初三数学期中考试试卷分析报告

时间:2024-07-09 17:59:46 试题试卷 我要投稿

初三数学期中考试试卷分析报告(精选9篇)

  在我们平凡的日常里,我们使用报告的情况越来越多,报告具有双向沟通性的特点。你知道怎样写报告才能写的好吗?以下是小编整理的初三数学期中考试试卷分析报告,欢迎大家借鉴与参考,希望对大家有所帮助。

初三数学期中考试试卷分析报告(精选9篇)

  初三数学期中考试试卷分析报告 1

  一、试卷的整体情况

  本次考试重视课本基础知识的考察,题目比较简单,多为课本基础例题及课后题的改编。在命题上重视基础知识的落实、重视基本技能的形成、重视了能力的提升。也体现新课标的基础性、选择性、激励性的理念,反映人人学必需的数学的需求。

  二、试卷的主要特点

  1、保持基础题数量,突出重点知识

  重点考查本次期中考试试题排布比较自然,思维入口较宽,突出强调了以能力立意,但仍然立足于基础,既考查了考生在基础知识、基本技能以及应用数学的基本思想方法等方面是否真正落实到位,同时又设置了能体现不同考生对数学思想和方法的领悟以及数学能力的达成水平,在客观上存在差异的区分题,试题构建了较高层次的开放探究题,较好的考查了考生知识与能力之间的衔接,也在一定程度上设了卡。

  2、贴进学生生活,突出应用能力

  试题背景的取向注意靠近教材和考生的生活实际,让考生始终处于一个较为平和、熟悉的.环境中,增强解题信心。如第19、20题,通过揭示数学与生活实际的联系,让学生认识到数学就在自己身边,数学与人们的生活密不可分,从而激发学生学习数学的浓厚兴趣,同时也提醒学生平时要关注数学与现实生活的相互关系,做个有心人。

  三、学生考试情况

  3、4班及格人数达到20以上,最高分117,两班学生中没有满分。对于这样一张试卷实际上考满分应该有很多,从中暴露出学生对基础知识的掌握不熟悉,对于计算细节不认真等问题,在下一步的学习中要对学生严格要求。

  四、下阶段工作措施

  1、引领学生悟透教材的基本内容

  教材是数学知识的载体,是数学思想方法的源泉,也是试题命制的蓝本。引导学生研究教材,悟透教材中包蕴的知识与方法,去发现、去体验、去感受数学的应用性和文化性,能迅速而又正确地解决教材中的每一个问题,这是数学课堂教学的首要任务,也是主要任务,是今后提高初中数学成绩的前提和关键。

  目前,在数学课堂教学中,有意识地引导学生研究教材,钻研教材等方面,因为师资较紧,我们重视还不够。导致有些学生对一些基本概念的认识缺乏本质上的理解,在解题活动中,仅仅是对训练过的题目的模仿和记忆,只要题目背景稍作变化,就束手无策了,因此,引导学生悟透教材的基本内容非常重要。

  2、注重培养学生准确而迅速地解答基本问题的技能

  考试中试题虽然始终立足于能力立意,但在试题中总有相当比例的基本问题,这些问题比较典型,知识背景都比较熟悉,对这些基本问题的解答就应注意在平时的教学中加以引导,使学生能做到准确而又迅捷,不要小题大做或者会而不对。

  有一些综合性比较强的解答题其实质是一些基本问题的综合,知识点虽然多一些,但分割开来还是一些基本问题的处理,因此熟练掌握基础知识,快速、准确解答基本问题是有效地构建自己的知识结构,形成整体认识,组成知识网络非常重要的环节。

  3、努力提高高效课堂的数量

  目前,在数学课中,特别是习题课与复习课,普遍存在简单的做资料--讲资料的模式,做了一堂课的题目后,这堂课主要解决什么问题,老师自己都不能明确回答,而评讲过程也主要是集体对答案,重点不突出,浪费的时间多。然而谁都知道,教学质量的提高不在于老师是否能上出一节绝妙的好课,而在于老师能否上出比较好的每一堂课。今后我们将做到:每一堂课都能调动学生的积极性;都有明确的目的和重点;都有适宜的难度;都能激起思维高潮;都有充分的练习;都有精彩简洁的评讲。

  初三数学期中考试试卷分析报告 2

  一、试卷分析

  试卷满分120分,共有23道题。试卷总体难度系数较高,但知识点的考查顺序安排合理,层次清楚。试卷整体质量比较高,体现了中学数学课程标准对学生掌握知识和应用能力的要求,有利于推进初中数学课堂教学改革和新课程的实施。考查的知识点有坐标系中点的坐标特征、平行线的判定及性质、二元一次方程组、绝对值加减、平移求面积等。

  二、成绩分析

  我教的是七五班和七三班,各班的平均分、及格率以及优秀率。

  其中,五班高于63分的共有19个人,其中4个人经过加强学习与教育可以考及格。及格的人共有15人,高于80分的'学生共有7个人,3个人是高于85分,而这些人根据平常的表现都能考到优秀,非常具有潜力。三班高于60分的共有16个人,有4个同学成绩徘徊在及格线周围。及格的也共有12个人,高于80分的学生有7个人,高于85分的有4个人,而这些同学都有潜力考到优秀。

  三、答题分析

  选择题中学生出错率较高的是第2题和第6题,原因都是做题时不细心,往开始做时是一个答案,检查时又将答案改错,还是基础概念掌握的不牢固。选择题第8题往往是审题及观察能力不够导致正确率很低。

  填空题中错误率较高的是第12题,14题,15题,这三道题学生平常做过但一般都是以大题的形式出现,所以当这些题被当成填空题出现时,学生就会掉以轻心不认真审题。因此,导致出现了过多错误。

  计算题都是一些关于有理数的加减乘除混合运算以及整式的加减之类的常见题型。学生仍然存在一些问题,而这些问题都是由于不细心、不认真造成的。大题学生出现错误较多的是20、21、23这三道题,错误原因都是由于学生审题不清,在读题、审题环节上的马虎造成的。还有是因为综合素质差,很多学生没有验证。

  四、对策措施

  1.研究新课标的教学理念:注重能力培养、注重探索精神、注重实践能力、注重过程、注重科学素养、注重创新能力、注重动手能力等等,在教学中如何去体现,是今后教学中关注的重点。

  2.重视数学思想和方法的培养。数学思想和方法是数学的灵魂,应该始终贯穿在教学的每一处。注重对常见的思想方法如数形结合思想、方程思想、函数思想、整体思想等等的渗透和培养。

  3.注重对学生规范解答的要求和训练。要让学生学会与评卷老师在卷面上清楚、条理地交流,特别是新课程改革以后,学生对几何的逻辑推理的条理表达表现出的弱点,更应该引起注意,加强训练。

  4.应重视学生应用数学能力的培养,使他们能将实际问题转化为运用数学知识、方法来解决。

  5.教学要细致入微,做到对每一个学生学情了如指掌,方可知长短,做到因材施教,因人做好过关训练和落实。

  初三数学期中考试试卷分析报告 3

  九年级数学试卷是一份知识覆盖面广、基础性和创造性都强的试卷。它集检测反馈与训练提高于一体,对实践新课标具有必须的指导好处。

  一、基本状况

  (一)考生答卷基本状况

  本次考试,根据抽样卷统计,得分状况是:人平分79.8分;及格率94%;优秀率38%;多数得分在70分—85分之间,各试题的得分状况如下表:

  题号1、2、3、4、5、6、7、8、9、10

  得分率98%、98%、98%、86%、70%、41%、88%、98%、60%、76%。

  题号11、12、13、14、15、16、17(1)、17(2)、18(1)、18(2)

  得分率82%、100%、62%、85%、50%、95%、96%、80%、96%、84%。

  题号19(1)、19(2)、20、21、22、23、24、25、26、27

  得分率98%、94%、89%、96%、61%、52%、86%、81%、42%、62%。

  (二)知识分布

  第二章有理数(14分):其中填空题第1、2、3题,共4分;选取题第13、8题,共2分;计算或化简第17(1)、(2)题,共8分。

  第三章用字母表示数(19分):其中填空题第4、5、6题,共5分;计算或化简:第17(3)、(4)题,共8分;解答题:第26题,共6分。

  第四章一元一次方程(19分):选取题第1题,共2分;简答题第19(1)、(2)题,第24题,共17分。

  第五章走进图形世界(14分):选取题第12题,共2分;简答题第21、25题,共12分。

  第六章平面图形的认识(34分):填空题第7、8、9、10题,共6分;选取题第14、15、16题,共6分;解答题第20、22、23、27题共22分。

  二、试卷特点

  1、公正性和导向性并举。

  试卷中第17题选自课本71页第8题(1)、(2),试卷中第18题选自课本108页第6题(5),试卷中第20题选自课本199页第3题,试卷中第21题选自课本169页“试一试”第3题改编;试卷中第22题选自课本212第11题改编。以上各题共占37分。这样考查,体现了考试的公正性和导向性。

  2、基础性与创新性兼顾。

  前面填空题和选取题主要考查学生对“双基”的掌握,难度不大,这体现了数学要面向全体学生,解答题第17、18、19小题,是计算,主要考查学生对运算的掌握,因为准确迅速的计算是数学学科的基石。解答题第24、26小题都是与现实生活有关的题目,这充分体现了“人人要学有用的数学,数学问题是源于现实生活”的理念。填空题第9小题是用地理知识结合数学知识考查学生对数学理解的潜力。这就体现了学科之间的相互渗透,使人有一种耳目一新之感。全套试卷易中有难,充分到达了透过考试来评价的目的。

  三、考生答题错误分析

  1、对基础知识(主要是计算)的运用不够熟练。

  2、学生审题不清导致出错。

  3、某些思考和推理过程,过程过于简单,书写不够严谨。

  4、对于知识的.迁移不能正确把握,也就是不能正确使用所学的知识。

  四、考试后的一点思考

  透过这次考试,重视重视基础知识和基本技能的优良传统要发扬,在以后的教学中,我们应落实“双基”和培养“三个潜力”,使学生普遍具有较扎实的基本功。素质教育是重基础的教育,越是科技突飞猛进,越是要重视基础,基础中所体现的思想具有根本的重要性,从中学会的方法和思想使人的潜力具有迁移性。人的创新精神、实践潜力离不开过硬的基础知识。在教学中应体现基础性、普及性和发展性,使数学教育面向全体学生,使每个同学都学到有价值的数学,每个都获得必要的数学,不同的学生在数学上得到不同的发展,让学生“有所收获”。

  本次期末调研考试数学试题是“稳中求活”。新课标中新的教育理念有充分的体现,本次考试既考查了学生对基础知识、基本技能和概念掌握状况,又考查了学生运用知识解决实际生活问题的潜力,同时培养了学生的创新意识和实践潜力,确实是一份好试卷。

  初三数学期中考试试卷分析报告 4

  在实施高效课堂课程标准理念的指导下,要充分发挥考试的作用,促进学生的发展。学校在4月20日举行了期中测试,本次试卷命题即考查了学生的基础知识和基本技能,又考查了学生的综合能力,试卷难易适中,覆盖面广,科学性与代表性强。重视知识理解与过程的考查,试题的呈现形式多样化。下面就将本次数学试卷统测情况进行分析:

  (1)本次考试应考人数24人,实际考试人数24人,平均分43分,优秀人数1人,1人为86分,优秀率4.17%,良好人数3人,良好率12.5%,不及格20人,均为52分以下,不及格率83.3%。充分反映出一个问题,本班学生数学成绩存在严重的两极分化。在以后的教学中,培优补差的任务显得尤为重要,特别是补差。这次考试也有一些同学进步较大如:石云翔、莫乾海、李资莹、梁珊珊。

  (2)卷面分为四大板块。

  基础题、计算题、操作题、解决问题四大板块,从基础的概念入手,由简到难的过程,难易适中,有较强的科学性与代表性,试题内容注意突出时代特点,贴近生活实际,突出了灵活性,能力性,全面性,人文性的出题原则,提高了测试水平。

  (3)答题情况分析。

  由于本人参加了监考和阅卷,对学生答题情况从这几点来说。

  1、试卷完成情况分析:本次考试,从分数的分布情况和了解学生答卷情况看,整体学生对基础知识的掌握较好,但个别同学的应变能力比较差,一些变形的题目不能随机应变。如(判断题的第4小题)。学生整体完成较差的为解决问题,特别是利用比例知识解决问题,学生不能较好的判断题目中的量成正比例还是反比例关系,导致方程错误。

  2、存在的问题

  a、多数学生在计算中,尤其是在计算圆柱和圆锥的体积时,存在较大的失误,还有就是在解比例时,存在一些小小的失误如:忘写“解”字,解题步骤不规范。

  b、个别学生对用比例解决问题的题型理解还不够透彻。

  c、学生中优差程度悬殊。

  d、练习中,题形变换不够;学生孤陋寡闻。

  3、改进的措施。

  a、加强计算训练力度和有效方式,提高计算速度和质量。

  b、注重平时的培优补差,缩小优中差之间的差距。

  d、重视教学方法的改进,坚持“启发式”和“讨论式”,以问题作为教。

  我和数学组的多位数学教师在一起针对试卷中的问题进行了有针对性的教学研究,深刻反思了我们平时的教学行为改进措施如下:

  (1)继续加强计算基本功的训练。

  “课标”中提到“应重视口算,加强估算,鼓励算法多样化”。“课标”中也提到“应避免繁杂的运算”,但是基本训练还要坚持,计算还应该达到一定的速度。要培养学生的计算能力,必须打好口算的基础,学生还应该具备一定的口算能力,为学生今后的学习打下良好的基础。总之,要经常地、有计划地坚持训练。

  (2)要注重思维训练,不要“应试”训练。

  思维训练就像口算训练一样,要经常地、有计划地进行。因为现行教材中的题目都比较简单,难度较小,学生遇到灵活一点的题目就不会做。教师要根据教学内容充分挖掘生活资源,转变教学观念,用足,用活教学资源,做到数学内容生活化,生活内容数学化。这样的数学课堂学生一定会感觉到生动有趣。这样做可以有利于学生(至少是一部分学生)思维灵活性的训练。

  (3)要注重学习的结果,更要注重学习的过程。

  比如“圆柱体与圆锥体的.体积之间的关系问题”,让学生知道等底等高的圆锥体的体积是圆柱体积的1/3,固然很重要;但是让学生经历发现这一规律的过程就更为重要。试卷填空题中的第10小题失分率最高,是77%;值得我们深思!要想让学生真正理解,就必须让学生经历发现这一规律的过程。

  (4)要注重数学知识的学习,更要注重数学知识的应用。

  “课标”中多处提到“培养学生应用数学的意识和综合运用所学知识解决问题的能力”。周玉仁教授说:问题是数学的心脏。儿童学习数学的本质是一种发现问题、探索问题、提炼出数学模型,利用已有的知识经验解决问题的过程。也就是说学习数学是为了应用数学,而这恰恰就是我们学生的薄弱环节。学生掌握数学知识并不难,难的是灵活运用所学知识解决实际问题。例如这样的问题在平日的教学中是被我们忽略了学生的动手操作的培养,这样的实践活动我们开展的还不够,动手操作能力培养还有待于加强。

  (5)要关注每一个学生的发展,更要关注学习有困难学生的发展。

  这些学生可以说是“学习有困难”的。造成他们“学习有困难”的原因很多,但是不管什么原因,他们既然在我们的班级中学习,我们就要尽最大努力,更多地关注他们,注重对他们学习方法的指导,学习习惯的培养等,使他们在自己原有的基础上得到发展。

  最后,我真诚地希望我的教学能百尺竿头,更进一步!这有赖于我们每一位数学教师以更为饱满的热情,高度的社会责任感和使命感,在学习中探索、在探索中实践、在实践中提升。

  初三数学期中考试试卷分析报告 5

  一、试题分析:

  1、本试题关注学生的发展,考查数学的核心内容、数学的基础知识、基本技能和基本的思想方法。让学生通过解答这些试题感受成功,增进自信。另外,命题立足于教材。试卷一部分源于教材,是教材的例题、习题的类比、改造、延伸和拓展。试题能从初中数学的教与学的实际出发,引导教师教好教材,学生学好教材,充分发挥教材的扩张效应。

  2、创设探索思考空间,考查探究能力。试卷给学生提供自主探索与创新的空间,有利于学生活跃思维,让经历观察、操作、确认等过程,发展合情推理能力。

  3、注重实际背景,考查应用能力。数学来源于现实生活,又作用于生活世界,试题题材取自学生熟悉的实际,让学生在实际问题情景中,灵活运用数学的基础知识和技能,分析和解决问题。

  二、试卷分析:

  2、部分学生的数学知识学得过死,思考问题缺乏灵活性、开放性、多维性。如填空题第9、10题。学生思维能力差,导致失分严重。

  3、部分学生的用数学的意识较差,运用数学知识解决实际问题的能力较差。导致填空题第8题,及解答第24题失分较多。

  三、具体措施:

  1、立足课本,很抓基础知识的教学。把握知识的发生发展过程,使学生的知识形成有机的整体。

  2、注重学生的自主探索与合作交流。在教学中,激发学生的学主动性,让学生动手实践、自主探索与合作交流,真正理解和掌握基本的数学知识与技能,数学思想和方法。

  3、注重培养学生的应用数学意识。在教学中,引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的办法,并鼓动学生尝试解决某些简单的.实际问题,加深对所学知识的理解,获得运用数学知识解决问题的思想方法。

  4、注重学生能力的培养。学生因运算能力、探究推理能力、应用能力等较低而造成较严重的失分,在教学中要注重学生能力的培养,把能力的培养有机地融合在数学教学的过程中,通过学生主动地参与丰富多彩的数学活动,促进学生能力的发展。

  5、加强基本方法的训练。在教学过程要不断引导学生归纳一些常见题型的一般方法,以便让学生在以后的学习过程中能够触类旁通。

  6、加强非智力因素的培养,提高学生认真审题、规范解题的习惯。如审题时可划出关键字句,在图中作标记等。

  7、狠抓知识落实。做到堂堂清,周周清,月月清,人人清。把知识落到实处。

  初三数学期中考试试卷分析报告 6

  一、数学试卷结构分析如下:

  数学试卷分值:满分100分,考试时间90分钟;

  题型共有4种:选择题、填空题、计算、化简求值、解答题;

  共21题;

  题型所占比例:

  1、选择题分值为103=30

  2、填空题分值为83=24

  3、有理数计算分值为44=16

  4、化简求值分值为34=12

  5、解答题分值为36=18。

  二、题目难易程度区分如下:

  选择题。共10小题,由浅入深;

  (1)1-6题为基础题、7-9为强化题,主要考查第一、二章节中的基本概念(相反数、绝对值、系数、同类项、科学记数法)的理解,比较简单、得分率较高;

  (2)第10小题拓展题比较难,考察求代数式值的应用,错误率较高、不易得分;

  填空题。共8小题,均为基础强化题,主要考察数轴、绝对值、多项式的应用以及对基本技能的应用;中等难度、得分率较高;计算题。共4小题,考察第一章《有理数》加减乘除乘方的混合

  化简求值题。共3小题,考察七(上)第二章《整式的加减》去括号、合并同类项、化繁为简代数式求值问题;中等难度、得分率较高;

  解答题。共3小题;

  第1小题为相反数、倒数、绝对值及代数式求值的综合计算题。

  第2小题为多项式的'化简求值综合题,重点考察第二章知识点。

  第3小题解决问题类题目,稍大,不易拿全分。

  三、学生考试成绩状况评价

  今年七年级期中数学卷(满分100分);其中,有90分左右的题目对于大多数学生来说是相对比较容易的,对于基础扎实的学生达到90分以上并不困难。

  经过初步调查,今年期中数学成绩的峰值一段是在90~99分之间,另一段在80~89分之间,低于70分者占总人数的5.3%,90分以上者约占54.1%。

  初三数学期中考试试卷分析报告 7

  上个星期我们进行了期中考试,接下来我就我们学校数学考试试题和学生的答题状况以及以后的教学方向分析如下。

  一、试题特点

  试卷包括填空题、选取题、解答题三个大题,共120分,以基础知识为主,对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%、,主要考查了七年级下册第六章《一元一次方程》第七章《二元一次方程组》以及第八章《不等式》。这次数学试卷检测的范围就应说资料全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握状况。

  无论是试题的类型,还是试题的表达方式,都能够看出出卷老师的别具匠心的独到的眼光。试卷能从检测学生的学习潜力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

  二、学生问题分析

  根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题

  ①数学联系生活的潜力稍欠。数学知识来源于生活,同时也服务于生活,但学生根据要求举生活实例潜力稍欠,如选取题第10小题,,学生因对“用自己的.零花钱去买东西”理解不透,从而得分率不高。

  ②基本计算潜力有待提高。计算潜力的强弱对数学答题来说,有着举足轻重的地位。计算潜力强就等于成功了一半,如解答题的第19题解方程(组),学生在计算的过程中都出现不少错误。

  ③数学思维潜力差这些问题主要表此刻填空题的第13题,第15题,第16题和解答题的21题,第23题。

  ④审题潜力及解题的综合潜力不强。审题在答题中比较关键,如果对题目审得清楚,从某种程度上能够说此题已做对一半,数学不仅仅是一门科学,也是一种语言,在解题过程中,不仅仅要要求学生学会如何解决问题,还务必要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。

  三、今后的教学注意事项:

  透过这次考试学生的答题状况来看,我认为在以后的教学中应从以下几个方面进行改善:

  1、立足教材,教材是我们教学之本,在教学中,我们必须要扎扎实实地给学生渗透教材的重难点资料。不能忽视自认为是简单的或是无关紧要的知识。

  2、教学中要重在突显学生的学习过程,培养学生的分析潜力。在平时的教学中,作为教师应尽可能地为学生带给学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。

  3、多做多练,切实培养学生的计算潜力。有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。

  4、关注生活,培养实践潜力加强教学资料和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的潜力。

  5、关注过程,引导探究创新,数学教学不仅仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的潜力。

  初三数学期中考试试卷分析报告 8

  一、试卷评阅的总体状况

  本学期文科类数学期末考试仍按现用全国五年制高等职业教育公共课《应用数学基础》教学,和省校下发的统一教学要求和复习指导可依据进行命题。经过阅卷后的质量分析,全省各教学点汇总,卷面及格率到达了54%,平均分54。1分,较前学期有很大的提高,答卷还出现了不少高分的学生,这与各教学点在师生的共同努力和省校统一的教学指导和管理是分不开的。为进一步加强教学管理,总结各教学点的教学经验不断提高教学质量,现将本学期卷面考试的质量分析,发给各教学点,望各教学点以教研活动的方式,开展讨论、分析、总结教学,确保教学质量的稳步提高。

  二、考试命题分析

  1、命题的基本思想和命题原则命题与教材和教学要求为依据,紧扣教材第五章平面向量;第七章空间图形;第八章直线与二次曲线的各知识点,同时注意到我省的教学实际学和学生的认识规律,注重与后继课程的教学相衔接。以各章的应知、应会的资料为重点,立足于基础概念、基本运算、基础知识和应用潜力的考查。试卷整体的难易适中。

  2、评分原则评分总体上坚持宽严适度的原则,客观性试题是填空及单项选取,这部分试题条案是唯一的,得分统一。避免评分误差。主观性试题的评分原则是,以知识点、确题的基本思路和关键步骤为依据,分步评分,不重复扣分、最后累积得分。

  三、试卷命题质量分析

  以平面向量、直线与二次线为重点,占总分的70%、左右,空间图形约占30%左右,基础知识覆盖面约占90%以上。试题容量填空题13题,20空,单选题6题,解答题三大题共8小题。两小时内解答各题容量是足够的,知识点的容量也较充分。平面向量考查基本概念,向量的两种表示方法,向量的线性运算,向量的数量积的两种表示形式,与非零向量的共线条件,两向量垂直与两向量数量积之间的关系,试题分数约占35%左右。直线与二次曲线考查,曲线与方程关系,各种直线方程及应用,二次曲线的标准方程及一般方程的应用,方程中参数的求解,各几何要素的确定,试题分数约占35%左右。空间图形着重考查平面的基本性质、两线的位置关系、两面的位置关系、线面的位置关系、三垂线定理的应用、异面直线所成的角、线面所成的角、距离计算等问题。表面积和体积的计算,为减轻学生负担末列入试题中(但复习中仍要求应用表面积和体积公式),该部份试题分数约占30%。三章考查重点放在平面向量、直线和二次曲线,其次是空间图形部份。故考查的主次是分明的,贴合高职公共课教学大纲的要求。

  四、学生答卷质量分析

  填空题:

  第1至3题考查向量的线性运算和位置向量的坐标线性运算,答对率约85%、左右,其中大部份学生对书写向量遗漏箭头,部分学生将第3题的答案(—9,3)答成(9,—3)或(—9,—3)等。符号是不清楚的,反映出部份学生对向量的线性运算并非完全掌握。第4~7题涉及立体几何问题,主要考查线面关系,面面关系。答对率70%、左右,其它学生主要是空间概念不清,不能确定线面间、平面间的位置关系。

  多数对异面直线的位置关系不清楚。第8~13题涉及解析几何的问题,考查曲线方程中的待定系数,直线方程,点到直线的距离问题,状况尚好,答对率70%左右。第11~13题反而答错率占65%左右,主要反映出学生对各种二次曲线的标准方程混淆不清,对几何要素的位置掌握不好,突出表此刻对二次曲线的几何性质掌握较差,不牢固。

  单项选取题:

  学生一般得分为12—18分第1题选对的占80%以上,学生对平面的基本性质中的公理及推论掌握较好。第2题选对的占70%左右,学生对两向量垂直与两向量数量积之间的关系掌握较好。答错较多的是第4和第6题,其次是第5题。第5题多数错选(a)或(b),可见学生对一般圆方程用公式求圆心和半径不熟悉,同时用配方法化圆的一般方程为圆的标准方程,求圆心和半径也掌握不好。特别是第4题平行坐标轴,坐标变换竟有

  33%的学生错选(b)或不选(空白),可见不少学生对坐标轴平移引起坐标变换的新概念并不清楚,对新、旧坐标的概念也不清楚。第6题不少学生错选(b),反映出学生对向量平行和垂直的条件混淆,决定两向量相等的条件也不明确,才会出现如此的错误。

  第三题:

  (1)题是考查异面直线的成的角及长方体对角的计算。对本题的解答约80%、的学生能找到异面直线a1c1与bc所成的角,但有30%、~40%、的学生不习惯用反正切函数表示角度,反而用反正弦或反余弦函数表示角度,教学中应引起跑的重视。计算长方体的对角线长仅有20%、的学生会用简捷方法“长方体的对角线的平方等于长、宽、高的平方和”。其余学生计算较繁琐。

  (2)题是考查证明三点共线问题。约有80%、的学生采用不同的方法证明,有用解析法的,也有用向量法的,也有用平面几何与解析几何综合知识证明的“三点连线中,两线之和等于第三线则三点共线”,反映出各教学点对该问题给出了多种证明法和思路,值得提倡。

  第(3)题考查根据不同的己知条件选用向量数量积的表达式。

  第四题:

  1题主要考查动点的轨迹方程,学生的解答,多出现两种方法,按轨迹满足椭圆定义求解或按求轨迹方程的四大步骤求解,但解答中又出现不少错误。

  第五题:

  1题是考查由给定双曲线的`条件求它的标准方程和渐近线方程,但不少学生将双曲线中的参数a,b与随圆中的参数a、b、c混为一谈,对渐逐近线方程掌握不好,不能根据渐逐线的位置,写出渐近线的方程。

  2题主要考查用向量法证明四边形是矩形的方法,但不少学生随心所意,反而用解析几何的方法去证明,严格讲这是错误的,就应引起重视。有的学生在证明中逻辑混乱,逻辑推理叙述不严密,在矩形的证明中,用“垂直证明垂直”。对向量的知识掌握不牢固,求向量的坐标时,差值的顺序不对,导致计算错误。

  第六题:

  本题是一道立体几何题,主要考查的知识点一是两平面垂直的性质,二是直线与平面所成的角。本题评阅结果,有近60%、的考生得满分,这些学生是掌握了考查的知识点,解题思路清晰,能迅速地用两平面垂直的性质,证明δabc和δbdc是直角三角形,求出bc和cd后,又用三角函数计算cd与平面所成的角。有的学生构造三角形思路灵活,连接ad得直角δabd,在此三角形中求出ad,又在直角δdac中求出cd,最后在直角δdbc中求出dc与平面所成的角,即∠dcb。在20%、的学生错答的原因是找不准直角,把直角边当成斜边来计算,导致解答错误。有近20%、的学生空间概念较差,交白卷,有的认为ab与cd是在一个平面上且相交,完全按平面几何的知识来解答本题,如用全等三角形和相似三角形的知识来解,这是完全没有空间概念的主要表现。

  五、通过考试反馈的信息

  对今后教学的推荐通过以上考试命题,试卷质量,答卷质量,基本概况的综合分析,实行统一命题,统一考试,统一阅卷是十分必要的。将考试成绩通报各教学点,对互通信息,相互学习,取长补短,努力改善教学方法,分析和探索初中起点五年制大专教育(高职)的教学规律,也是很有必要的。特别是通过考生的答卷分析,各教学点要开展教研活动,分析教学中的薄弱环节,采取有针对性的措施,不断的提高教学质量。

  初三数学期中考试试卷分析报告 9

  一、试卷整体情况

  本次初三数学期中考试试卷结构合理,涵盖了初三数学的主要知识点,包括代数、几何等方面。题型丰富多样,有选择题、填空题、解答题等,能够全面考查学生对知识的掌握和应用能力。

  二、各题型分析

  选择题:部分题目具有一定的灵活性和综合性,需要学生对知识点有深入理解和准确判断。个别题目有一定难度,区分度较好。

  填空题:着重考查基础知识和基本运算,同时也有一些需要思考和推理的题目,整体难度适中。

  解答题:包括计算、证明、应用等类型。其中,计算题注重对基本运算的考查;证明题需要学生熟练掌握几何定理和推理方法;应用题与实际生活联系紧密,考查学生运用数学知识解决问题的能力。

  三、学生答题情况

  基础知识方面,部分学生对基本概念、公式、定理等掌握不牢固,导致在简单题目上丢分。

  在解题能力上,一些学生缺乏灵活运用知识的能力,遇到综合性较强的题目时不知如何下手。

  答题规范性有待提高,部分学生在书写、步骤等方面存在不规范的情况。

  审题不仔细,粗心大意导致错误较多。

  四、教学建议

  加强基础知识的教学,确保学生扎实掌握。

  注重培养学生的解题能力,通过例题讲解、习题训练等方式,提高学生分析问题和解决问题的能力。

  强调答题规范,培养学生良好的学习习惯。

  针对学生的薄弱环节,进行有针对性的辅导和强化训练。

  引导学生养成认真审题的习惯,提高答题的准确性。

  五、总结

  通过本次期中考试,我们对学生的学习情况有了更清晰的`认识。在今后的教学中,我们将根据分析结果,调整教学策略,进一步提高教学质量,帮助学生更好地掌握初三数学知识,为中考做好充分准备。

  以上报告仅供参考,你可以根据实际考试情况进行具体的分析和阐述。如果你能提供更多关于试卷和学生答题的具体信息,我可以为你生成更详细准确的分析报告。

《初三数学期中考试试卷分析报告(精选9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【初三数学期中考试试卷分析报告】相关文章:

初三数学期中考试试卷分析报告12-01

初三数学期中考试试卷分析报告06-13

初三数学期中考试试卷分析报告12-01

初三数学期中考试试卷分析报告11篇01-10

初三数学期中考试试卷分析报告(11篇)01-10

初三数学期中考试试卷分析报告(15篇)12-21

(经典)初三数学期中考试试卷分析报告8篇06-15

初三数学期中考试试卷分析报告14篇04-07

初三数学期中考试试卷分析报告15篇12-01

初三数学期中考试试卷分析报告(精选9篇)

  在我们平凡的日常里,我们使用报告的情况越来越多,报告具有双向沟通性的特点。你知道怎样写报告才能写的好吗?以下是小编整理的初三数学期中考试试卷分析报告,欢迎大家借鉴与参考,希望对大家有所帮助。

初三数学期中考试试卷分析报告(精选9篇)

  初三数学期中考试试卷分析报告 1

  一、试卷的整体情况

  本次考试重视课本基础知识的考察,题目比较简单,多为课本基础例题及课后题的改编。在命题上重视基础知识的落实、重视基本技能的形成、重视了能力的提升。也体现新课标的基础性、选择性、激励性的理念,反映人人学必需的数学的需求。

  二、试卷的主要特点

  1、保持基础题数量,突出重点知识

  重点考查本次期中考试试题排布比较自然,思维入口较宽,突出强调了以能力立意,但仍然立足于基础,既考查了考生在基础知识、基本技能以及应用数学的基本思想方法等方面是否真正落实到位,同时又设置了能体现不同考生对数学思想和方法的领悟以及数学能力的达成水平,在客观上存在差异的区分题,试题构建了较高层次的开放探究题,较好的考查了考生知识与能力之间的衔接,也在一定程度上设了卡。

  2、贴进学生生活,突出应用能力

  试题背景的取向注意靠近教材和考生的生活实际,让考生始终处于一个较为平和、熟悉的.环境中,增强解题信心。如第19、20题,通过揭示数学与生活实际的联系,让学生认识到数学就在自己身边,数学与人们的生活密不可分,从而激发学生学习数学的浓厚兴趣,同时也提醒学生平时要关注数学与现实生活的相互关系,做个有心人。

  三、学生考试情况

  3、4班及格人数达到20以上,最高分117,两班学生中没有满分。对于这样一张试卷实际上考满分应该有很多,从中暴露出学生对基础知识的掌握不熟悉,对于计算细节不认真等问题,在下一步的学习中要对学生严格要求。

  四、下阶段工作措施

  1、引领学生悟透教材的基本内容

  教材是数学知识的载体,是数学思想方法的源泉,也是试题命制的蓝本。引导学生研究教材,悟透教材中包蕴的知识与方法,去发现、去体验、去感受数学的应用性和文化性,能迅速而又正确地解决教材中的每一个问题,这是数学课堂教学的首要任务,也是主要任务,是今后提高初中数学成绩的前提和关键。

  目前,在数学课堂教学中,有意识地引导学生研究教材,钻研教材等方面,因为师资较紧,我们重视还不够。导致有些学生对一些基本概念的认识缺乏本质上的理解,在解题活动中,仅仅是对训练过的题目的模仿和记忆,只要题目背景稍作变化,就束手无策了,因此,引导学生悟透教材的基本内容非常重要。

  2、注重培养学生准确而迅速地解答基本问题的技能

  考试中试题虽然始终立足于能力立意,但在试题中总有相当比例的基本问题,这些问题比较典型,知识背景都比较熟悉,对这些基本问题的解答就应注意在平时的教学中加以引导,使学生能做到准确而又迅捷,不要小题大做或者会而不对。

  有一些综合性比较强的解答题其实质是一些基本问题的综合,知识点虽然多一些,但分割开来还是一些基本问题的处理,因此熟练掌握基础知识,快速、准确解答基本问题是有效地构建自己的知识结构,形成整体认识,组成知识网络非常重要的环节。

  3、努力提高高效课堂的数量

  目前,在数学课中,特别是习题课与复习课,普遍存在简单的做资料--讲资料的模式,做了一堂课的题目后,这堂课主要解决什么问题,老师自己都不能明确回答,而评讲过程也主要是集体对答案,重点不突出,浪费的时间多。然而谁都知道,教学质量的提高不在于老师是否能上出一节绝妙的好课,而在于老师能否上出比较好的每一堂课。今后我们将做到:每一堂课都能调动学生的积极性;都有明确的目的和重点;都有适宜的难度;都能激起思维高潮;都有充分的练习;都有精彩简洁的评讲。

  初三数学期中考试试卷分析报告 2

  一、试卷分析

  试卷满分120分,共有23道题。试卷总体难度系数较高,但知识点的考查顺序安排合理,层次清楚。试卷整体质量比较高,体现了中学数学课程标准对学生掌握知识和应用能力的要求,有利于推进初中数学课堂教学改革和新课程的实施。考查的知识点有坐标系中点的坐标特征、平行线的判定及性质、二元一次方程组、绝对值加减、平移求面积等。

  二、成绩分析

  我教的是七五班和七三班,各班的平均分、及格率以及优秀率。

  其中,五班高于63分的共有19个人,其中4个人经过加强学习与教育可以考及格。及格的人共有15人,高于80分的'学生共有7个人,3个人是高于85分,而这些人根据平常的表现都能考到优秀,非常具有潜力。三班高于60分的共有16个人,有4个同学成绩徘徊在及格线周围。及格的也共有12个人,高于80分的学生有7个人,高于85分的有4个人,而这些同学都有潜力考到优秀。

  三、答题分析

  选择题中学生出错率较高的是第2题和第6题,原因都是做题时不细心,往开始做时是一个答案,检查时又将答案改错,还是基础概念掌握的不牢固。选择题第8题往往是审题及观察能力不够导致正确率很低。

  填空题中错误率较高的是第12题,14题,15题,这三道题学生平常做过但一般都是以大题的形式出现,所以当这些题被当成填空题出现时,学生就会掉以轻心不认真审题。因此,导致出现了过多错误。

  计算题都是一些关于有理数的加减乘除混合运算以及整式的加减之类的常见题型。学生仍然存在一些问题,而这些问题都是由于不细心、不认真造成的。大题学生出现错误较多的是20、21、23这三道题,错误原因都是由于学生审题不清,在读题、审题环节上的马虎造成的。还有是因为综合素质差,很多学生没有验证。

  四、对策措施

  1.研究新课标的教学理念:注重能力培养、注重探索精神、注重实践能力、注重过程、注重科学素养、注重创新能力、注重动手能力等等,在教学中如何去体现,是今后教学中关注的重点。

  2.重视数学思想和方法的培养。数学思想和方法是数学的灵魂,应该始终贯穿在教学的每一处。注重对常见的思想方法如数形结合思想、方程思想、函数思想、整体思想等等的渗透和培养。

  3.注重对学生规范解答的要求和训练。要让学生学会与评卷老师在卷面上清楚、条理地交流,特别是新课程改革以后,学生对几何的逻辑推理的条理表达表现出的弱点,更应该引起注意,加强训练。

  4.应重视学生应用数学能力的培养,使他们能将实际问题转化为运用数学知识、方法来解决。

  5.教学要细致入微,做到对每一个学生学情了如指掌,方可知长短,做到因材施教,因人做好过关训练和落实。

  初三数学期中考试试卷分析报告 3

  九年级数学试卷是一份知识覆盖面广、基础性和创造性都强的试卷。它集检测反馈与训练提高于一体,对实践新课标具有必须的指导好处。

  一、基本状况

  (一)考生答卷基本状况

  本次考试,根据抽样卷统计,得分状况是:人平分79.8分;及格率94%;优秀率38%;多数得分在70分—85分之间,各试题的得分状况如下表:

  题号1、2、3、4、5、6、7、8、9、10

  得分率98%、98%、98%、86%、70%、41%、88%、98%、60%、76%。

  题号11、12、13、14、15、16、17(1)、17(2)、18(1)、18(2)

  得分率82%、100%、62%、85%、50%、95%、96%、80%、96%、84%。

  题号19(1)、19(2)、20、21、22、23、24、25、26、27

  得分率98%、94%、89%、96%、61%、52%、86%、81%、42%、62%。

  (二)知识分布

  第二章有理数(14分):其中填空题第1、2、3题,共4分;选取题第13、8题,共2分;计算或化简第17(1)、(2)题,共8分。

  第三章用字母表示数(19分):其中填空题第4、5、6题,共5分;计算或化简:第17(3)、(4)题,共8分;解答题:第26题,共6分。

  第四章一元一次方程(19分):选取题第1题,共2分;简答题第19(1)、(2)题,第24题,共17分。

  第五章走进图形世界(14分):选取题第12题,共2分;简答题第21、25题,共12分。

  第六章平面图形的认识(34分):填空题第7、8、9、10题,共6分;选取题第14、15、16题,共6分;解答题第20、22、23、27题共22分。

  二、试卷特点

  1、公正性和导向性并举。

  试卷中第17题选自课本71页第8题(1)、(2),试卷中第18题选自课本108页第6题(5),试卷中第20题选自课本199页第3题,试卷中第21题选自课本169页“试一试”第3题改编;试卷中第22题选自课本212第11题改编。以上各题共占37分。这样考查,体现了考试的公正性和导向性。

  2、基础性与创新性兼顾。

  前面填空题和选取题主要考查学生对“双基”的掌握,难度不大,这体现了数学要面向全体学生,解答题第17、18、19小题,是计算,主要考查学生对运算的掌握,因为准确迅速的计算是数学学科的基石。解答题第24、26小题都是与现实生活有关的题目,这充分体现了“人人要学有用的数学,数学问题是源于现实生活”的理念。填空题第9小题是用地理知识结合数学知识考查学生对数学理解的潜力。这就体现了学科之间的相互渗透,使人有一种耳目一新之感。全套试卷易中有难,充分到达了透过考试来评价的目的。

  三、考生答题错误分析

  1、对基础知识(主要是计算)的运用不够熟练。

  2、学生审题不清导致出错。

  3、某些思考和推理过程,过程过于简单,书写不够严谨。

  4、对于知识的.迁移不能正确把握,也就是不能正确使用所学的知识。

  四、考试后的一点思考

  透过这次考试,重视重视基础知识和基本技能的优良传统要发扬,在以后的教学中,我们应落实“双基”和培养“三个潜力”,使学生普遍具有较扎实的基本功。素质教育是重基础的教育,越是科技突飞猛进,越是要重视基础,基础中所体现的思想具有根本的重要性,从中学会的方法和思想使人的潜力具有迁移性。人的创新精神、实践潜力离不开过硬的基础知识。在教学中应体现基础性、普及性和发展性,使数学教育面向全体学生,使每个同学都学到有价值的数学,每个都获得必要的数学,不同的学生在数学上得到不同的发展,让学生“有所收获”。

  本次期末调研考试数学试题是“稳中求活”。新课标中新的教育理念有充分的体现,本次考试既考查了学生对基础知识、基本技能和概念掌握状况,又考查了学生运用知识解决实际生活问题的潜力,同时培养了学生的创新意识和实践潜力,确实是一份好试卷。

  初三数学期中考试试卷分析报告 4

  在实施高效课堂课程标准理念的指导下,要充分发挥考试的作用,促进学生的发展。学校在4月20日举行了期中测试,本次试卷命题即考查了学生的基础知识和基本技能,又考查了学生的综合能力,试卷难易适中,覆盖面广,科学性与代表性强。重视知识理解与过程的考查,试题的呈现形式多样化。下面就将本次数学试卷统测情况进行分析:

  (1)本次考试应考人数24人,实际考试人数24人,平均分43分,优秀人数1人,1人为86分,优秀率4.17%,良好人数3人,良好率12.5%,不及格20人,均为52分以下,不及格率83.3%。充分反映出一个问题,本班学生数学成绩存在严重的两极分化。在以后的教学中,培优补差的任务显得尤为重要,特别是补差。这次考试也有一些同学进步较大如:石云翔、莫乾海、李资莹、梁珊珊。

  (2)卷面分为四大板块。

  基础题、计算题、操作题、解决问题四大板块,从基础的概念入手,由简到难的过程,难易适中,有较强的科学性与代表性,试题内容注意突出时代特点,贴近生活实际,突出了灵活性,能力性,全面性,人文性的出题原则,提高了测试水平。

  (3)答题情况分析。

  由于本人参加了监考和阅卷,对学生答题情况从这几点来说。

  1、试卷完成情况分析:本次考试,从分数的分布情况和了解学生答卷情况看,整体学生对基础知识的掌握较好,但个别同学的应变能力比较差,一些变形的题目不能随机应变。如(判断题的第4小题)。学生整体完成较差的为解决问题,特别是利用比例知识解决问题,学生不能较好的判断题目中的量成正比例还是反比例关系,导致方程错误。

  2、存在的问题

  a、多数学生在计算中,尤其是在计算圆柱和圆锥的体积时,存在较大的失误,还有就是在解比例时,存在一些小小的失误如:忘写“解”字,解题步骤不规范。

  b、个别学生对用比例解决问题的题型理解还不够透彻。

  c、学生中优差程度悬殊。

  d、练习中,题形变换不够;学生孤陋寡闻。

  3、改进的措施。

  a、加强计算训练力度和有效方式,提高计算速度和质量。

  b、注重平时的培优补差,缩小优中差之间的差距。

  d、重视教学方法的改进,坚持“启发式”和“讨论式”,以问题作为教。

  我和数学组的多位数学教师在一起针对试卷中的问题进行了有针对性的教学研究,深刻反思了我们平时的教学行为改进措施如下:

  (1)继续加强计算基本功的训练。

  “课标”中提到“应重视口算,加强估算,鼓励算法多样化”。“课标”中也提到“应避免繁杂的运算”,但是基本训练还要坚持,计算还应该达到一定的速度。要培养学生的计算能力,必须打好口算的基础,学生还应该具备一定的口算能力,为学生今后的学习打下良好的基础。总之,要经常地、有计划地坚持训练。

  (2)要注重思维训练,不要“应试”训练。

  思维训练就像口算训练一样,要经常地、有计划地进行。因为现行教材中的题目都比较简单,难度较小,学生遇到灵活一点的题目就不会做。教师要根据教学内容充分挖掘生活资源,转变教学观念,用足,用活教学资源,做到数学内容生活化,生活内容数学化。这样的数学课堂学生一定会感觉到生动有趣。这样做可以有利于学生(至少是一部分学生)思维灵活性的训练。

  (3)要注重学习的结果,更要注重学习的过程。

  比如“圆柱体与圆锥体的.体积之间的关系问题”,让学生知道等底等高的圆锥体的体积是圆柱体积的1/3,固然很重要;但是让学生经历发现这一规律的过程就更为重要。试卷填空题中的第10小题失分率最高,是77%;值得我们深思!要想让学生真正理解,就必须让学生经历发现这一规律的过程。

  (4)要注重数学知识的学习,更要注重数学知识的应用。

  “课标”中多处提到“培养学生应用数学的意识和综合运用所学知识解决问题的能力”。周玉仁教授说:问题是数学的心脏。儿童学习数学的本质是一种发现问题、探索问题、提炼出数学模型,利用已有的知识经验解决问题的过程。也就是说学习数学是为了应用数学,而这恰恰就是我们学生的薄弱环节。学生掌握数学知识并不难,难的是灵活运用所学知识解决实际问题。例如这样的问题在平日的教学中是被我们忽略了学生的动手操作的培养,这样的实践活动我们开展的还不够,动手操作能力培养还有待于加强。

  (5)要关注每一个学生的发展,更要关注学习有困难学生的发展。

  这些学生可以说是“学习有困难”的。造成他们“学习有困难”的原因很多,但是不管什么原因,他们既然在我们的班级中学习,我们就要尽最大努力,更多地关注他们,注重对他们学习方法的指导,学习习惯的培养等,使他们在自己原有的基础上得到发展。

  最后,我真诚地希望我的教学能百尺竿头,更进一步!这有赖于我们每一位数学教师以更为饱满的热情,高度的社会责任感和使命感,在学习中探索、在探索中实践、在实践中提升。

  初三数学期中考试试卷分析报告 5

  一、试题分析:

  1、本试题关注学生的发展,考查数学的核心内容、数学的基础知识、基本技能和基本的思想方法。让学生通过解答这些试题感受成功,增进自信。另外,命题立足于教材。试卷一部分源于教材,是教材的例题、习题的类比、改造、延伸和拓展。试题能从初中数学的教与学的实际出发,引导教师教好教材,学生学好教材,充分发挥教材的扩张效应。

  2、创设探索思考空间,考查探究能力。试卷给学生提供自主探索与创新的空间,有利于学生活跃思维,让经历观察、操作、确认等过程,发展合情推理能力。

  3、注重实际背景,考查应用能力。数学来源于现实生活,又作用于生活世界,试题题材取自学生熟悉的实际,让学生在实际问题情景中,灵活运用数学的基础知识和技能,分析和解决问题。

  二、试卷分析:

  2、部分学生的数学知识学得过死,思考问题缺乏灵活性、开放性、多维性。如填空题第9、10题。学生思维能力差,导致失分严重。

  3、部分学生的用数学的意识较差,运用数学知识解决实际问题的能力较差。导致填空题第8题,及解答第24题失分较多。

  三、具体措施:

  1、立足课本,很抓基础知识的教学。把握知识的发生发展过程,使学生的知识形成有机的整体。

  2、注重学生的自主探索与合作交流。在教学中,激发学生的学主动性,让学生动手实践、自主探索与合作交流,真正理解和掌握基本的数学知识与技能,数学思想和方法。

  3、注重培养学生的应用数学意识。在教学中,引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的办法,并鼓动学生尝试解决某些简单的.实际问题,加深对所学知识的理解,获得运用数学知识解决问题的思想方法。

  4、注重学生能力的培养。学生因运算能力、探究推理能力、应用能力等较低而造成较严重的失分,在教学中要注重学生能力的培养,把能力的培养有机地融合在数学教学的过程中,通过学生主动地参与丰富多彩的数学活动,促进学生能力的发展。

  5、加强基本方法的训练。在教学过程要不断引导学生归纳一些常见题型的一般方法,以便让学生在以后的学习过程中能够触类旁通。

  6、加强非智力因素的培养,提高学生认真审题、规范解题的习惯。如审题时可划出关键字句,在图中作标记等。

  7、狠抓知识落实。做到堂堂清,周周清,月月清,人人清。把知识落到实处。

  初三数学期中考试试卷分析报告 6

  一、数学试卷结构分析如下:

  数学试卷分值:满分100分,考试时间90分钟;

  题型共有4种:选择题、填空题、计算、化简求值、解答题;

  共21题;

  题型所占比例:

  1、选择题分值为103=30

  2、填空题分值为83=24

  3、有理数计算分值为44=16

  4、化简求值分值为34=12

  5、解答题分值为36=18。

  二、题目难易程度区分如下:

  选择题。共10小题,由浅入深;

  (1)1-6题为基础题、7-9为强化题,主要考查第一、二章节中的基本概念(相反数、绝对值、系数、同类项、科学记数法)的理解,比较简单、得分率较高;

  (2)第10小题拓展题比较难,考察求代数式值的应用,错误率较高、不易得分;

  填空题。共8小题,均为基础强化题,主要考察数轴、绝对值、多项式的应用以及对基本技能的应用;中等难度、得分率较高;计算题。共4小题,考察第一章《有理数》加减乘除乘方的混合

  化简求值题。共3小题,考察七(上)第二章《整式的加减》去括号、合并同类项、化繁为简代数式求值问题;中等难度、得分率较高;

  解答题。共3小题;

  第1小题为相反数、倒数、绝对值及代数式求值的综合计算题。

  第2小题为多项式的'化简求值综合题,重点考察第二章知识点。

  第3小题解决问题类题目,稍大,不易拿全分。

  三、学生考试成绩状况评价

  今年七年级期中数学卷(满分100分);其中,有90分左右的题目对于大多数学生来说是相对比较容易的,对于基础扎实的学生达到90分以上并不困难。

  经过初步调查,今年期中数学成绩的峰值一段是在90~99分之间,另一段在80~89分之间,低于70分者占总人数的5.3%,90分以上者约占54.1%。

  初三数学期中考试试卷分析报告 7

  上个星期我们进行了期中考试,接下来我就我们学校数学考试试题和学生的答题状况以及以后的教学方向分析如下。

  一、试题特点

  试卷包括填空题、选取题、解答题三个大题,共120分,以基础知识为主,对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%、,主要考查了七年级下册第六章《一元一次方程》第七章《二元一次方程组》以及第八章《不等式》。这次数学试卷检测的范围就应说资料全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握状况。

  无论是试题的类型,还是试题的表达方式,都能够看出出卷老师的别具匠心的独到的眼光。试卷能从检测学生的学习潜力入手,细致、灵活地来抽测每章的数学知识。打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

  二、学生问题分析

  根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题

  ①数学联系生活的潜力稍欠。数学知识来源于生活,同时也服务于生活,但学生根据要求举生活实例潜力稍欠,如选取题第10小题,,学生因对“用自己的.零花钱去买东西”理解不透,从而得分率不高。

  ②基本计算潜力有待提高。计算潜力的强弱对数学答题来说,有着举足轻重的地位。计算潜力强就等于成功了一半,如解答题的第19题解方程(组),学生在计算的过程中都出现不少错误。

  ③数学思维潜力差这些问题主要表此刻填空题的第13题,第15题,第16题和解答题的21题,第23题。

  ④审题潜力及解题的综合潜力不强。审题在答题中比较关键,如果对题目审得清楚,从某种程度上能够说此题已做对一半,数学不仅仅是一门科学,也是一种语言,在解题过程中,不仅仅要要求学生学会如何解决问题,还务必要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。

  三、今后的教学注意事项:

  透过这次考试学生的答题状况来看,我认为在以后的教学中应从以下几个方面进行改善:

  1、立足教材,教材是我们教学之本,在教学中,我们必须要扎扎实实地给学生渗透教材的重难点资料。不能忽视自认为是简单的或是无关紧要的知识。

  2、教学中要重在突显学生的学习过程,培养学生的分析潜力。在平时的教学中,作为教师应尽可能地为学生带给学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。

  3、多做多练,切实培养学生的计算潜力。有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。

  4、关注生活,培养实践潜力加强教学资料和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的潜力。

  5、关注过程,引导探究创新,数学教学不仅仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的潜力。

  初三数学期中考试试卷分析报告 8

  一、试卷评阅的总体状况

  本学期文科类数学期末考试仍按现用全国五年制高等职业教育公共课《应用数学基础》教学,和省校下发的统一教学要求和复习指导可依据进行命题。经过阅卷后的质量分析,全省各教学点汇总,卷面及格率到达了54%,平均分54。1分,较前学期有很大的提高,答卷还出现了不少高分的学生,这与各教学点在师生的共同努力和省校统一的教学指导和管理是分不开的。为进一步加强教学管理,总结各教学点的教学经验不断提高教学质量,现将本学期卷面考试的质量分析,发给各教学点,望各教学点以教研活动的方式,开展讨论、分析、总结教学,确保教学质量的稳步提高。

  二、考试命题分析

  1、命题的基本思想和命题原则命题与教材和教学要求为依据,紧扣教材第五章平面向量;第七章空间图形;第八章直线与二次曲线的各知识点,同时注意到我省的教学实际学和学生的认识规律,注重与后继课程的教学相衔接。以各章的应知、应会的资料为重点,立足于基础概念、基本运算、基础知识和应用潜力的考查。试卷整体的难易适中。

  2、评分原则评分总体上坚持宽严适度的原则,客观性试题是填空及单项选取,这部分试题条案是唯一的,得分统一。避免评分误差。主观性试题的评分原则是,以知识点、确题的基本思路和关键步骤为依据,分步评分,不重复扣分、最后累积得分。

  三、试卷命题质量分析

  以平面向量、直线与二次线为重点,占总分的70%、左右,空间图形约占30%左右,基础知识覆盖面约占90%以上。试题容量填空题13题,20空,单选题6题,解答题三大题共8小题。两小时内解答各题容量是足够的,知识点的容量也较充分。平面向量考查基本概念,向量的两种表示方法,向量的线性运算,向量的数量积的两种表示形式,与非零向量的共线条件,两向量垂直与两向量数量积之间的关系,试题分数约占35%左右。直线与二次曲线考查,曲线与方程关系,各种直线方程及应用,二次曲线的标准方程及一般方程的应用,方程中参数的求解,各几何要素的确定,试题分数约占35%左右。空间图形着重考查平面的基本性质、两线的位置关系、两面的位置关系、线面的位置关系、三垂线定理的应用、异面直线所成的角、线面所成的角、距离计算等问题。表面积和体积的计算,为减轻学生负担末列入试题中(但复习中仍要求应用表面积和体积公式),该部份试题分数约占30%。三章考查重点放在平面向量、直线和二次曲线,其次是空间图形部份。故考查的主次是分明的,贴合高职公共课教学大纲的要求。

  四、学生答卷质量分析

  填空题:

  第1至3题考查向量的线性运算和位置向量的坐标线性运算,答对率约85%、左右,其中大部份学生对书写向量遗漏箭头,部分学生将第3题的答案(—9,3)答成(9,—3)或(—9,—3)等。符号是不清楚的,反映出部份学生对向量的线性运算并非完全掌握。第4~7题涉及立体几何问题,主要考查线面关系,面面关系。答对率70%、左右,其它学生主要是空间概念不清,不能确定线面间、平面间的位置关系。

  多数对异面直线的位置关系不清楚。第8~13题涉及解析几何的问题,考查曲线方程中的待定系数,直线方程,点到直线的距离问题,状况尚好,答对率70%左右。第11~13题反而答错率占65%左右,主要反映出学生对各种二次曲线的标准方程混淆不清,对几何要素的位置掌握不好,突出表此刻对二次曲线的几何性质掌握较差,不牢固。

  单项选取题:

  学生一般得分为12—18分第1题选对的占80%以上,学生对平面的基本性质中的公理及推论掌握较好。第2题选对的占70%左右,学生对两向量垂直与两向量数量积之间的关系掌握较好。答错较多的是第4和第6题,其次是第5题。第5题多数错选(a)或(b),可见学生对一般圆方程用公式求圆心和半径不熟悉,同时用配方法化圆的一般方程为圆的标准方程,求圆心和半径也掌握不好。特别是第4题平行坐标轴,坐标变换竟有

  33%的学生错选(b)或不选(空白),可见不少学生对坐标轴平移引起坐标变换的新概念并不清楚,对新、旧坐标的概念也不清楚。第6题不少学生错选(b),反映出学生对向量平行和垂直的条件混淆,决定两向量相等的条件也不明确,才会出现如此的错误。

  第三题:

  (1)题是考查异面直线的成的角及长方体对角的计算。对本题的解答约80%、的学生能找到异面直线a1c1与bc所成的角,但有30%、~40%、的学生不习惯用反正切函数表示角度,反而用反正弦或反余弦函数表示角度,教学中应引起跑的重视。计算长方体的对角线长仅有20%、的学生会用简捷方法“长方体的对角线的平方等于长、宽、高的平方和”。其余学生计算较繁琐。

  (2)题是考查证明三点共线问题。约有80%、的学生采用不同的方法证明,有用解析法的,也有用向量法的,也有用平面几何与解析几何综合知识证明的“三点连线中,两线之和等于第三线则三点共线”,反映出各教学点对该问题给出了多种证明法和思路,值得提倡。

  第(3)题考查根据不同的己知条件选用向量数量积的表达式。

  第四题:

  1题主要考查动点的轨迹方程,学生的解答,多出现两种方法,按轨迹满足椭圆定义求解或按求轨迹方程的四大步骤求解,但解答中又出现不少错误。

  第五题:

  1题是考查由给定双曲线的`条件求它的标准方程和渐近线方程,但不少学生将双曲线中的参数a,b与随圆中的参数a、b、c混为一谈,对渐逐近线方程掌握不好,不能根据渐逐线的位置,写出渐近线的方程。

  2题主要考查用向量法证明四边形是矩形的方法,但不少学生随心所意,反而用解析几何的方法去证明,严格讲这是错误的,就应引起重视。有的学生在证明中逻辑混乱,逻辑推理叙述不严密,在矩形的证明中,用“垂直证明垂直”。对向量的知识掌握不牢固,求向量的坐标时,差值的顺序不对,导致计算错误。

  第六题:

  本题是一道立体几何题,主要考查的知识点一是两平面垂直的性质,二是直线与平面所成的角。本题评阅结果,有近60%、的考生得满分,这些学生是掌握了考查的知识点,解题思路清晰,能迅速地用两平面垂直的性质,证明δabc和δbdc是直角三角形,求出bc和cd后,又用三角函数计算cd与平面所成的角。有的学生构造三角形思路灵活,连接ad得直角δabd,在此三角形中求出ad,又在直角δdac中求出cd,最后在直角δdbc中求出dc与平面所成的角,即∠dcb。在20%、的学生错答的原因是找不准直角,把直角边当成斜边来计算,导致解答错误。有近20%、的学生空间概念较差,交白卷,有的认为ab与cd是在一个平面上且相交,完全按平面几何的知识来解答本题,如用全等三角形和相似三角形的知识来解,这是完全没有空间概念的主要表现。

  五、通过考试反馈的信息

  对今后教学的推荐通过以上考试命题,试卷质量,答卷质量,基本概况的综合分析,实行统一命题,统一考试,统一阅卷是十分必要的。将考试成绩通报各教学点,对互通信息,相互学习,取长补短,努力改善教学方法,分析和探索初中起点五年制大专教育(高职)的教学规律,也是很有必要的。特别是通过考生的答卷分析,各教学点要开展教研活动,分析教学中的薄弱环节,采取有针对性的措施,不断的提高教学质量。

  初三数学期中考试试卷分析报告 9

  一、试卷整体情况

  本次初三数学期中考试试卷结构合理,涵盖了初三数学的主要知识点,包括代数、几何等方面。题型丰富多样,有选择题、填空题、解答题等,能够全面考查学生对知识的掌握和应用能力。

  二、各题型分析

  选择题:部分题目具有一定的灵活性和综合性,需要学生对知识点有深入理解和准确判断。个别题目有一定难度,区分度较好。

  填空题:着重考查基础知识和基本运算,同时也有一些需要思考和推理的题目,整体难度适中。

  解答题:包括计算、证明、应用等类型。其中,计算题注重对基本运算的考查;证明题需要学生熟练掌握几何定理和推理方法;应用题与实际生活联系紧密,考查学生运用数学知识解决问题的能力。

  三、学生答题情况

  基础知识方面,部分学生对基本概念、公式、定理等掌握不牢固,导致在简单题目上丢分。

  在解题能力上,一些学生缺乏灵活运用知识的能力,遇到综合性较强的题目时不知如何下手。

  答题规范性有待提高,部分学生在书写、步骤等方面存在不规范的情况。

  审题不仔细,粗心大意导致错误较多。

  四、教学建议

  加强基础知识的教学,确保学生扎实掌握。

  注重培养学生的解题能力,通过例题讲解、习题训练等方式,提高学生分析问题和解决问题的能力。

  强调答题规范,培养学生良好的学习习惯。

  针对学生的薄弱环节,进行有针对性的辅导和强化训练。

  引导学生养成认真审题的习惯,提高答题的准确性。

  五、总结

  通过本次期中考试,我们对学生的学习情况有了更清晰的`认识。在今后的教学中,我们将根据分析结果,调整教学策略,进一步提高教学质量,帮助学生更好地掌握初三数学知识,为中考做好充分准备。

  以上报告仅供参考,你可以根据实际考试情况进行具体的分析和阐述。如果你能提供更多关于试卷和学生答题的具体信息,我可以为你生成更详细准确的分析报告。