规律请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗
(1)1,—2,3,—4,5,—6,7,—8,____,____,____,____;
(2)—1,____,____,____
整数:0,1,2,3,;分数(小数):____,____,3、14,____,整数:____1,____2,;分数:____,—6、4%,分数
整数
有理数
____
____
____
正数集合
整数集合
《有理数》的教学设计5
一、初中数学教学情境的创设原则
第一,生动性原则。初中数学教学情境的创设应当遵循生动性的原则。用直观形象的情景设置来诠释理论性较强的数学原理,从不同的感觉渠道向学生大脑传输数学信息,有利于学生对数学结论的理解和掌握;第二,实践性原则。初中数学教学情境的创设应当遵循实践性的原则。初中学生的大部分时间是放在生活上的,对教学情境的创设应当结合生活中学生经常接触到的知识或者将数学故事的讲述落脚在学生实际问题的解决上,让学生学会用用掌握的数学知识去处理实际问题;第三,悬念性原则。初中数学教学情境的创设应当遵循悬念性的原则。情境创设的目的是激发学生对数学问题的兴趣,让他们产生求知的欲望。所以,情境的创设就离不开学生的兴趣,悬念性比较强的情境才可以让学生身心投入到数学问题的学习和探究之中。
二、初中数学教学情境渗透与融合中存在的一些问题
1.传统教学方式的影响导致学生课堂参与性低下。
受传统灌输式教学方式的影响,有些情况下,虽然教师进行了比较生动的教学情境创设,但是却很难激发起学生主动参与数学问题学习和探究的兴趣,导致出现成绩比价差的学生没有兴趣去学习数学,成绩比较好的学生学习数学的热情也日益低下,逐渐失去了对初中数学的学习兴趣。
新课表对培养学生自主创新能力的要求,给教师教学情境的设置提出了新的挑战。但是,部分教师创设教学情境的创新能力却比较有限,导致部分数学老师在课堂教学中创设的情境大致相同。久而久之,就越来越难以调动学生的积极性和好奇心,不利于学生对数学知识的学习和掌握。
2.教学情境的创设一味追求新意,却不具有实用性。
与教学情境创设千篇一律问题相对应的就是教师一味追求教学情境创设的新颖性,而脱离了初中学生的生活实际,不具有实用性。这种脱离学生生活实际的教学情境虽然具有新颖性的特点,但是,由于受限于自身的理解能力,大多数学生并不能真正理会老师进行教学情境创设的真正目的,起不到应有的教学效果,甚至有适得其反的'不良影响。
三、完善初中数学教学情境渗透与融合应当遵循的策略
1.通过数学故事、数学典故来创设教学情境。
数学故事和数学典故在教学情境的创设中具有独特的作用,尤其是用熟知人物,但不知晓人物具体事迹的数学故事、典故,更能起到激发学生学习兴致,保持学生对数学学习热情的积极作用。例如,讲述勾股定理时,可以引用古典数学巨著《九章算术》的知识,让学生体会到数学知识的博大精深。
2.通过现实生活中的数学现象来进行情境创设。
初中学生认知中最熟悉的部分就是生活中经常接触和用到的知识,甚至有些知识已经在他们头脑中产生根深蒂固的影响。所以,在进行教学情境创设中,结合学生的生活实际,更容易引起学生情感的共鸣,更有利于数学知识的教授。
3.教学情境的创设要注重师生之间的互动。
新课标要求进行互动性强的教学,在初中数学的教学情境创设,要求老师转变自身高高在上的思想观念,与学生建立人格平等的关系,老师要与学生一起进行数学理论的学习和探讨,要从学生认知状况和生活实际进行考虑,更多的让学生发挥在教学中的主体作用,实现师生的良性互动。
4.情境创设应当贯穿整个教学过程。
在现实初中数学的教学过程中,教师一般比较重视在教授之前利用创设情境进行知识的引入,而忽略在教学过程中利用教学情境进行教学辅助。教学情境的创设应当贯穿整个教学过程,根据不同的教学阶段和学生不同阶段的理解能力创设内容各异、难易有别的教学情境更有利于学生学习热情的保持和对数学知识的掌握。
四、结束语
成功的初中数学教学不在于让学生硬性的掌握多少数学知识,而是让学生形成数学知识探索和求知的习惯和方法。教学情境的渗透与融合要更多地服从于教学内容,服务于教学牧鞭,服务于教学重点,服务于学生学习能力的养成和自身素质的全面提高,让学生开心的学习数学,开心的锻炼能力,开心的全面发展,成长为知识、能力、情感和谐共进的有用之才。
《有理数》的教学设计6
一、教学目标
1、知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2、数学思考
通过观察,比较,归纳等得出有理数加法法则。
3、解决问题
能运用有理数加法法则解决实际问题。
4、情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5、重点
会用有理数加法法则进行运算。
6、难点
异号两数相加的法则。
二、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三、学校与学生情况分析
七年级3、4班学生大多数来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的`净胜球为
4+(—2),黄队的净胜球为
1+(—1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。这节课我们来研究两个有理数的加法。
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量。若我们规定赢球为“正”,输球为“负”,打平为“0”。比如,赢3球记为+3,输1球记为—1。学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。也就是
(+3)+(+1)=+4。
(2)上半场输了2球,下半场输了1球,那么全场共输了3球。也就是
(—2)+(—1)=—3。
现在,请同学们说出其他可能的情形。
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(—2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(—3)+(+2)=—1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(—2)+0=—2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0。
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3。一个数同0相加,仍得这个数。
(三)、应用举例变式练习
例1口答下列算式的结果
(1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);
(5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0。
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则。进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值。
例2(教科书的例1)
解:(1)(—3)+(—9)(两个加数同号,用加法法则的第2条计算)=—(3+9)(和取负号,把绝对值相加)
=—12。
(2)(—4。7)+3。9(两个加数异号,用加法法则的第2条计算)=—(4。7—3。9)(和取负号,把大的绝对值减去小的绝对值)=—0。8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(—0。9)+(+1。5);(2)(+2。7)+(—3);(3)(—1。1)+(—2。9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)、小结
1、本节课你学到了什么?
2、本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、计算:
(1)(—10)+(+6);(2)(+12)+(—4);(3)(—5)+(—7);(4)(+6)+(+9);
(5)67+(—73);(6)(—84)+(—59);(7)33+48;(8)(—56)+37。
2、计算:
(1)(—0。9)+(—2。7);(2)3。8+(—8。4);(3)(—0。5)+3;
3、29+1。78;(5)7+(—3。04);(6)(—2。9)+(—0。31);
(7)(—9。18)+6。18;(8)4。23+(—6。77);(9)(—0。78)+0。
4、用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0。
五、教学反思
“有理数的加法”的教学,可以有多种不同的设计方案。大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。现在,试比较这两类教学设计的得失利弊。第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好。
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。权衡利弊,我们主张采用第二种教学方法。
《有理数》的教学设计7
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的'学习为本节课提供了学习的前提;第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;
第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知---新(创设新的问题情境)。
今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知---行
(1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知---省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知---信
此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,5、联系实际、小小拓展;
为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
6、教学小结、知识回顾:教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。
7、课外作业
为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请
聪明的你举例说明。
同行点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。
教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
《有理数》的教学设计8
教学目的:
1.知识目标 使学生了解了负数产生的背景 ,理解正、负数及零的意义,掌握正、负数的表示方法 ,会用正、负数表示具有相反意义的量。
2.能力 目标 通过 本节教学,培养学生的想象 能力、理论联系 实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;
3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
教学设计
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
重点
正、负数的意义,
难点
负数的意义及0的内涵。
教学方法:
鉴于初一年级学生的年龄特点 ,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
教学过程的设计,分为四部分。
一、创设情境,引入负数;
二、联系对比,突出重点;
三、课堂练习,及时反馈;
四、总结提高,渗透德育。
在引入部分,我通过介绍数的产生与发展 ,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类 的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。
随之提问:同学们小学都学过哪些数?
为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。
那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?
为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果 ,采取形象化教学。
(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?
通过创设问题情境,激发学生的求知欲望 让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。
以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?
使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。
既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。
接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。
从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的'一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。
以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。
在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。
为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界 中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:
(1)意义相反 (2)同一种量
并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。
由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。
"+""-"作为性质符号有着更深层的涵义:
"+"表示与问题中给出意义的相同意义,
"-"表示与问题中给出意义的相反意义,
如:前进+5米,表示真正前进5米,
前进-5米,表示后退5米,
那么,后退-5米就表示前进5米。并通过课本例2加以巩固。
为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:
图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。
因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,-0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。
接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。
在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。
通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。
《有理数》的教学设计9
一、教学目标:
1、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.
3、情感态度与价值观
培养学生主动探索的良好学习习惯.
二、教材分析:
难? ? 点:异号两数相加.
3、教学过程
教学过程
教师活动
学生活动
设计意图
知识回顾
5分钟
新知讲解
8分钟
15分钟
1、什么叫相反数。
什么叫绝对值。
2、-5的相反数和绝对值分别是什么。
0的相反数和绝对值分别是什么。
激趣
请大家帮老师算一算:
小明昨天借了老师十元钱买文具,今天又借了老师八元钱,请问他还欠我钱吗。
如果欠钱的话又欠我多少呢。
你能用数学算式表示出来吗。
如果小明今天还给老师八元钱又该怎么计算呢。
如果小明今天还给老师十元钱又该如何计算。
如果小明说今天没带钱,那他又欠我多少呢。
自主探究
1、请同学们自己阅读教材P16到P18,并结合刚才说的看看你自己理解了多少。还有那些不理解的我们共同解决;
2、如果自己不清楚的话,请同学们小组之间互助解决以下问题:
(1)如果是同号两数相加,符号如何决定,和的绝对值和绝对值的和又有什么关系。
(2)如果是异号两数相加,符号如何决定,其绝对值之间又存在什么关系。
(3)互为相反数两数相加结果又是什么。
(4)一个数同0相加结果又是什么。
1、只有符号不同的.两个数叫做互为相反数;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值
2、-5的相反数是5,绝对值也是5;
0的相反数和绝对值都是0
欠老师-10+(-8)=-18(元);
-10+8=-2(元);
-10+10=0(元);
-10+0=-10
同号两数相加,取相同的符号,并把绝对值相加;
例:5+3=8;
(-5)+(-3)=-8
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
例:(-3)+5=2;
3+(-5)=-2
互为相反数两数相加得0
例:5+(-5)=0;
-10+10=0
一个数同0相加,仍的这个数
例:-10+0=-10;
5+0=5
回顾相反数与绝对值的概念为本节课能准确理解有理数加法法则打下基础
让学生通过生活中熟悉的例子体会数学在期中的应用,为我们后面总结有理数加法法则打下基础
通过提问,边总结边结合实例进行讲解,让学生对法则有更深的理解
例题讲解5分钟
巩固练习
10分钟
知识小结
2分钟
例1 计算(-3)+(-9);
(-4.7)+3.9.
1、请在括号内填写适当的有理数并说出其中的法则:
2、列式计算
(1)-5的相反数与-18的和;
(2)一个数比-6大1,另一个数比-10大4,求这两个数的和。
3、如两个有理数之和为正,则两数中(? )
A 同为正数? ? B 同为负数
C 一正一负? ? D 至少有一个为正数
4、下列说法中正确的是(? )
A 两数的和必须大于每一个加数
B 两数和为负数,则一个数为正数,另 一个数为负数
C 两个有理数和的绝对值等于这两个有理数绝对值的和
D 异号两数相加,和的符号取绝对值较大的数的符号
请同学们回顾一下有理数加法法则;
互相交流下自己到底学会了多少,还有那些不会。
(-3)+(-9)=-(3+9)=-12;
(-4.7)+3.9=-(4.7-3.9)=0.8
-33
-12
-(-5)+(-18)
[(-6)+1]+[(-10)+4]
D
D
让学生自己解决,不会时再以小组讨论方式进行,目的让学生规范计算过程,并对同号相加以及异号相加有更深一步了解
这些题目先让学生自己练习,对于不会的可以以小组合作方式共同解决,期中
1、2题主要练习计算,3、4主要练习学生对加法法则的深度理解能力,能够帮助学生对本节课只是更好的吸收和消化
布置作业
必做题:课本P24习题1.3第1题,第2题
选做题:
-98×201+99×202=______
教学反思
1、本节课在刚开始引入时以学生熟悉的金钱方面入手,让大家不会对本节课的知识有陌生感,同学自己学习以及前面的引入,学生在总结有理数加法时不会感觉那么突兀,而且能够更好的理解有理数加法法则;
2、结合学生的实际情况,在本节课没有设置比较难的题目,目的是增加大家的学习兴趣以及树立学生的自信心。
3、对个别成绩好的课后要另外增加难度。
《有理数》的教学设计10
教学目标
1、使学生了解加减统一为加法对简化计算所起的作用
2、能灵活运用加法运算律进行有理数的加减混合运算
3、培养学生观察、讨论、积极思维探索的能力
4、激发学生对数学的兴趣,培养学生热爱数学的情感。
教学重点、难点
能灵活运用加法运算律进行有理数的加减混合运算
教学过程
一、设问题情况
+(-1)-(-2)+(-3)-(-4)+(-5)-(-6)……(-50)
鼓励学生发言、讨论交流
1、出问题
(1)如何解该?
(2)如何将减号进行转变?
三、新课讲授
根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法
例:(-8)-(-10)+(-6)-(+4)如何统一成加号?
省略加号如何表示?-8+10-6-4
注:在一个和式里,通常把各个加数的刮号与它前面的加法省略不写
如何读呢?
按和式读做“负8,正0,负6负4的和”
按运算意义读做负8加10减6减4
例1、把(+1)+(-3)-(+2)-(-4)-(+6)写成省略加号的和的形式,并把它读出来。
解:原式=(+1)+(-3)+(-2)+(+4)+(-6)
=1-3-2+4-6
学生板演,练习用两种方法读出
例2、计算
(1)-24+3.2-1.6+3.5+0.3
(2)0-21+3-(-0.5)-(-6)-(+4)
解(1)因为原式表示-24,3.2,-16,-3.5,0.3的和,所以可将加数适当交换位置,并作适当的.结合进行计算,即
-24+3.2-16-3.5+0.3
=(-24-16)+(3.2+0.3)-3.5
=-40+3.5-3.5
=-40 .
(2)0-21+3-(-0.5)-(-6)-(+4)
=0+(-21)+(+3)+(+6)+(-4)
=-21+3+6-4
=(-21-4)+(3+6)
=-25+9
=-16
提问:如何解?(多种方法)
法一:按正常顺序来解(从左到右)
法二:运用简便方法来解(加法交换律和结合律)
问:为什么要用加法运算律?该如何灵活运用?
如何使得计算简便?
1、正数和正数放在一起,负数和负数放在一起
2、互为相反数的放在一起
3、同分母的放在一起
4、能凑整的放在一起
四、练习
1、把下列各式写成省略加号和的形式,并说出他们的两种读法
(1)(-12)-(+8)+(-6)-(-5)
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2、计算
(1)-30-11-(-10)+(-12)+18
(2)3 1/2-(-21/4)+(-1/3)-0.25+(+1/6)
五、小结:
1、加减法统一为加法
2、进行有理数加减混合运算的注意点
(1)互为相反数放在一起
(2)同分母的放在一起
(3)能凑整的放在一起
(4)小数与小数放在一起,整数与正数放在一起(等等)
六、作业:P47习题2.8(2、3)
《有理数》的教学设计11
【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
【教学目标】
1.通过现实背景知道乘方运算与乘法运算的关系,理解有理数乘方的意义;知道底数、指数和幂的概念,会求有理数的正整数指数幂。
2.培养学生观察、归纳能力;培养学生互相讨论、合作交流的能力;培养学生思考问题、解决问题的能力,切实提高学生的运算能力,培养学生勤思,认真和勇于探索的精神。
3.感悟数学来源于生活,从而热爱生活;感悟数学符号的简洁美;积极参加数学学习活动,增强自主学习、合作学习意识与习惯。
【教学重点】正确理解乘方的意义,能利用乘方的运算法则进行有理数 的乘方运算。
【教学难点】
1、建立底数、指数、和幂三个概念,并会进行有理数的乘方运算。
2、有理数乘方运算的符号法则。
【教具准备】教具准备:多媒体课件一套。
学具准备:每个学生一张纸。
【教法分析】基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的`训练,情感的成功体验。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教
【学法分析】从自己已有的知识经验出发,自主参与整堂课的知识构建。在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。
【学情分析】学生在小学六年级已学习了一个数的平方、立方运算。前面又学习了有理数的乘除法运算,现在所学的有理数乘方,只是在小学所学正数范围扩充到有理数的范围。所以学生在教学活动中能大胆说出自己的体会。在动手,思考和合作交流的过程中,能主动探索,敢干实践,勇于发现。学生间的相互提问的互动的气氛较浓,有良好的学习氛围。
【教学过程】
一、创设情境
问题1、请哪一位吃过兰州拉面的同学说一说拉面的制作过程?(结合学生口述过程)多媒体展示
制作过程如下图(多媒体展示)
教师设法引导学生将生活问题用数学的眼光来观察解决。
引导:
1、这样经过几扣可拉出64根?128根?
2、能否用算式表示这种关系?
这就是我们今天要研究的课题
《有理数》的教学设计12
【教学目标】
知识技能
1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法
1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】
1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】
从直观认识到理性认识,从而建立数轴的概念。
【情景引入】
1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”
提疑:医生为什么通过体温计就可以读出任意一个人的体温?
(体温计上的刻度)
2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-1 0°c,0°c,20°c)
提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
(正数、零、负数)
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的`引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
《有理数的加减混合运算的技巧及应用》同步练习(含答案)
1、小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的路程记录依次为(单位:cm):+5,-3,+10,-8,-7,-10,+12,-2,+1.
(1)小虫最后是否能回到出发点O?如果不能,它与出发点的位置是怎样的?
(2)小虫在爬行过程中离出发点最远时在什么位置?(要说明方向和距离)
(3)在爬行过程中,如果每爬1 cm奖励两粒芝麻,则小虫一共得到了多少粒芝麻?
《相反数、绝对值的几何意义》同步练习(含答案)
2、文具店、小明家和书店依次坐落在一条东西走向的大街上,已知文具店位于小明家西边200 m处,书店位于小明家东边100 m处.某天小明从家里出发先去书店购书,然后再去文具店选购学习用品,最后回家学习.
(1)以小明家为原点,向东为正方向,取适当的长度为单位长度画一条数轴,在数轴上表示文具店和书店的位置;
(2)用求绝对值的方法计算小明这一天所走的路程.
《有理数》的教学设计13
教学目标:
1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.
3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.
教学程序设计:
一.类比联想提出问题
通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.
又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.
具体问题是:在下列问题中用负数表示量的实际意义是什么?
(1)某人第一次前进了5米,接着按同一方向又向前进了3米;
(2)某地气温第一天上升了3°C,第二天上升了-1°C;
(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:
(1)某人两次一共前进了多少米?
(2)某地气温两天一共上升了多少度?
(3)某汽车两次一共向东走了多少千米?
组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.
在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的`知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.
二.直观演示归纳法则
用6个实例讲两个有理数相加的问题:
(1)向东走5米,再向东走3米,两次一共向东走了多少米?
(2)向西走5米,再向西走3米,两次一共向东走了多少米?
(3)向东走5米,再向西走5米,两次一共向东走了多少米?
(4)向东走5米,再向西走3米,两次一共向东走了多少米?
(5)向东走3米,再向西走5米,两次一共向东走了多少米?
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.
探究:若设向东为正,向西为负,你能写出算式吗?
(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;
(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;
(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;
以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。即:
这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;
问题(3)、(4)、(5)是异号两数相加的情况;
问题(6)有是有一个加数为零的情况.
这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.
有理数的加法法则:
一般步骤为:
(1)根据有理数的加法法则确定和的符号;
(2)根据有理数的加法法则进行绝对值的加减运算.
前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.
总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?
提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.
三.应用迁移巩固提高
为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.
类型:同号、异号、0与一个数相加的三种情况的有理数相加
例1:计算下列各题:
(1)(+7)+(+4)
(2)(-3)+(-9)11
(3)4+(-4)
(4)()+(-))23
(5)(-10.5)+(+1.5)
(6)(+5)+0
(7)(-7)+0
(8)0+(-8)
分析:先确定符号,在进行绝对值加减运算.
解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算) =-(3+9) (和取负号,把绝对值相加)
=-12.
通过此例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
变式题1:填空(口答,并说明理由)
(1)(-4)+(-7)=____()(2)(+4)+(-7)=_____()
(3)7+(-4)=_____()(4)4+(-4)=_____()
(5)9+(-2)=_____()(6)(-9)+2 =_____()
(7)(-9)+0 =_____()(8)0+(-3)=_____()
变式题2:今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:
(1)两次一共上升了多少厘米?
(2)计算当a、b为下列各数时的值:
① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 ,b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0
(3)说出以上运算结果的实际意义
四. 总结反思拓展升华
为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.
(1)本节所学习的主要内容有哪些?
(2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)
(3)本节课涉及的数学思想方法主要有哪些?五.作业课本第19页练习2、3题.
补充:
1.计算:
(1)(-10)+(+6);
(2)(+12)+(-4);
(3)(-5)+(-7);
(4)(+6)+(+9);
(5)67+(-73);
(6)(-84)+(-59);
(7)33+48;
(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);
(2)3.8+(-8.4);
(3)(-0.5)+3;
(4)3.29+1.78;
(5)7+(-3.04);
(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;
(8)4.23+(-6.77);
(9)(-0.78)+0.
《有理数》的教学设计14
有理数的加法运算律及应用
教材分析:有理数的加法运算律
【地位作用】
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的.学习。
【教学目标】
知识与技能
通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
过程与方法
培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。
情感态度与价值观
培养学生把实际问题抽象成数学问题的能力
【教学重点、难点】
重点:有理数加法运算律
难点:灵活运用有理数运算律简便运算
重难点的突破:
1、处理好知识之间的联系。适时复习,以旧带新,相互对比。
2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。
【学情分析】
认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。
能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。
2.对异号两数相加确定符号,绝对值大减小掌握不好。
3.学生善于形象思维,思维活跃,能积极参与讨论。
【教法与学法】
教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧
【教学过程分析】
回顾复习,承前启后
例题讲解,合作学习
应用练习,巩固新知
归纳总结,反思提高
作业布置
《有理数》的教学设计15
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的.点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫
原 点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数
比较有理数大小,上右边的数总比左边的数要大
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做。
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。
以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示。
2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).
A点表示-4; B点表示-1.5;
O点表示0; C点表示3.5;
D点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数。
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
教学设计示例
【《有理数》的教学设计】相关文章:
《有理数》教学设计06-15
有理数教学设计07-16
有理数的除法教学设计02-27
有理数的减法的教学设计08-09
《有理数的乘方》教学设计10-14
有理数的乘法教学设计08-31
有理数的乘法教学设计02-26
《有理数的除法》教学设计09-22
《有理数的加法(一)》教学设计07-07