九年级数学公开课《直线与圆的位置关系》说课稿

时间:2023-12-15 13:25:25 晓凤 说课稿 我要投稿
  • 相关推荐

九年级数学公开课《直线与圆的位置关系》说课稿(精选11篇)

  作为一位兢兢业业的人民教师,常常需要准备说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。那么问题来了,说课稿应该怎么写?以下是小编整理的九年级数学公开课《直线与圆的位置关系》说课稿,希望能够帮助到大家。

九年级数学公开课《直线与圆的位置关系》说课稿(精选11篇)

  九年级数学公开课《直线与圆的位置关系》说课稿 1

  一.学生状况分析

  在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。

  二.教学任务分析

  1、地位和作用

  解析几何的本质是利用代数方法来研究几何问题,这节课我们就要用代数方法来研究直线与圆的位置关系.这样一方面可以巩固前阶段所学的知识,另一方面也显示了用代数方法研究几何问题的优越性,用解析法研究直线与圆的位置关系是从初等数学到高等数学的开始,也为后面研究直线与圆锥曲线的位置关系打好基础,这节课内容起着承前启后的作用。

  2、教学重点

  能根据给定的直线与圆的方程判断直线与圆的位置关系

  3、教学难点

  灵活运用“数形结合”思想来解决问题

  4、教学目标

  知识目标:

  (1)能通过点到直线的距离公式和方程组的解判断直线与圆的位置关系.

  (2)能够解决直线和圆的相关的问题.

  能力目标

  通过观察——类比——概括——抽象等思维过程,发展学生自主学习的能力;

  情感德育目标:

  激发学生学习数学的自主性和积极性,体验获取知识的乐趣;

  三.教学过程分析

  本节课分为六个教学环节:复习引入、构建新知、例题讲解、拓展提高、应用演练、归纳小结

  环节1:复习引入

  1、平面几何中,直线与圆有哪几种位置关系?在初中,我们怎样判断直线与圆的位置关系?

  平面几何中,直线与圆有三种位置关系:

  (1)直线和圆有两个公共点,直线与圆相交;

  (2)直线和圆只有一个公共点,直线与圆相切;

  (3)直线和圆没有公共点,直线与圆相离.

  两种方法:

  ①根据定义

  ②圆心到直线的距离d与圆的半径r的大小关系。

  反过来,直线与圆相交,直线与圆有两个公共点。

  直线与圆相切直线与圆有一个公共点

  直线与圆相离,直线与圆没有公共点

  2、现在,如何用直线方程和圆的方程判断它们之间的位置关系?

  先看以下问题,看看你能否从问题中总结来.

  (设计意图:以问题为载体,帮助学生复习、整理已有的知识结构,带着问题进入下一个环节,有效的调动学生的学习兴趣。)

  环节2:构建新知

  分析:根据初中判断直线与圆的位置关系的两种方法,我们可以利用d和r的大小关系或直线与圆的公共点的个数来判断它们的位置关系。

  直线与圆的公共点的坐标即满足直线方程又满足圆的方程,把直线方程与圆的`方程联立,

  (设计意图:由较简单的问题导出这节课的内容,让学生利用已有的知识,探究用坐标法判断直线与圆的位置关系的方法,一方面可以巩固前阶段所学的知识,另一方面也显示了用代数思想研究几何问题的优越性)

  3、构建新知

  回顾我们前面提出的问题:如何用直线和圆的方程判断它们之间的位置关系?

  判断直线与圆的位置关系有两种方法:

  几何法:根据圆心到直线的距离d与圆的半径r的关系来判断.如果d

  如果d=r,直线与圆相切;如果d>r,直线与圆相离.

  代数法:根据直线与圆的方程组成的方程组解的情况来判断.如果有两组实数解时,直线与圆相交;

  有一组实数解时,直线与圆相切;无实数解时,直线与圆相离.

  (设计意图:让学生通过独立的思考,概括出利用直线与圆的方程来判断它们位置关系的两种方法,可以自己把课堂上所学的零碎的知识点连成知识线,从而加深了学习的印象.)

  环节3例题讲解

  分析:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系;

  分析:根据直线l与圆C的方程组成的方程组解的情况来判断

  这里是利用直线与圆的位置关系的性质来解题,已知直线与圆相切,可知圆心到直线的距离等于圆的半径,直线与圆有一个公共点。

  求出交点的坐标目的在于认识到方程组解得意义。让学生体会出用何法解题更为方便。例2让学生运用直线与圆的位置关系的性质解题)结合图形,无论m为何值,点(0,2)的坐标恒满足直线方程,直线恒过这个定点,

  m是直线的斜率,满足题目条件的直线就是图上的这两条直线,左边这条直线的方程

  是,右边直线的方程为

  (设计意图:例1让学生及时的巩固直线与圆位置关系的判断方法.以期达到强化训练的目的,

  环节4、拓展提高

  另解:(1)因为l:y=a(x-1)+4过定点N(1,4)

  N与圆心C(2,4)相距为1

  显然N在圆C内部,故直线l与圆C恒相交

  (2)在y=ax+4-a中,a为斜率,当a=0时,l过圆心,

  显然弦AB的最大值为直径的长,等于6

  (设计意图:对学生进行一题多解的训练,有利于提高思维的灵活性,在解决问题过程中,通过利用数形结合的思想,提升对知识的理解,提高分析问题,解决问题的能力。)

  环节5、应用演练

  练习1、2、

  (设计意图:课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握.

  同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯.)

  环节6、归纳小结

  1、直线与圆的位置关系的判断方法:

  几何法:代数法:

  1、确定圆的圆心坐标和半径r1、把直线方程带入圆的方程

  2、计算圆心到直线的距离d2、得到一元二次方程

  3、判断d与圆半径r的大小关系3、求出△的值

  d>r,直线与圆相离,直线与圆相交

  d=r,直线与圆相切,直线与圆相切

  d

  (设计意图:通过小结,使学生对本节所学的知识系统化、条理化,进一步巩固知识,明确方法.)

  作业:

  3.已知⊙C:(x-1)2+(y-2)2=2,P(2,-1),过P作⊙C的切线,求切线方程。

  (设计意图:,第1、2题是基础题,为了复习巩固这节课的内容,第3题是弹性作业,为学有余力的学生提供发展的空间)

  环节6、课后反思与点评:

  1、新的课标把直线和圆的位置关系作为独立的章节,说明新课标对这节内容要求有所提高。

  2、判断直线与圆的位置关系为了防止计算量过大,一般采取几何的方法,但用方程思想解决几何问题

  是解析几何的精髓,是以后处理圆锥曲线问题的通法,掌握好方程的方法有利于培养数形结合的思想。

  3、直线与圆位置关系的相关问题如:弦长的求法、圆的切线方程求法以后还要补充。

  4、用代数法判断直线与圆的位置关系,不必求出方程组的解,利用根的判别式即可。

  九年级数学公开课《直线与圆的位置关系》说课稿 2

  教学目标:

  1.使学生理解直线和圆的相交、相切、相离的概念。

  2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

  3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

  重点难点:

  1.重点:直线与圆的三种位置关系的概念。

  2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

  教学过程:

  一.复习引入

  1.提问:复习点和圆的三种位置关系。

  (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

  2.由日出升起过程当中的三个特殊位置引入直线与圆的位置关系问题。

  (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

  二.定义、性质和判定

  1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

  (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

  (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

  (3)直线和圆没有公共点时,叫做直线和圆相离。

  2.直线和圆三种位置关系的性质和判定:

  如果⊙O半径为r,圆心O到直线l的距离为d,那么:

  (1)线l与⊙O相交d<r

  (2)直线l与⊙O相切d=r

  (3)直线l与⊙O相离d>r

  三.例题分析:

  例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

  ①当r=时,圆与AB相切。

  ②当r=2cm时,圆与AB有怎样的位置关系,为什么?

  ③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

  ④思考:当r满足什么条件时圆与斜边AB有一个交点?

  四.小结(学生完成)

  五、随堂练习:

  (1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。

  (2)已知⊙O的直径为13cm,直线L与圆心O的`距离为d。

  ①当d=5cm时,直线L与圆的位置关系是;

  ②当d=13cm时,直线L与圆的位置关系是;

  ③当d=6.5cm时,直线L与圆的位置关系是;

  (目的:直线和圆的位置关系的判定的应用)

  (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L与⊙O至少有一个公共点,则d应满足的条件是()

  (A)d=3(B)d≤3(C)d<3d="">3

  (目的:直线和圆的位置关系的性质的应用)

  (4)⊙O半径=3cm。点P在直线L上,若OP=5cm,则直线L与⊙O的位置关系是()

  (A)相离(B)相切(C)相交(D)相切或相交

  (目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

  想一想:

  在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

  六、作业:P100—2、3

  九年级数学公开课《直线与圆的位置关系》说课稿 3

  一、教学目标:

  根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

  1)知识目标:

  a、知道直线和圆相交、相切、相离的定义。

  b、根据定义来判断直线和圆的位置关系,

  会根据直线和圆相切的定义画出已知圆的切线。

  c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

  2)能力目标:

  让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

  3)情感目标:

  在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

  二、教材的重点难点

  直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

  三、在教学中如何突破这个重点和难点

  解决重点的方法主要是:

  (1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况)

  (2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的`定义,归纳直线和圆的三种位置关系。是什么?)。

  在说直线与圆的位置关系时,如何突破这个难点:

  (1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

  (2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

  (3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

  (4)突破直线和圆的位置关系的(如果圆O的半径为r,圆心到直线的距离为d,

  1.直线l与圆O相交<=>d

  2.直线l与圆O相切<=>d=r

  3.直线l与圆O相离<=>d>r

  (上述结论中的符号“<=>”读作“等价于”)

  式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

  四、教学程序

  创设情境------导入新课------新授-------巩固练习-----学生质疑------学生小结------布置作业

  [提问]通过观察、演示,你知道直线和圆有几种位置关系?

  [讨论]一轮红日从海平面升起的照片

  [新授]给出相交、相切、相离的定义。

  [类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

  [巩固练习]例1,

  出示例题

  例1在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么?

  (1)r=2cm;

  (2)r=2.4cm;

  (3)r=3cm

  由学生填写下例表格。

  直线和圆的位置关系

  公共点个数

  圆心到直线距离d与半径r关系

  公共点名称

  直线名称

  图形

  补充练习的答案由师生一起归纳填写

  教学小结

  直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

  本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

  九年级数学公开课《直线与圆的位置关系》说课稿 4

  授课时间:

  20xx.11.17早上第二节

  授课班级:

  初三、1班

  授课教师:

  xx

  教学内容:

  7.7直线和圆的位置关系

  教学目标:

  过程与方法目标:

  1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析、概括、知识迁移的能力;

  2.通过例题教学,培养学生灵活运用知识的解决能力。

  情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

  教学重点:

  直线和圆的位置关系的判定方法和性质

  教学难点:

  直线和圆的三种位置关系的研究及运用

  教学程序设计:

  利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的`距离两方面体会直线和圆的不同位置关系。

  学生看投影并思考问题

  调动学生积极主动参与数学活动中.

  探究新知

  今天我们学习7.7直线和圆的位置关系。

  1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

  2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

  布置作业

  1、课本第101页7.3A组第2、3题

  2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

  九年级数学公开课《直线与圆的位置关系》说课稿 5

  教学目标:

  1、探索并掌握直线与圆的位置关系。

  2、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点。

  3、了解转化,分类讨论的数学思想方法,提高解决实际问题的能力。

  教学重点:

  直线和圆的位置关系的判定方法和性质。

  教学难点:

  直线和圆的三种位置关系的研究及运用。

  教法建议:

  在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学。

  教学过程:

  复习提问:

  1、点与圆有几种位置关系?它们如何表示?

  2、过三点一定能画圆吗?外心一定在三角形内吗?

  导入新课:先观察太阳升起的`过程,地平线与太阳有哪几种位置关系?

  根据此现象探究直线与圆又有哪几种位置关系?如图所示:

  问题

  1、公共点有几个?

  2、圆心与直线的距离与半径进行比较。

  归纳:(引导学生完成)

  (1)直线与圆有两个公共点;

  (2)直线和圆有唯一公共点;

  (3)直线和圆没有公共点.

  概念:(指导学生完成)

  由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

  (1)相交:直线与圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

  (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。

  (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

  研究与理解:

  ①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同。

  ②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

  九年级数学公开课《直线与圆的位置关系》说课稿 6

  教学目标:

  (一)教学知识点:

  1.了解直线与圆的三种位置关系。

  2.了解圆的切线的概念。

  3.掌握直线与圆位置关系的性质。

  (二)过程目标:

  1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。

  2.通过让学生发现与探究来使学生更加深刻地理解知识。

  (三)感情目标:

  1.通过图形可以增强学生的感观能力。

  2.让学生说出解题思路提高学生的语言表达能力。教学重点:直线与圆的位置关系的性质及判定。

  教学难点:

  有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。

  教学过程:

  一、创设情境,引入新课

  请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)师:你发现了什么?

  (希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)让学生在本子上画出直线与圆三种不同的位置图。(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)

  二、讨论知识,得出性质

  请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系

  设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:

  直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d

  三、做做练习,巩固知识抢答,我能行活动:

  1、已知圆的直径为13cm,如果直线和圆心的距离分别为

  (1)d=

  (2)d=

  (3)d=8cm,

  那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:

  2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?

  (1)相交;

  (2)相切;

  (3)相离。

  师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题:考考你。

  3.在Rt△ABC中,C=900,AC=3cm,BC=4cm。

  (1)以A为圆心,3cm为半径的'圆与直线BC的位置关系是以A为圆心,2cm为半径的圆与直线BC的位置关系是以A为圆心,为半径的圆与直线BC的位置关系是.师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?

  (2)以C为圆心,半径r为何值时,⊙C与直线AB相切?相离?相交?

  第3页(请同学们思考讨论后,再请个别同学说出答案)总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。

  比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。

  四、联系现实,解决实际

  在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区?让学生完整解答。

  五、归纳总结,形成体系师:这节课你有何收获?请个别学生回顾知识,教师再总结完整。

  六、布置作业,课后巩固分层作业:

  1.基础题:作业本(2)P21;

  2.自选题:如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?

  九年级数学公开课《直线与圆的位置关系》说课稿 7

  一、素质教育目标

  ㈠知识教学点

  1、使学生理解直线和圆的位置关系。

  2、初步掌握直线和圆的位置关系的数量关系定理及其运用。

  ㈡能力训练点

  1、通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

  2、在节我们曾学习了“点和圆”的位置关系。

  ⑴点P在⊙O上OP=r

  ⑵点P在⊙O内OP<r

  ⑶点P在⊙O外OP>r

  初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

  ㈢德育渗透点

  在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

  二、教学重点、难点和疑点

  1、重点:使学生正确理解直线和圆的.位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

  2、难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

  3、疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

  三、教学过程

  ㈠情境感知

  1、欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?

  2、演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

  3、活动:学生动手画,老师巡视。当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。

  4、直线和圆的位置关系的定义。

  ①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。

  ②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。

  ③直线和圆没有公共点时,叫做直线和圆相离。

  ㈡重点、难点的学习与目标完成过程,

  1、利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。

  2、提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

  3、教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

  4、学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。

  ①直线ι和⊙O相交d<r

  ②直线ι和⊙O相切d=r

  ③直线ι和⊙O相离d>r—3—

  提问:反过来,上述命题成立吗?㈢尝试练习

  1、练习一:已知圆的直径为12cm,如果直线和圆心的距离为:

  ⑴xx;

  ⑵6cm;

  ⑶8cm那么直线和圆有几个公共点?为什么?

  2、练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

  评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。

  3、经过以上练习,谈谈你的学习体会。

  强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!

  ㈣例题学习(P104)

  在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

  ⑴r=2cm

  ⑵r=

  ⑶r=3cm

  1、学生独立思考后,小组交流。

  2、教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢?

  3、学生讨论,并完成解答过程,用幻灯机投影学生成果。

  4、用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义。

  5、变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求?

  学生讨论,并用z+z超级画板的变量动画引导。

  (五)话说收获:

  为了培养学生阅读教材的习惯,请学生看教材—104,从中总结出本课学习的主要内容有(抽学生回答):

  四、作业

  P105练习2P115习题A

  九年级数学公开课《直线与圆的位置关系》说课稿 8

  尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

  一、教材分析

  教材的地位和作用。

  圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

  二、学情分析

  在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

  三、教学目标:

  根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

  (1)掌握直线和圆的三种位置关系性质及判定。

  (2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

  (3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,培养学生观察、分析和概括的能力;

  (4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

  教学的重难点:

  重点:直线和圆的三种位置关系的性质与判定。

  难点:用数量法刻画直线与圆的三种位置关系。

  突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

  四、学法教法

  教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题——学生体验——合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

  五、教学过程

  (1)创设情境,引出课题(3分钟)

  从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。

  (2)动手操作探求新知(20分钟)

  a.学生动手实验——探究位置关系得出概念

  美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的.含义。

  b.讲练结合——运用定义法、引出数量法

  在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。

  c.类比总结——探究第二种判定方法

  由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:

  ①d>r,直线L和⊙O相离;

  ②d=r,直线L和⊙O相切;

  ③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。

  在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。

  (3)巩固练习,提高能力(10分钟)

  为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快

  1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d:

  1)若d=4.5cm,则直线和圆,直线和圆有____个公共点;

  2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点;

  3)若d=8cm,则直线和圆______,直线和圆有____个公共点。

  这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。

  2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:

  (1)r=2cm;

  (2)r=2.4cm;

  (3)r=3cm。(P101习题24.2第2题)

  3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆

  (1)当圆C与线段AB相交时,r;

  (2)当圆C与线段AB相切时,r;

  (3)当圆C与线段AB相离时,r;

  解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。

  (本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

  (4)课堂小结构建体系(5分钟)

  本节课你有哪些收获?你还有哪些疑惑?

  (通过提问方式进行小结,交流收获与不足,让学生养成学习-总结—再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

  (5)作业布置课后延伸(2分钟)

  必做题:

  1.阅读教材100-101

  2.P112练习2

  选做题:如图,已知∠AOB=β(β为锐角),M为OB上一点,且OM=5cm,以M为圆心、以

  2.5为半径作圆

  (1)⊙M与直线OA的位置关系由大小决定;

  (2)若⊙M与直线OA相切,则β=;

  (3)若⊙M与直线OA相交,则β的取值范围是。

  九年级数学公开课《直线与圆的位置关系》说课稿 9

  一、教学内容分析

  1、教材分析:

  《圆》这一章,是学生平面几何学习中一个重要的内容,如何在圆的教学中,让学生在直线型图形研究的基础上进一步去体会研究几何图形的思维和方法,深刻领悟几何学的学科观点,有着非常重要的意义。下面是《圆》这一章的框架图:

  2、学情分析:

  通过前面8章的有关几何的学习,学生已经具备了一定的空间概念和几何直观,具有研究几何图形的思维和方法,有了上节课点和圆的位置关系的铺垫,学生对于探究直线和圆的位置关系并不会感到陌生。

  二、教学目标的确定

  根据教学内容的特点及学生的实际情况,确定了三个方面的目标:

  1、了解直线和圆的三种位置关系,并能简单应用。

  2、在探究过程中,提高学生观察、分析、抽象概括的能力,体会数学的基本思想和思维方式。

  3、通过具体的探究活动,认识数学具有抽象、严谨的特点,体会数学的价值。

  本节课的教学重点是探究直线和圆的位置关系,并能简单应用;

  本节课的教学难点是能够从几何和代数两个角度分析直线和圆的位置关系。

  三、教学方法的选择

  根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,教学中使用了几何画板来辅助教学。

  四、教学过程的具体设计

  为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:复习旧知,引入课题;探索归纳,得出结论;拓展运用,巩固新知;归纳小结,提高认知。具体过程如下:

  (一)复习旧知,引入课题

  提前准备好的学案上,只有一个O,如右图,

  按照相应要求作图:

  1、作点P

  2、过点P作直线

  对于问题1的预案:

  设计意图:以学生自己动手画图的形式,复习了上节课的知识————点和圆的位置关系,为接下来探究直线和圆的位置关系奠定基础。

  对于问题2的预案:

  根据直线和圆的`位置关系,将上述所有的情况分类:

  提问1:分成几类:

  提问2:分类的依据是什么

  引导学生得出:根据直线和圆的公共点个数,可以把直线和圆的位置关系分为三类:相交、相切、相离,板书相关概念。

  (二)探索归纳,得出结论:

  刚才是从几何的角度(交点个数)探究直线和圆的三种位置关系,这阶段将从代数角度将直线和圆的位置关系数量化:

  借助几何画板,让学生从运动变化的角度去理解直线和圆的三种位置关系:

  圆具有轴对称性,直线也具有轴对称性,所以这个组合图形本身就具有轴对称性,其对称轴是过圆心垂直于该直线的,考虑到对称轴与直线的这种垂直关系在运动的过程中具有不变性,所以我们在考虑用数量来刻画直线和圆的位置关系时,要找的几何量一定是和这种垂直关系密不可分的,因此,圆心到直线的距离就会被考虑,然后先让学生猜想,再用几何画板演示加以严谨的证明验证猜想。

  本章的研究主线就是圆的对称性,此环节的设计正符合这个研究逻辑,所以我认为此环节的设计是我的一个亮点。

  (三)拓展运用,巩固新知:

  1、已知圆的直径是13cm,设圆心到直线的距离是d

  (1)若d=4。5cm,则直线与圆_______,有______个公共点

  (2)若d=6。5cm,则直线与圆_______,有______个公共点

  (3)若d=8cm,则直线与圆_________,有______个公共点。

  2、已知圆的半径为r,直线上一点到圆心的距离为d,若d=r,则直线与圆的位置关系是()

  A、相交B、相切C、相离D、相切或相交

  3、在中,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是多少?

  本阶段的教学主要是通过对例题和练习的思考,使学生初步掌握直线和圆的位置关系,并能简单应用。

  (三)归纳小结,提高认识:

  知识层面上:

  直线和圆的位置关系

  相交

  相切

  相离

  公共点的个数

  2

  1

  圆心到直线的距离与半径的关系

  d

  d=r

  d>r

  公共点名称

  交点

  切点

  无

  直线名称

  割线

  切线

  无

  方法层面上:

  经历了从不同角度分析问题和解决问题的过程,掌握解决问题的一些基本方法。

  布置作业:学练优P59,60

  九年级数学公开课《直线与圆的位置关系》说课稿 10

  1、教材地位

  从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

  2、学生情况

  对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

  3、教学目标

  新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:

  4、知识与技能

  理解直线与圆三种位置关系。

  掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法以及通过方程组解的个数判断直线与圆位置关系,代数法

  直线和圆的方程的应用,能用直线和圆的方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想、能根据直线和圆的位置关系求简单的参数问题;

  5、过程与方法

  理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。

  6、情感态度与价值观

  通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。

  教法学法为了实现上述教学目标,本节课采取以下教学方法:

  (1)恰当的'利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。

  (2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。

  (3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。

  在学法上注重以下几点:

  (1)让学生从代数和几何两个角度来解决直线与圆的位置关系问题,并体会几何法的优越性;

  (2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。

  课堂结构设计:

  整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。

  教学过程设计:

  通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。

  回顾反思,拓展延伸:

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,不妥之处,敬请各位老师批评指正,谢谢

  九年级数学公开课《直线与圆的位置关系》说课稿 11

  一、课程目标分析:

  《普通高中数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

  二、教材分析:

  1、教材的地位和作用:

  《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。

  2、教材重点、难点

  重点:直线与圆的位置关系的判定及其应用。

  难点:直线与圆的位置关系的应用。

  三、目的分析

  1、知识目标:

  能根据给定直线、圆的方程,判断直线与圆的位置关系。

  2、能力目标:

  要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。

  四、教法分析:

  1、教学方法:启发式讲授法、演示法、辅导法。

  2、教材处理:

  (1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。

  通过老师引导和让学生自己探索解决,反馈学生的解决情况。

  (2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。

  3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。

  4、教具:多媒体电脑、投影仪、自做多媒体。

  五、过程分析:

  教学

  环节

  教学内容

  设计意图

  新课引入

  1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的`三种位置关系。然后引入本节课的课题。

  2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。

  1、数学产生于生活,与生活密切相关

  2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。

  新课讲解

  一、知识点拨:

  1、在初中的学习中我们知道直线和圆有三种位置关系,分别是相离、相切、相交,那么在初中我们怎样判断直线和圆的位置关系呢?

  答:把圆心到直线的距离d和半径r比较大小:

  d>r直线与圆相离

  d=r直线与圆相切

  d直线与圆相交

  2、我们如何利用坐标法将初中判断直线和圆的位置关系代数化?

  答:先利用点到直线的距离公式求圆心到直线的距离,再和半径比较大小。

  3、在直线与直线的方程这一节里,我们是如何利用代数的方法判断直线与直线的位置关系的?它对你在思考直线和圆的位置关系时有何启迪?

  答:在直线与直线的方程这一节里,我们先把两直线的方程联立解方程组

  方程组有一个解两直线相交

  方程组没有解两直线平行

  方程组有无数个解两直线重合

  在思考直线和圆的位置关系时,我们可类似地把直线和圆的方程联立解方程组

  方程组有一个解直线与圆相切

  方程组没有解直线与圆相离

  方程组有两个解直线与圆相交

  二、例题讲解:

  1、让学生先自学例1并回答下列问题:

  (1)第二小题中,消去x的步骤怎样?如何判断方程组有没有解?

  (2)你认为这两种方法哪一种较简单,为什么?

  答:

  (1)消去x的结果是一样可以判断和求解;

  (2)方法一较简单,因为方法二在求交点坐标时仍要解方程组。

  2、例2设直线与圆相切,求实数的值。

  2、例3过点作圆的切线L,求切线L的方程.

  4、练习:课本第83页练习1、2

  问题1涉及初中知识,可使得学生比较容易上手。

  问题2体现了将几何问题代数化的思想。

  问题3以前一章知识做类比,有利于培养学生类比归纳的能力。

  通过前面对知识的分析,例题1对学生来说应该比较容易,又通过两个问题检查学生的理解程度。

  例2建立直线与圆的深度理解

  例3该例题有利于培养学生全面考虑问题的良好思维习惯。

  通过两个课本练习,巩固直线与圆的位置关系的判断方法。

  课堂小结

  判断直线与圆的位置关系主要有以下两种方法:

  1:方程组有一个解直线与圆相切

  方程组没有解直线与圆相离

  方程组有两个解直线与圆相交

  2:d>r直线与圆相离

  d=r直线与圆相切

  d直线与圆相交

  强化学生对判断直线与圆的位置关系的两种方法。

  作业布置

  课本P86,A组4、6、B组1

  直线与圆的位置关系

  一、复习回顾

  一、判断直线与圆的位置关系方法:

  1:方程组有一个解直线与圆相切

  方程组没有解直线与圆相离

  方程组有两个解直线与圆相交

  2:d>r直线与圆相离

  d=r直线与圆相切

  d直线与圆相交

  例1

  例2

  例3

【九年级数学公开课《直线与圆的位置关系》说课稿】相关文章:

直线与圆的位置关系08-27

直线与圆的位置关系判定06-06

《直线与圆的位置关系》说课稿(通用7篇)10-21

《直线与圆的位置关系》说课稿范文(通用10篇)10-20

《直线和圆的位置关系》教学设计05-02

直线和圆位置关系教学设计05-07

直线和圆的位置关系教学反思09-26

《直线和圆的位置关系》教学反思08-26

《直线和圆的位置关系》教学反思06-23

直线和圆的位置关系教学反思09-26