《植树问题》说课稿(通用15篇)
作为一位优秀的人民教师,通常需要用到说课稿来辅助教学,认真拟定说课稿,优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的《植树问题》说课稿,希望能够帮助到大家。
《植树问题》说课稿 1
一、说教材
(一)教材的地位与作用。
新课标实施后,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题。本节课主要探讨关于在一条线段上植树的问题,例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型。本节课不但是建构知识的基础,而且起着启后的作用。
(二)教学目标的确定。
知识与技能:
利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
过程与方法:
使学生经历感知、理解知识的过程,体验“复杂问题简单化”的解题策略和方法。
情感态度与价值观:
通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
(三)说教学重点、难点
教学重点:
会应用植树问题的规律解决两端都种数的问题。
教学难点:
能把现实生活中类似的问题同化为“植树问题”,建立物体总个数与间隔数之间的关系,并运用植树问题的思想方法解决这些实际问题。
二、说学生
由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力。因此为了让学生能更好地理解本单元的`教学内容,我在教学过程中对教材进行了分类学习,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。
三、说教法、学法
我采用自主探究式学习模式,学生模拟“种树”————探究发现规律————应用规律实践的活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
四、说媒体使用
为更好地发挥多媒体作用,提高课堂效率,本节课运用多媒体主要是以下几方面:
1、在突破难点时运用在黑板上泡沫条、小树苗模拟栽树的过程,帮助学生直观理解两端栽树间隔数与棵树之间的关系;
2、运用课件播放,逐步演示小路是20米、25米、30米时的栽树情况,便于让学生弄清楚什么是间隔数、什么是棵数。
3、在课堂检测时运用多媒体呈现,增加课堂容量,提高课堂效率,在矫正达标时,运用实物展台直观呈现学生检测练习,节省书写时间,便于其他学生看清楚。
五、说教学过程
(新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,我在教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,我设计了如下教学程序:
(一)创设情境、导入新课。
1、小游戏:找手指上的数学。我们的双手不但会做事情,还隐藏许多数学问题。
2、引出“间隔长”的概念。
随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。
(初步感知什么是间隔数,间隔长度。为下面的发现规律打下基础。揭示课题:在生活中我们常常会遇到像同学们排队这样的问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。这样激发了学生的求知欲,形成积极的情感态度。)
(这一环节,用意在于先突破教学中的知识点,理解间隔,间隔数,初步感知间隔数与物体个数的关系,并且起到规范学生语言的作用,使学生在轻松的活动中为新课的学习作铺垫)
(二)学习新课:我精心设计了这样4个小环节。
1、化繁为简,解决问题。
例题1:通过创设在100米小路一边植树,每个5米栽一棵的现实情境,提出“一共要栽多少棵树?”的问题,先让学生猜一猜,再让学生去画图验证时感知100米太长了,可以将100米转化成20米等小的数据研究。
(1)自主学习。
学生通过线段图画一画、小棒摆一摆等学生自己喜欢的、比较形象的方式,解决植树问题的思想方法,初步感知到在植树问题中,棵数与间隔数之间会存在一定的关系。并且,这样设计,我并不强调(两端都栽),本意在于,先给学生创设宽松的思维环境,让学生打开思路,找到在一段路栽树时的不同方法,让思维如花般绽放。
(2)小组汇报:(抽取数学模型,猜测两端都栽时棵数与间隔数之间的关系。)边模拟栽树,边板书,边汇报。
点明:今天主要研究一下像这样的两端都栽的植树问题。(从上面多种方案中,抽取两端都栽的数学模型加以研究。)
(设计意图:生本教学改变了教师是课堂的主人这一传统现象,变为学生是课堂的主人,让学生小组汇报就是把课堂还给孩子,孩子们通过分工,小组共同把他们的发现汇报给全班,锻炼了学生的组织分工和语言表达能力,增强了孩子的自豪感和自信心,在交流汇报的过程中,台下的学生有不同的意见和汇报的小组进行交流、补充、纠错,纠正和完善了知识点。)
2、课件播放:
在前面学生动手操作的基础上,又通过课件演示20米小路,每5米栽一棵(两端都栽)的栽树过程,通过进一步的拓展:如果小路是25米呢?30米呢,逐步演示。
(这个过程是重点,必须让学生弄清楚什么是间隔数、什么是棵数,因此,利用课件直观形象地加以演示,)学生的思维顿时茅塞顿开:啊!原来棵数与间隔数还存在这样的关系,但是学生,只是直观看到的,还处于比较朦胧的认知状态,不理解。再者,只通过一个例子说明之间的关系,不具有说服力,因此,还需要通过进一步的验证活动来证明规律的存在。
3、验证规律,再次感悟解决植树问题的策略。
是不是在一段路种树,两端都要种时,间隔数与棵树之间都是这样的关系呢?接着我恰当的组织学生进行又一次的操作活动:请同学选择任意路长、和间隔,去自主验证。(通过全班学生的验证、使验证结果更具有说服力)而且,让学生的自我探究意识和求知欲得到再次激发,迫切的需要知道自己猜测的正确与否,自主地寻求验证的方法,从而也向学生渗透了解决数学问题的思想和策略。
4、引导学生用数学的形式,列数学算式。
学生把刚才的规律,转化成数量关系,从而列出:20÷5+1=5(棵)这样的算式。
(这个环节我遵循从具体到抽象的思维过程,建立了解决植树问题的思想方法,感悟到解此类问题的策略。)
(整节课的教学设计让学生经历由复杂问题到简单问题再到发现规律,最后解决问题的过程,渗透化繁为简的数学思想。)
(三)应用迁移,巩固提高。
一方面为了巩固之前发现的规律,另一方面让学生认识到植树问题不仅用来解决植树的问题,还可以解决类似的问题。本课练习安排了以下两个层次:
1、直接应用模型解决简单的实际问题。
(1)教材练习二十四,第1题。
(2)找生活中的有关“植树问题”。
如:安装路灯、排队问题、楼梯问题、封闭中的花坛种花问题等等。
2、推广到与植树问题相近的一些问题中。
这是我们且末县的车尔臣大桥,(课件出示图片)在河中间有6个石礅,每个石礅间的距离是3米,从第一个石礅到第6个石礅之间的距离有多长?
(设计题图:通过设计有层次性的练习题,,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。同时充分体现本节课的重点,难点,并且又利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想。)
(四)应用迁移,巩固提高全课总结。
1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!(课件出示)小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?全长除以间隔长。
2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。
(五)布置作业:教材第109页第3题。
六、说板书设计
我的板书是我和学生共同完成的,直观形象,一目了然,突出了重难点,有利于学生更好的巩固和掌握本课所学的知识。
《植树问题》说课稿 2
一、说教材
大家都知道,数学的思想方法是数学的灵魂。本册安排"植树问题"的目的就是向学生渗透复杂问题从简单入手的思想,为此,本节课我将引导学生完成下列教学目标:
1、知识方面:
认识不封闭路线上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。
2、能力方面:
培养学生观察能力、操作能力以及与人合作的能力。
3、情感方面:
在解决问题的过程中,感受数学与现实生活中的密切联系,并对学生进行环保教育。
教学重点:
引导学生在观察、操作、交流中探索并发现不封闭路线上间隔现象中的简单规律。
教学难点:
引导学生将这种认识应用到解决简单的实际问题之中。
教具准备:
课件 小树 纸板
二、说教法、学法
依据《数学课程标准》中"变注重知识获得的结果为知识获得的过程"的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中。充分调动学生的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。
教法:
设疑激趣法、实际操作法、直观演示法。
学法:
观察辨析法、动手操作法、合作交流法、自主探究法。
三、说教学过程
根据《数学课程标准》的基本理念:"学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者","动手实践,自主探索与合作交流是数学学习的重要方式"。因此,教学本课我采用了"问题探究"为中心的教学模式。设计了如下教学程序:
1、谈话引入,明确课题。
(利用3月12日植树节进行引入,这样既直观又可以对学生进行环保教育。)
2、分组探究,发现规律。
学生真正的生活经验应该是他们身边熟悉的事物,是能够激发他们感情因素的事物,这样才会让学生真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。所以我并没有利用教材上的例题,而是创设了一个同学们身边的现实问题情境。"我校计划在一条40米长的小路一旁栽树,每隔5米栽一棵。"然后提出"一共可栽多少棵?"的问题,("可"字体现出植树方法有多种)引导学生按照要求设计出不同的植树方案。
学生的知识起点与知识结构逻辑起点存在差异,要解决两者之间的矛盾,合作是一个良方,生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示和合理的利用。所以在设计植树方案时我让学生分组讨论,分工与合作,通过说一说,画一画,贴一贴、数一数来培养学生动手实践及与人合作的能力。
如果说生活经验是学习的基础,生生间的合作交流是学习的`推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,同学们才能走得更稳、更好。
当学生合作完成设计方案后,老师选择三种不同的方案展示在黑板上,然后让学生观察这三种方案,发现它们的异同点,并说一说。(这一环节利用实物感知,让学生更容易观察出其中的规律。)
通过观察,学生会发现这样几个相同点:小路的长度,每两棵之间的距离,小路被分成的段数。还有一个不同点:棵数不同,这时候老师就问:为什么不?当学生说到方案不同时,老师再追问一句:哪里不同?这样一步一步地引导学生发现:
方案一:两端都栽
方案二:只有一端栽
方案三:两端都不栽
接着就引导学生列出算式:
方案一:40÷5=8 方案二: 40÷5=8 方案三:40÷5=8
8+1=9 8-1=7
下一步就是让学生观察这些算式的异同,他们会发现,每种方案都有一个相同的算式:40÷5=8
究竟40÷5=8表示什么意思呢?先让同学们说说自己的理解,然后老师给予纠正并介绍两个新词"间隔"与"间隔数",同时可以借助五指加强学生对这两个词的理解。
通过观察分析得出,这三种方案的间隔数都是8,而方案一种了9棵树,方案二种了8棵树,方案三种了7棵树,棵数与间隔数之间又有什么联系呢?通过观察,他们会发现这样一个规律:
两端都栽:棵数=间隔数+1
只有一端栽:棵数=间隔数
两端都不栽:棵数=间隔数-1
3、应用规律,解决问题。
为了巩固刚刚发现的规律,也为后面的练习作铺垫,我又设计了一道例题"为了让孩子们的乐园更漂亮,幼儿园打算在20米长的小路旁摆一些花盆,一共需要购买多少盆花?"这道题只告诉了路的总长度,留给同学们的思维空间更广,同学们的设计方案也可以更多一些。每两盆间的距离可以是1米、2米、4米、5米、10米、20米;可以只在一旁摆,也可以两旁都摆;可以两端都摆,也可以只在一端摆,还可以两端都不摆。这道题我大胆地放手让学生自己去设计,不管是哪一种情况都应给予肯定和表扬。
4、回归生活,实际运用。
根据上一例题老师可以提示学生,植树问题并不仅仅是植树,就像摆花盆也属于植树问题,我们的身边还有许多类似的问题,让学生举例说一说。老师可以提示,让他们知道挂灯笼、爬楼梯、安装路灯、锯木头、敲钟、排队等都属于植树问题。然后运用今天所学的规律来解决一些生活中的问题。我用选择和填空的形式向同学们呈现了几道练习题,其中包括:栽树、安装路灯、爬楼梯、锯木头。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
5、总结。
先让学生谈谈这节课的收获,然后老师小结:我们的身边处处都是数学,只要同学们留心观察就会发现更多的规律和奥秘,就能解决更多的难题。
《植树问题》说课稿 3
一、说教材。
1、剖析教材。
本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成了若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵等等,它们中的隐藏着总数和间隔数之间的关系问题,我们就把这类题统称为植树问题。
在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可以有不同的情形,例如两端都要栽,只在一端栽国一端栽,或是两端都不栽。本单元通过一些生活中的事例,让学生根据不同的情况总结出规律,并利用这些规律解决类似的实际问题。
例1是探讨关于一条线段的植树问题并且两端都要栽的情况,例2讨论的是两端都不栽树的情形。根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的'方法来探究栽树的棵树和间隔数之间的关系,并启发学生通过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。
2、教学内容:
人教版小学数学四年级下册第八单元数学广角中的例1、例2及相应的“做一做”、练习等
3、教学重难点:
重点:
引导学生从实际问题中探索并总结出“棵树=间隔数+1”的关系。
难点:
把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题
课时安排:
本课为第一课时。
二、说目标
知识与技能:
1、经历探索日常生活中间隔排列中简单规律以及类似现象中简单数学规律的过程,初步认识其中的简单规律,并能将这种认识应用到解决简单实际问题之中,感受数学与生活的广泛联系。
2、通过观察、猜测、操作、验证以及与他人交流等活动,培养学生用数学眼光观察周围事物,用数学的观点分析日常生活中各种现象的意识和能力。
过程与方法:
通过观察、猜测、操作、验证以及与他人交流等方式探索规律。
情感态度与价值观:
通过实践活动,培养学生应用所学知识解决实际问题的能力,体会数学和现象生活的密切联系,并从小养成勤俭节约、合理安排开支的习惯。
三、说学情
学生在学这个内容之前,已经初步积累了一些探索规律的经验,由于这种规律在日常生活中常见,学生容易在生活中找到相关的原型,因而也比较容易体会到探索规律的乐趣和成功感。
四、说教法
五、说教学程序
说教学流程:本节课我分四个流程进行教学推进
一、情境导入
“用以改变和净化我们生存环境的‘植树活动’里面藏着许多数学问题,谁发现了?”
设计意图:既要激发学生的学习兴趣,也要让学生感受到数学问题原本就来源于生活实践。
二、探究新知
1、出示例题1。
⑴指名读题,理解题意。
(2)独立思考:你会解决这个问题吗?
设计意图:造成认知冲突,激发学生寻求可行性的方法验证自己的数学猜想。
2、动手绘制线段图,通过线段图来理解题意,找到规律,解决问题。
设计意图:向学生渗透解决问题的常用方法。
⑵学生汇报,初步建模。大多数学生在这一环节意识到棵数与间隔数之间的关系,但教师不要急于求成,要让学生明白任何科学的结论都要建立在普遍性的基础上。
3、学生自己解决路长和树的间距,比较间隔数和棵数的关系,进而总结出它们之间的关系式。给全体学生创设水到渠成的境界
4、重新审视例题1的不同解法。
设计意图:让学生用探索出的规律解决他们认知的矛盾,这个矛盾在此自然而然的化解开来,所有的学生都会豁然开朗。
三、巩固练习
四、课堂小结。
《植树问题》说课稿 4
一、说教材:
"植树问题"是人教版四年级下册"数学广角"的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
二、说教学目标:
基于对教材的理解和学生知识水平的分析,我将本节课的教学目标定位为:
(一)知识与技能方面:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3、能够借助图形,利用规律来解决简单植树的问题。
(二)过程与方法方面:
1、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
(三)情感态度与价值观方面
通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
三、说教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
四、说教法、学法:
现代教育论主张,学生的学习不是被动接受的过程,而是主动建构的过程。因此在本节课我主要采用"在生活中找间隔----在动手操作中中找方法-----在方法中找规律---在规律中学应用"的教学过程,让学生通过小组合作形式探究方法,使每个学生动脑、动手、合作探究,经历分析、思考、解决问题的全过程。
并通过对媒体的直观演示辅助教学,引导学生意趣激思,以思促学,在创设的生活情境中尝试探索,形成概念,积极参与,促进学生全面发展。
五、说教学过程
【本课教学分四大环节】:
一、激趣导入:
1、同学们你们知道吗?在我们的手中,还藏着数学知识呢,你们想了解一下吗?
2、伸出你们的右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把这种空格叫做间隔,也就是说,5个手指之间有几个间隔?3个间隔是在几个手指之间?其实这样的数学问题在我们的生活中随处可见。(通过摆动手指,创设情境,其实手指问题就和植树问题是一样的道理的。通过动手,观察,激发学生学习的兴趣,集中注意力走进新课。)
二、创设情境,提出问题
1、同学们知道每年的3月12日是什么日子吗?就是我国的植树节。你们知道植树都有什么好处吗?今天我们就一起来研究植树中的数学问题。板书课题:植树问题
三、探究交流、解决问题
1、 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)指名读题
(2)师:理解"两端"是什么意思?指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根米尺看作是这条小路,在小路的两端要种就是在小路的两头要种。
怎么解决?(引导学生用画图的方法来解决,但数据太大,可以化繁为简,先研究短距离的路上的植树问题的情况)
(3)学生探究短距离路上的植树规律。
①假如路长只有15米,要栽几棵树?如果路长是25米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)
②画一画,简单验证,发现规律。(填表)
路全长(米) 相邻两棵树间的距离 间隔(个) 棵树(棵) 图示
A15
B20
C25
D30
发现了:
a、 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b、 跟上面一样,再种20米看一看,这次你又分了几段,种了几棵?(板书:4段 5棵)
c、任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;4段 5棵)
d、你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=间隔数+1)
③应用规律,解决问题。
a、 问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
100÷5=20 这里的20指什么?
20 +1=21 为什么还要+1?
师:通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到"两端要种"求棵树,知道该怎么做了吗?
(在做题时先引导学生分析题目中的数量关系,要求的是需要多少棵树苗,必须要知道有多少个间隔,间隔数加一才是需要的棵数,间隔数是用全程长除以间隔距离,让学生将刚才掌握的规律说清楚,通过例题让学生一方面巩固刚发现的规律,并且说清算理,同时让学生运用自己总结出的规律解决实际问题,使学生体会成功的喜悦,另一方面认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。再利用教材第118页上面的做一做进行强化练习,要求学生在列式之前将题目中的数量关系分析清楚,养成学生解决问题的良好习惯。这一环节的教学主要是通过猜测法、分析法以及直观演示法掌握两端要种的植树规律并运用这一规律解决实际问题,同时我也运用了大量的创设情境加强对学生数学思想和解决复杂问题能力的培养。)
四、 巩固应用,内化提高
基础练习:
1。我们身边类似的数学问题。
学校到5路车站一侧植树,每隔5米种一棵,一共种了26棵。从第1棵到最后一棵的'距离有多远?
小结:说一说,在我们生活中,还有哪些像植树问题这样的现象呢?小组同学说说,然后汇报情况。如手指与间隔,栏杆与间隔,站队列,插彩旗,种白菜,围墙柱子,作业本的横线与间隔……
(在学生基本掌握了植树问题中两端都种的规律以后我设计了一道巩固反馈练习题,这道题是两端都种的植树问题的逆运算,应运用"全程长=间隔距离x间隔数;间隔数=棵树-1"。)
提高练习:
1、 "六一"庆祝,同学们布置教室,挂了7只红灯笼,每两只红灯笼之间挂2只黄灯笼,你知道同学们一共挂了几只黄灯笼吗?
2、卓老师去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道卓老师去几楼的教室吗?
(引入生活中的"植树问题"如:上楼梯等问题,这些题目都体现了数学知识生活化和生活化的数学知识。这二题是典型的两端都种植树问题,这一环节我主要是通过练习法让学生将所学到的知识运用的生活中的解决问题中去,努力体现一种"人人学有价值的数学"的价值取向。)
拓展:
一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这种类型的植树问题以后我们会更深入的学习。
(在学生掌握了两端不种的植树问题的规律的基础上,我设计了一道强化练习题,一根木头长8米,每2米锯一段。一共要锯几次?学生自主分析题意,解决问题。这一教学环节虽然不是本节课的主要教学目标,但为了使学生的合作探究能力有更进一步的发展,和今后更好的学习植树问题。我做了这样的安排,相信一定会取得较好的学习效果。)
五、 回顾整理、反思提升
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,我们以后再去学习。
整节课我们努力作到放飞学生思维的翅膀,把数学教学融于千姿百态的生活之中,从学生实际出发,营造一份"天空任鸟飞、海阔凭鱼跃"的佳境,让每一位学生都能成为课堂的主人,让每一节数学课都
《植树问题》说课稿 5
一、说内容:
义务教育课程标准实验教科书(人教版)四年级下册第八单元《数学广角》第一课时。
二、说学习目标:
1、让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。
2、会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3、感悟构建数学模型是解决实际问题的重要方法之一。
三、说学习重点:
让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
四、说学习方法:
创设情境,激发学生学习数学的兴趣,让学生感受到数学来源于生活,数学就在我们身边
五、学习过程:
(一)初步感知间隔的含义
1、导入:
我们已经是四年级的学生了,做操,上体育课都少不了要排队,你会不会派队呢?
现在老师请三位同学到前面按照老师的要排队,谁愿意来?
出示要求:
(1)面向老师排成一路纵队
(2)每两位同学之间相隔一米
告诉学生:第一个同学到最后一个同学的距离叫队伍的长,两个同学之间的距离叫间隔。
提问:这路纵队长几米?你是怎么知道的?如果我们把刚才的三位同学看成三棵树苗的话,那么三棵树苗之间有几个间隔?你能用线段图表示出来吗?师生共同总结得出结论:排队人数比间隔多一,间隔比人数少一
2、过度语:
其实,这样的数学问题,在我们的生活中,随处可见。
3、再次感悟:
让学生观察自己的左手,互相说说手指与间隔之间的关系。比如:5个手指之间有几个空格?也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?
如果我们把五个手指当成五棵小树苗的话,五棵树苗之间应有几个间隔呢?四个间隔在几棵树苗之间呢?你能用一个图表示出来吗?
提问找生回答:如果画了8棵树,他们之间有几个间隔?9棵树之间有几个间隔?那你们再想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?那20棵树呢?
仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和同桌互相交流一下)。
4、根据学生的反馈板书:
两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
5、小结:
同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角运用这些规律来解决生活中的实际问题吧!
(二)新授
出示例题:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?
指导学生读题:
1、从题目你们知道了什么?(说一说)
2、题目中每隔5米栽一棵是什么意思?
3、题目中有什么地方要提醒大家的吗?(两端要栽)
4、一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。
5、交流。
6、反馈。
(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?
(2)学生分别说想法。
7、刚才我们要求路的两端都要栽时,得出植树棵数=间隔数+1,间隔数=植树棵树-1。知道了怎样求路的长度。如果知道了棵数与间隔数,你呢感求出路的长度吗?(培养学生的逆向思维)
如果两端都不栽的情况下,棵树与间隔数之间有什么关系呢?
我们还以这道题为例来研究一下:
(1)同学们在全长100米的小路一边植树,每隔5米栽一棵(两端不栽),一共需要多少棵树苗?
(2)分小组交流,也可以借助线段图分析
(3)反馈
(4)展示结果:两端不栽时,植树棵数=间隔数-1,间隔数=植树棵树+1
小结:生活中有许多问题都可以用方法解决,如锯木头,上楼梯,插彩旗,摆花等等
(三)联系实际、拓展应用
1、一根木头长10米,平均分成5段,每锯一段要8分钟,共要花多长时间?
2、王村到李村一共有16根高压电线杆,相邻两根的.距离平均是200米。王村到李村大约有多远?
3、每隔6米种一棵树,共种了36棵,从第一棵到最后一棵有多远?
4、从一层到三层共48个台级,如从一层到六层共多少个台级?
5、公路一旁每隔50米有一根电线杆(包括两端)共10根,求路长?
(四)总结:
通过这节课的学习,你们有什么收获?
今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)植树问题不只在植树当中才有,植树只是其中的一个典型,像锯木头,上楼梯, 插彩旗,摆花等现象中都含有植树问题。今天我们学习的植树问题仅仅是两端都栽时和两端都不栽时的情况。在以后的学习中,我们还会学到一端栽一端不栽和封闭图形的植树问题。
(五)反思:
在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。
教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是给出间隔和棵数,求路的长度。如:王村到李村一共有16根高压电线杆,相邻两根的距离平均是200米。
王村到李村大约有多远?练习题3从一层到三层共48个台级,如从一层到六层共多少个台级?由于学生初次接触植树问题,还不能融汇贯通,所以做起来有些难度。他们不明白从一楼到二楼算一层,很多学生认为楼梯的拐角处也该算一层,后来我在另一个班上课之前就先让学生分成小组,去观察,体验,感受,然后讨论,学生经历了这样一个认知过程,就不会出现前面的问题了。
还有一道时钟的问题,五时时钟敲响5下,需要8秒,12时时敲响12下,需要几秒?要想做好这类题,就得让学生明白,需要的时间应该是第一次钟响与第二次钟响间隔的时间。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。
《植树问题》说课稿 6
教材分析:
(一)教学内容:
“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。本单元共有三个例题,例1是直线植树中两端都栽的情况,例2是直线植树中两端都不栽的情况,例3是封闭曲线上植树问题。考虑到教学内容的需要,教学本部分知识时重点就是借助图画方法和“一一对应”“化繁为简”等方法解决问题。植树问题(在封闭的曲线上植树)的问题,人教实验版教材第108页。
(二)教学目标:
1、引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想;
2、通过画线段图培养学生探索解决问题有效方法的能力;
3、使学生理解并掌握“植树问题”的基本解题方法,解决实际生活中存在的“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。
教学重点:
建立“树的棵树与间隔数”的模型思想。掌握封闭图形中“植树问题”的解题方法。
教学难点:
学会运用图画方法和“一一对应”“化繁为简”“化曲为直”的思想解方法决问题。
教具准备:
课件、直尺、学习纸。
课前准备:
唱歌《幸福拍手歌》。
教学过程:
(一)创设情境,引入新课
出示我们班同学在《劳技》课上绣的`十字绣作品。
教师:同学们,看看这是什么?(十字绣作品)看看是哪些同学绣的?还有很多呢!我们五(2)班的同学真棒呀!告诉大家一个好消息:班主任朱老师也很喜欢这些作品,打算把这些作品挂到教师的后墙上。现在朱老师把这个任务交给我和同学们了,大家说说怎样挂好?说说你的想法。
生:……
师:同学们,这个挂作品的事情,和我们数学上的什么知识有点像?(植树问题)能不能用数学知识来解决这个问题呢?
教师:今天我们这节课就来研究在封闭图形中植树的问题。(板书课题:在封闭图形中植树的问题)
(二)充分经历,探究新知
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例3:张伯伯准备在圆形池塘周围栽树。池塘的周长120m,如果每隔10m栽一棵,一共要栽多少棵树?
引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?帮助学生弄清楚下列数学信息的含义:
①“每隔10米栽一棵”是什么意思?
使学生明确“每隔10米栽一棵”就是指每两棵树之间的距离都是10米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是10米”。
②“池塘的周长120m”是什么意思?(全长)
思考:这种环形植树问题,应该怎样求呢?
提示:在学习前两个例题时,我们用的是什么方法?(化繁为简)
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:我们用一条线段表示120m的小路,每隔10米栽一棵,大家可以用自己喜欢的图案表示树,每隔10米种一棵,每隔10米种一棵,照这样一棵一棵种下去……是不是很麻烦?
教师:为什么觉得很麻烦?
学生:因为120米里面有12个10米,太多了。
教师:也就是说120在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取40米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取120米中的40米来研究,用一条线段表示40米,每隔10米栽一棵,也就是说树的株距是10米。(教师板书)
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出40米长的一条路,间隔长度是10米,有4个这样的间隔,可以栽4棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)
(3)动手操作,初步体验。
让学生分组选择50、60、70、80等米中的圆形池塘,动手画一画,看一看这个池塘边,一共要栽几棵树。并填写表格。
(4)分组汇报学习成果。
各小组进行作品展示,说说为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?
(5)合理推测,感知规律。
教师:虽然这些各组选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你发现了什么?
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树和间隔数相等。
(6)教师课件出示用“化曲为直”的思想来理解。
教师借助课件演示帮助学生进一步直观理解。
发现:在封闭图形里植树和只载一端是同一种情况。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)
(7)即时巩固,强化规律。
教师:同学们都明白了在封闭图形里植树的情况,树的棵数与间隔数相等,现在老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)
3、运用规律,验证例3。
教师:回到例3,张伯伯准备在圆形池塘周围栽树。池塘的周长120m,如果每隔10m栽一棵,一共要栽多少棵树?
学生列式解答。
学生尝试列式解决问题,教师巡视,有针对性地指导。
全班汇报交流。
《植树问题》说课稿 7
一、单元教材分析
“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。本单元共有三个例题,例1是直线植树中两端都栽的情况,例2是直线植树中两端都不栽的情况,例3是封闭曲线上植树问题。考虑到教学内容的需要,教学本部分知识时重点就是借助图画方法和“一一对应”“化繁为简”等方法解决问题。
二、本单元教学目标
1.引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。
2.通过画线段图初步培养学生探索解决问题有效方法的能力。
3.让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。
三、本单元教学重点、难点
教学重点:建立“树的棵树与间隔数”的模型思想。
教学难点:学会运用图画方法和“一一对应” “化繁为简”的思想解方法决问题。
四、教学措施
1.例1:一条线段上植树(两端都栽)
植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。
例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。
(1)渗透化繁为简的思想,经历解决问题的过程
通过学生的话“100 m太长了,可以先用简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测—探索—归纳—应用”的解决问题的策略。
(2)重点培养学生借助线段图建立数学模型的能力
教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来,发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30 m、35 m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。
2.例2:一条线段上植树(两端都不栽)
例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的迁移能力培养。
有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。
一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例
1、例2的.对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。
2、例3:封闭曲线上植树
(1) 突出画图的策略
例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。
(2)注重模型的对比与沟通
通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。
五、教学建议
1.经历建模的过程,感悟思想方法
“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。
2.突出画图(线段图)的策略
几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观理解、更好地发现规律,建立模型,找出解决问题的方法。
另外,学生在学习中容易将两端都栽、一端栽另一端不栽、两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。
《植树问题》说课稿 8
一、说教材
教材将植树问题分为几个层次,有两端都栽、两端不栽、以及环形,方阵问题等,这节课是第一课时的内容,主要教学简单的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。
二、说教学目标
知识目标:通过交流讨论、动手画等数学活动过程探究新知,发现植树问题中间隔数与植树棵数之间的规律。
能力目标:经历从实际问题抽象出植树问题模型的过程,掌握间隔数与植树棵数之间的关系,初步感知数形结合、一一对应、转化等数学思想方法,能够用数学的方法来解决实际生活中与“植树”有关的问题。
情感目标:感受日常生活中处处有数学,体验学习成功的喜悦。尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
三、说教学重、难点
重点:
通过交流讨论、动手画等数学活动过程探究出植树问题中间隔数与棵数之间的关系,抽象出植树问题的数学模型。
难点:
把现实生活中类似的问题同化为“植树问题”,应用植树问题的模型灵活解决一些相关的实际问题。
四、说教法、学法
在本节课中我主要采用“小组合作交流自主探究”的教学法,找手上的数学知识,发现了手指的.奥秘,在生活中有间隔的事物中也有这样的关系,引导学生思考植树棵数与间隔数的关系,放手让学生交流讨论,再动手操作,实际验证。引导学生以趣激思,以思促学,在创设的生活情境中尝试探索,发现规律。
五、说教学过程
1、谈话导入:
通过谈话接近与学生的距离,树立自信心,找手上数学知识小游戏激发学生学习兴趣和探究欲望。
2、自主探究,发现规律
在这个环节里我创设问题情景,先师生讨论植树前需要考虑些什么,通过什么来准备树苗的数量,引导学生正确的思考问题,再让学生小组交流讨论怎么分间隔,最后放手让学生设计,通过画一画,说一说,既满足了学生的表现欲望,又培养了学生自主探索的意识,充分调动学生学习的积极性,把学习的主动权交给学生。让学生根据自己的体验,用自己的思维方式去探究,去发现,去再创造,使每个学生都有一块属于自己思维的开拓区域,体现了教学方法的开放性。
3、汇报交流,验证关系,得到规律。
有了前面的学习基础,放手让学生先独立探究再汇报交流,得到三种植树方法。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。再回到之前的间隔事物,验证关系,得到规律。
4、图文并茂,回归生活,实际应用
这里三个生活实例,旨在通过解决生活中的问题,使学生感受到数学知识源于生活、用于生活,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣。
六、深挖教材、大胆尝试
钻透教材,源于教材,但又不局限于教材,深挖教材背后的意图,教材当中先出示两端都栽,然后引入到两端都不栽,在本节课的教学过程当中,我给一条12米的小路栽树,然后由学生根据自己的想法去设计自己的植树方案,从而出现了多种植树方案,通过学生植树方案的汇报及观察其数据,使学生明白在植树问题中棵数与间距之间的关系,找到了其中的三种规律,然而运用所学的知识去解决生活中的实际问题,从而突出了重点、突破了难点。
同时,这样做充分体现了学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。同时也发挥学生的主体地位,让他们动脑、动手、经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
七、教学反思
每个人都有自己的理解和教法,这节课我没有太多的学具、教具,也没有做花样太多的课件,旨在从身边出发,把复杂的问题简单化。还有不成熟的地方,衷心希望各位行家多提宝贵意见,我一定虚心接受!
谢谢大家!
《植树问题》说课稿 9
教学目标:
1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。
2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。
3、通过生活的事例,初步体会“植树问题”的思想方法。
教学难点:
运用“植树问题”的解题思想解决实际问题。
教学重点:
参与探索并发现“植树问题”的解题规律。
教学准备:
练习纸、课件
教学过程:
一、谈话引入,揭示课题
师:同学们,你明白我们这天要学习什么资料吗?
生:植树问题
师:你们是怎样明白的哦?
好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?
板书课题:植树问题
出示学习目标:
二、操作感悟,探究规律
1、请看大屏幕:
(1)想一想:
那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?
①每棵树之间相隔几米?(间隔)
②是不是两端都种呢?……看来同学们思考问题还很全面呢!
(2)猜一猜:
如果告诉你每隔5米种一棵,种几棵比较适宜?
生1:5生2:4生3:3
(3)画一画:
师:那么,有什么办法验证你的想法?(画图)
哦,你能不能用简单的示意图把你的想法简单地画出来呢?
(教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。
2、展示、汇报
①选一学生的示意图展示、汇报。
两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
②选另一学生的示意图展示、汇报。
只种一端:电脑展示,学生说出自己的想法,教师把学生画的`示意图画在黑板上
③选另一学生的示意图展示、汇报。
两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
3、写算式
师:我们刚才用图来表示的思维过程能不能用个算式来表示?
①只种一端:你是怎样想的呢?谁能来说一说。
20÷5=4(段)=4(棵)
棵数和段数一一对应。
②两端都种:20÷5+1=5(棵)
20÷5表示什么?加“1”是什么意思?
③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)
每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)
20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)
4、小组讨论:
我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)
5、教师引导学生总结:
①只种一端:棵数=段数
②两端都种:棵数=段数+1
③两端都不种:棵数=段数—1
那么段数(间隔数)怎样求呢?
所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。
6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)
师:老师也收集了一些图片,看看那里有植树问题吗?
(根据学生的回答教师出示课件,并说明为什么属植树问题)
三、活学活用,解决问题
师:我们刚才通过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?
(一)基本练习:我能行!
1.从头至尾栽了10棵树,那么有个间隔。
2.一根木头长8米,每2米锯一段。一共要锯次。
好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!
(二)综合练习:我挑战!
1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
①6×36=216(米)
②6×(36-1)=210(米)
③6×(36+1)=222(米)
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
①10÷5=2(米)2×8=16(分钟)
②5×8=40(分钟)
③(5-1)×8=32(分钟)
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
①12÷1=12(个)
②12÷1+1=13(个)
③12÷1-1=11(个)
(三)拓展练习:我智慧!
四、再次梳理,总结提高
这天我们学习了什么资料?你有什么收获?你有什么感受?
《植树问题》说课稿 10
学情分析:
四年级的学生以形象思维为主,而且抽象逻辑思维潜力也有了初步的发展,具备了必须的分析综合、抽象概括、归类梳理的数学活动经验。
教材分析:
“植树问题”原本属于经典的奥数教学资料,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
这个数学资料既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的状况,让学生先通过画线段,再来发现栽树的'棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。
设计理念:
《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
教学资料:
人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。
教学目标:
知识与技能:
1、理解间隔概念,明白间隔数与棵树之间的关系,初步建构植树问题的数学模型。
2、能根据数模解决简单的实际问题,培养学生观察、分析及推理潜力。
数学思考:
1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
解决问题:
能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。
情感态度与价值观:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的潜力。
教学重点:
会应用植树问题的规律解决一些相关的实际问题。
教学难点:
建构数模,探寻规律。
教学准备:
课件、实物投影仪、每组一张表格
教学流程:
一、创设情景,导入新课。
1、猜谜语
师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你明白在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”
“此刻看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)
2、找间隔
“生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)
“我们的身边还有间隔吗,一齐来找找吧!”
3、揭示课题
出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样秀丽的环境呢?”
“对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家明白吗?在我们数学王国里植树但是有必须的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)
二、自主探究,构建模型
师:“春天到了,为了美化校园,我们校园也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)
1、设计不同方案
师:“画一条线段表示12米的小路,你想怎样载就用示意图或线段图画出来吧!”教师巡视。
2、展示不同方案
投影仪展示学生的设计方案,问:“你是怎样画的?”
师板书三种状况,分别是:两端都栽,只栽一端,两端都不栽。
师:“这天这节课我们先来探讨两端都栽的状况。”
3、小组探索、加强体验
(1)提出问题
出示例1(课件9)学生默读题目,找出关键词并做解释。
师:“需要多少棵树苗呢?”指名说出不同的答案并板书。
师:“此刻出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。
(2)验证猜想
演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想明白吗?就是将复杂问题简单化,在那里100米太长了,我们能够先在短距离的路上种种看。”(出示课件10)
分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”
(3)总结规律
小组内填写表格,观察:“你发现了什么规律?”板书规律
“刚才通过画图明白了棵数,能不能通过计算得到呢?”
师:“根据刚才发现的规律你明白例1的答案了吗?会列式计算吗?”(出示课件11)
4、运用规律
(1)此刻我们的小手的5个手指看成5棵树,你能说说这天发现的规律吗?同桌相互说一说。
(2)出示课件12“比一比谁的反应快”在两端都栽的状况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?
三、巩固应用,内化提高
师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。
1、公共汽车上(出示课件13)
2、公路上(出示课件14)
3、上楼梯(出示课件15)
4、钟表上(出示课件16)
引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。
四、回顾整理,反思提升
师:通过这天的学习,你有什么收获?
“对!这天你们发现了植树问题中的重要规律,我们是怎样得到的?”“你还学到了什么方法?”(复杂问题简单化)
“收获方法比收获知识更重要,祝贺大家!”
板书设计:
植树问题
两端都栽
棵数=间隔数+1
间隔数=路长÷间距
路长=间隔数×间距
100÷5+1=21(棵)
《植树问题》说课稿 11
教学目标:
1.使孩子通过生活中的事例,初步体会解决植树问题的方法。
2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。
3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。
教学重点:
用解决植树问题的方法解决实际问题。
教学难点:
栽树的棵数与间隔数之间的关系。
教具准备:多媒体课件。
设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。
二、揭示学习目标:(媒体出示)
通过这节课的学习,我们要解决哪些问题呢?
1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。
2.能利用植树问题,灵活解决生活中类似的实际问题。
三、探究新知:
1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)
师:你会计算吗?(让孩子回答)你算的.对吗?请同学们自己动脑来验证一下。
学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。
②通过上面的分析,你能找出什么规律?和同桌或小组内说说。
③此刻你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。
2.孩子自学探讨。(师巡视)
3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。
总结规律:栽的棵数比间隔数多1。
完成例题。
四、变化巩固:
1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。
2.122页第2题。独立完成,同桌交流想法,可一生板演。
五、检测反馈:(独立完成)
1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?
2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
孩子完成后师批阅订正,发现问题及时解决。
六、总结延伸:
这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。
《植树问题》说课稿 12
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件
教学过程:
一、初步感知间隔的含义
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的'段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)
二、探究规律,解决问题。
找出两端都种树的规律
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。
3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?
(二)闯关题
1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:
通过这节课的学习,你们有什么收获?
五、作业设计
实地考察
六、板书设计:植树问题
两端要栽:棵数=间隔数+1;
《植树问题》说课稿 13
教材分析:
本册“数学广角——植树问题”包含三个问题(两端都栽、只栽一端、两端都不栽),主要渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。教材第106页例1通过学生熟悉的植树情境,引导学生借助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,再运用模型解决实际问题。让学生经历分析、思考、解决问题的全过程。
教学内容:
人教版义务教育教科书五年级上册第七单元数学广角——植树问题例1及相关练习。
教学目标:
1、通过生活中的事例。重点理解植树问题中“两端都栽”情况,理解与掌握间隔数与棵数之间的关系及其变化规律。
2、通过具体问题的解决过程,经历观察、猜测、验证、推理与交流等一系列的数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合、一一对应的数学思想方法,积累基本的数学活动经验。
3、能运用规律或策略解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。
教学重点:
引导学生经历规律的获得过程,建立数学模型,并用所学的方法解决一些简单的问题。
教学难点:
理解间隔数与棵数之间的关系。
教学准备:
多媒体课件,小树和小路模型
教学过程:
一、谈话引入
1、师:你们知道3月12日是什么节日吗?(植树节)植树有什么好处呢?
2、揭题课题:今天我们就来研究有关植树的问题。(板书课题:植树问题)
二、探究新知
1、提出问题,猜想规律。
出示情境图:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?
引导学生理解题意。
学生尝试解答:你认为一共需要多少棵树?你是怎样想的?
提出质疑:对吗?我们需要检验一下。
引导学生提出研究设想。
看来这个问题值得我们研究,可100m有点长,研究起来不方便,怎样才能使我们的研究方便呢?(对,我们可以先研究20m的.小路一边栽树情况)
2、动手操作,探究规律。
(1)研究在20m的小路上栽树的问题。
学生利用手中的学具摆一摆,或者画一画线段图,看看每个5m栽一棵,一共要栽几棵。
(2)研究30m、35m、40m……小路上的植树情况,完成手中的表格。
3、讨论交流,总结规律。
仔细观察表格,你发现间隔数和棵数之间有什么关系?
先同桌交流,再全班交流。(棵数=间隔数+1)
4、解决问题,运用规律。
(1)解决课本第106页例1,“在100m的小路一边植树,每隔5m栽一棵。一共需要栽多少棵树?
(2)思考:如果是“两边都植树”,那一共需要多少棵树呢?
三、深化提高
智力大闯关
第一关:
1、学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵(两端要栽)。一共要栽多少棵树苗?
2、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一盏。一共要安装多少盏灯?
第二关:
1、园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
2、1路公共汽车从新城到老城设有10个站台,每相邻两个站台之间的距离为1千米。1路公共汽车的行驶路线全长多少千米?
第三关:
1、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
2、一条路原有木电线杆46根,每两根之间相隔12米。现在要全部换成水泥电线杆,如果每两根电线杆之间间隔20米,需要多少根水泥电杆?
四、回顾总结
通过今天的学习,你有什么收获?还有哪些问题?你是用什么方法来获取这些知识的?
五、拓展延伸
假如只栽一端,或者两端都不栽,棵数与间隔数又有什么样的关系?想研究吗?那么请同学们用今天学到的方法课后研究研究,好吗?
六、板书设计植树问题
(线路一侧,两端都栽)
间隔数=总长÷间距
棵数=间隔数+1
《植树问题》说课稿 14
【教学目标】
1、知识与技能:
通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法:
通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。
3、情感态度价值观:
让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
【教学重难点】
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律。并能运用规律解决实际的问题。
【教学准备】
课件,纸条。
【教学过程】
一、谈话引入,明确课题
在我国的北方经常出现沙尘暴天气,它给我们的生活带来了很大的危害,今天老师也给大家带来了几张有关沙尘天气的图片新闻。(课件出示沙尘暴的图片)同学们知道吗?实际呀沙尘天气是大自然对人类的惩罚,正因为以前人们的乱砍乱伐,破坏了大自然的生态环境,才会出现今天的沙尘天气。最近呀咱们这个城市也经常出现雾霾天气,雾霾比沙尘暴天气危害更大,那雾霾给我们的生活带来了什么不便呀?那你们知道治理沙尘和雾霾天气最好的办法是什么?(植树造林)。那么今天这节课我们就来研究植树中的数学问题。(板书课题)
二、探索交流,解决问题
(一)设计植树方案
为了改善我们的校园环境,让大家呼吸到更新鲜的空气,学校准备在全长20米的`小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案。(你能设计出几种方案)
你们认为应该怎么种树?只让学生口答方案,追问有哪三种方案?(两端种树、一端种树、两端不种)。
(二)两端都种
出示方案一:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)学生齐读题,理解题意:强调“一边”和“两端”,理解每隔5米栽一棵的意思。
(2)理解示意图展示。
那我们就一起来试着种一下吧!用一条线段来表示20米长的小路的一边,我们应该怎么种呢?开头为什么要种?(因为是两端植树)也就是说路的开头先要种一棵,那下棵怎么种呢?要和头一棵树隔5米,也说是隔5米种一棵,一直种到小路的末端。
(3)理解株距。
看示例图,大家发现没有每两棵树之间的距离相等吗?都是多少?(5米)这里的5米就表示株距,株距指的就是每两棵树间的距离。实际上株距表示的就是一个间隔的长度。
(4)发现规律
谁能说说棵数和间隔数之间是什么关系?
板书:两端都栽:棵数=间隔数+1
间隔数棵数-1
(5)教学画线段图
这个公式短时间记住没问题,但时间长了,三个月、半年、一年忘了怎么办?可以借助画线图,带着学生在黑板上画线段图。
(6)引导学生列式:
20÷5=4(个)(这里的4指什么?)
4+1=5(棵)(这个算式求的是什么?为什么要加1?)
答:一共需要5棵树苗
(三)两端都不种
出示方案二:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端都不栽)。一共需要多少棵树苗?
(1)指生读题后,说说这道题和上一题的不同点。
(2)两端都不栽什么意思?指生比划一下,出示示例图让学生判断画的对吗?
(3)发现规律并板书。
(4)同桌之间互相列算式。
(5)指生交流并点评。
(四)一端种树
出示方案三:学校在一条长20米的小路一边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?
(1)生齐读题后,说说这道题和上一题的不同点。
(2)只栽一端什么意思?
(3)指生交流,发现规律并板书。
小结:通过这三种植树情况,大家发现没有要想算出棵数,必须知道什么?(只要知道间隔数,就可以算出棵数。)引导学生说出:间隔数=总长÷株距。
你们真是学校的智多星,不仅帮学校解决了难题,还探究出了植树的规律,真是太棒了!你们幸福吗?拍拍手吧!
(五)强化规律
课件出示种树的三种情况,学生抢答,记忆种树的规律。
其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)数学上我们把这些现象统称为植树树问题,我们一起来看一下生活中的植树现象。(课件展示图片。)
三、回归生活,实际应用。
我们都知道数学离不开生活,要解决生活中的植树问题,我们首先要确定它是三种情况中的哪一种。老师收集了一些生活实例,同学们能不能运用我们刚探究的这些规律来解决这些问题呢?对自己有没有信心?那就让我们一起走进数学,走进生活吧!(课件逐一出示练习)
1、为迎接六一儿童节,学校准备在教学楼前60米的道路一旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。一共需要几盆花? 属于( )
①两端摆 ②一端摆 ③两端不摆
答:一共需要( )盆花。
2、小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。这列纵队一共有几个学生?
属于( )
①两端都站 ②一端站 ③两端不站
答:这列纵队共有( )个学生。
3、一根木头长8米,每2米锯一段。一共要锯几次?属于( )植树现象?
①两端种 ②一端种 ③两端不种
答:一共要锯( )次。
4、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
(1)先判断属于哪种情况,独立解决。
(2)小组交流。
(3)汇报。
四、回顾整理,反思提升。
学习永远是件快乐而有趣的事情,这节课老师感到很快乐,我收获了幸福,你们收获了什么?
【板书设计】 植树问题
两端都栽: 两端都不栽: 只栽一端:
棵数=间隔数﹢1 棵数=间隔数-1 棵数=间隔数
间隔数=棵数-1 间隔数=棵数+1
《植树问题》说课稿 15
教学目标:
(1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。
(2)体验复杂问题简单化的快乐。
教学重点:
应用植树问题的模型解决相关的实际问题。
教学难点:
理解棵树与间隔数之间的关系。
教学准备:
课件
教学过程:
一、课前谈话
1.手指游戏
师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?
师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)
[设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的.植树问题。]
2.导入课题
师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)
二、动手种树,初步感知
1.创设情境,提出问题
(1)课件出示例1
同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
(2)理解题意
①指名读题,从中你了解哪些信息?
②理解“两端”是什么意思?
(3)讨论交流
师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。
全班讨论、交流,汇报后得出结论,这种说法不对。就应是:
100÷5=20(段)20+1=21(棵)(板书)
2.简单验证,发现规律
师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。
课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)
问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)
20+1=21(棵)20段为什么不是20棵,而是21棵呢?
我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1
通过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)
师:你们真了不起,发现了植树问题中十分重要的规律,那就是:
间隔数(段数)=全长÷段长
植树的棵数=间隔数+1
全长=段长×段数
[设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并通过讨论交流,发现植树问题的一个十分重要的规律。]
三、利用规律,解决问题
师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。
①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?
②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?
③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?
师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
[设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]
四、再次探究,构建模型
1.创设情境,激趣导入
师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。
2.设计方案,动手操作
师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!
(生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)
3.反馈交流
师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)
师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。
生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。
生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)
生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……
4.师小结
同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。
五、精彩回放,画龙点睛
1.用手势表达植树问题的模型并考察同桌的掌握状况。
2.通过这节课的学习,你们有什么收获?
六、穿越时空,展望未来
有20棵树,若每行4棵,问怎样种植,才能使行数更多?
七、板书设计
植树问题:
两端都种:棵数=间隔数+1
100÷5=20(个)……(间隔数)
20+1=21(棵)……(棵数)
10-1=9(个)……(间隔数)
9+1=10(棵)……(棵数)
【《植树问题》说课稿】相关文章:
《植树问题》说课稿07-13
植树问题说课稿12-14
植树问题说课稿12-12
《植树问题》说课稿(8篇)12-13
《植树问题》说课稿8篇07-13
《植树问题》说课稿(通用11篇)01-22
《植树问题》的优秀说课稿(精选7篇)03-14
《植树问题》小学数学说课稿12-07
关于植树问题的说课稿12篇03-06