反比例说课稿

时间:2024-05-14 15:13:50 说课稿 我要投稿

反比例说课稿推荐

  在教学工作者开展教学活动前,总归要编写说课稿,是说课取得成功的前提。那么你有了解过说课稿吗?下面是小编整理的反比例说课稿推荐,欢迎大家分享。

反比例说课稿推荐

反比例说课稿推荐1

  今天我说课的内容是华东师大版八年级数学下册第十七章反比例函数及其图象。

  一、说教材分析:

  本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、说教学目标分析:

  根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:

  (一)知识目标:

  1、使学生了解反比例函数的概念

  2、使学生能够根据问题中的条件确定反比例函数的解析式。

  3、使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

  4、会用待定系数法确定反比例函数的解析式。

  (二)能力目标:

  培养学生的观察能力,分析能力,独立解决问题的能力。

  (三)德育目标:

  1、向学生渗透数学来源于实践又反过去作用于实践的观点。

  2、使学生体会事物是有规律地变化着的观点。

  (四)美育目标:

  通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

  三、说教学重点,难点。

  (一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

  (二)教学难点:画反比例函数的`图象。

  (三)解决方法

  (1)由分组讨论,积极思考,分析问题,发现结论。

  (2)训练,研究,总结

  因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、说教学方法:

  初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究。

反比例说课稿推荐2

各位评委:

  大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1、出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2、启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的`形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的一般形式:y=k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1、基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5②y=6x—1③y=—3x—2④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346、2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a、写出这个反比例函数的表达式;

  b、根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

  2、能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。

  问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=—1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

反比例说课稿推荐3

  教学内容

  教科书第14~16页的例4~例6以及相应的“做一做”,练习三的第4~7题。

  教学目的

  1、使学生通过具体问题认识成反比例的量,理解反比例的意义,能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

  2、引导学生运用前面学习成正比例的量的学习方法学习反比例,从中感受学习方法的普遍适用性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。

  教具、学具准备

  视频展示台。

  教学过程

  一、复习引入

  1、怎样判断两种量是不是成正比例?

  2、写出正比例关系式。

  3、判断下面每题中的两种量是不是成正比例,并说明理由。

  (1)每本练习本的张数一定,装订练习本纸的总张数和装订的本数。

  (2)每天播种的公顷数一定,播种的总公顷数与播种的天数。

  (3)工作总量一定,工作效率和工作时间。

  4、回想一下,我们怎样学习成正比例的量。

  引导学生归纳研究成正比例的量的学习步骤和方法是:先把两种量的变化情况列成表,再观察、讨论表中的变化规律,归纳变化规律,并用关系式表示。学生回答时,教师随学生的回答板书:列表──观察──讨论──归纳──用关系式表示。

  二、导入新课

  教师:这节课我们用同样的学习方法来研究比例的另外一个规律。

  三、进行新课

  1、教学例4。

  教师:同学们刚才在解答准备题时,知道“工作总量一定,工作效率和工作时间”不成正比例关系,那么,工作效率和工作时间成不成比例?如果成比例,又成什么比例呢?为了弄清这些问题,我们可以用前面掌握的学习方法,先列个表来分析。

  在视频展示台上出示例4:华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表:

  工效(个)102030405060…

  时间(时)603020151210…

  教师:请同学们观察这个表,先独立思考后再讨论、交流、回答以下问题:(在视频展示台上展示。)

  (1)表中有哪两种量?

  (2)这两种量是怎样变化的?

  (3)还可以从表中发现哪些规律?

  学生讨论后,先抽问第1问和第2问。引导学生说出表中有工作效率和工作时间这两种量,这两种量的变化规律是,工作效率不断扩大,所需的工作时间反而不断地缩小。

  教师:为什么会有这种变化规律呢?

  引导学生结合生活实例,说因为工作总量一定,每小时做的工作越多,所用的时间越少。例如要种8棵树,如果每小时种1棵,要8小时;每小时种4棵,只要2小时;如果每小时种8棵呢,只要1小时就够了。

  教师:尽管一个量在扩大,另一个量反而缩小,但是每小时加工的个数是随所需的`加工时间的变化而变化的,所以,每小时加工的个数与所需的加工时间仍然是相关联的两种量。你们还发现些什么规律吗?

  学生任意说表中的规律。如每小时加工数从10扩大到40个,扩大4倍,所需的加工时间反而从60小时缩短到15小时,缩小了4倍;每小时加工数从60个缩小到30个,缩小了2倍,所需的加工时间反而从10小时扩大到20小时,扩大了2倍。

  教师:还能发现哪些规律呢?比如说用每竖列的两个数相乘,看看它们的乘积是否相等,想想这个乘积表示什么?

  引导学生找出每竖列的两个数的乘积相等的规律。如:

  10×60=600,20×30=600,40×15=600,…

  这个600实际上就是这批零件的总数。

  教师:能写出关系式吗?

  引导学生写出:每小时加工数×加工时间=零件总数(一定)

  2、教学例5。

  教师:再来研究一个问题。

  在视频展示台上出示例5:用600张纸装订成同样的练习本,每本的张数和装订的本数有什么关系呢?请同学们先填写下表:

  每本的张数152025304060…

  装订的本数40…

  教师:同学们先填写好表中的数据后,再用前面的分析方法,独立分析表中的数量关系,然后同桌进行交流。

  学生分析后指导学生归纳:

  (1)表中每本的张数和装订的本数是相关联的两种量,装订的本数随着每本的张数的变化而变化;

  (2)每本的张数扩大,装订的本数反而缩小;每本的张数缩小,装订的本数反而扩大;

  (3)它们之间的关系可以写成:每本的张数×装订的本数=纸的总张数(一定)。

  教师:我们上面研究了两个问题,下面我们一起来归纳这两个问题的一些共同特点。

  引导学生归纳出这两个问题中都有两种相关联的量,一种量扩大,另一种量反而缩小,这两种量中相对应的两个数的积一定。

  教师:凡是符合以上规律的两种量,我们就把它叫做成反比例的量。(板书课题)它们之间的关系就是反比例关系。和正比例一样,成反比例的量也可以用式子来表示。如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),怎样用式子来表示反比例的关系式呢?

  引导学生归纳出:x×y=k(一定)。

  教师:请同学们相互说一说生活中还有哪些是成反比例的量?

  学生先相互说,然后再说给全班同学听。

  3、教学例6。

  教师:请同学们用上面所学的知识判断一下,在播种中如果播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?为什么?

  学生先独立分析,然后再交流讨论,最后抽学生汇报。引导学生分析出每天播种的公顷数和要用的天数是两种相关联的量,它们与总公顷数有“每天播种的公顷数×天数=总公顷数”的关系,由于总公顷数一定,所以每天播种的公顷数和要用的天数成反比例。

  指导学生完成第16页“做一做”。

  四、巩固练习

  指导学生完成练习三第4~7题。

  五、课堂小结

  教师:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

  学生小结后教师再对全课知识进行归纳,学有余力的学生,可以在教师的指导下讨论完成练习三的第8*题。

  板书设计

  成反比例的量学习的基本步骤和方法:列表──观察──讨论──归纳──用关系式表示。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  X×Y=K(一定)

  例4:例5:每小时加工数×加工时间=零件

  每本的张数×装订的本数=纸的总数(一定)总张数(一定)

反比例说课稿推荐4

  一、说教学内容:

  (一)、本课时的内容、地位及作用:

  本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

  (二)本课题的教学目标:

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

  1、知识目标

  (1)、通过对实际问题的探究,理解反比例函数的意义。

  (2)、体会反比例函数的不同表示法。

  (3)、会判别反比例函数。

  2、能力目标

  (1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。

  (2)、在思考、归纳等过程中,发展学生的合情说理能力。

  (3)、让学生会求反比例函数关系式

  3、情感目标

  (1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)、把理论联系实际,让学生有学有所用的感性认识。

  4、本课题的重点、难点和关键:

  重点:反比例函数的意义;

  难点:求反比例函数的解析式;

  关键:如何由实际问题转化为数学模型。

  二、说教学方法:

  本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

  由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

  对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的'能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

  三、说学法指导:

  课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案DD反比例函数的意义。

  为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

  在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

  四、说教学程序:

  (一)复习引入:

  由于学生所学过的一次函数、正比例函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以有知识的记忆。回忆师生共同回忆前一阶段所学知识,同时启开新的课题——反比例函数(教师板书)

  设计意图:旧知的回顾,为了新知的探索作好铺垫)

  (二)创设情景,激发热情

  用两个最贴近学生生活实例引出反比例函数的概念,教师发挥主导作用,启发学生思考。

  问题1、

  小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了。假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

  师问:

  (1)、在这个故事中,有几种交通工具?(生答:两种)

  (2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)

  师生共同探究,时间的变化是由速度的变化所引起,设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度,则有t=15/v

  你从这个关系式中发现了什么?

  教师分析变量t与v之间的关系:

  ①路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。

  ②自变量v的取值是v0

  问题2、

  学校校外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

  仿上一问题让学生分析变量关系,然后教师总结:依矩形面积可得

  xy=24即y=24/x

  你从这个关系式中发现了什么?

  教师指出,问题2中的的关系与问题1中的一样,即:

  ①当矩形的面积一定时,矩形的一边增大了,则另一边减小;若一边减小了,则另一边增大。

  ②自变量x0。

  设计意图:列举生活中的两个实例,让学生感受数学与生活的紧密联系。主要是帮助学生理清反比例函数的意义,掌握在不同的已知条件下,确定反比例函数的表达式。

  (三)观察归纳——形成概念

  在这一环节中,为了突出重点,我通过问题“在上面我们所得到的关系式有没有共同点”和“这一共同点能不能用一个统一的表达式表示”引导学生猜想,然后让学生分组交流讨论

  由实例,即y=15/x和y=24/x两个式子教师引导学生概括总结出本课新的知识点:

  上述两个函数都具y=k/x的形式,一般地,形如y=k/x(k是常数,k不为0)的函数叫做反比例函数。(强调k≠0)

  教师对反比例函数的定义加以说明:

  1、正比例函数为y=kx(k是常数,且k≠0);反比例函数可化为xy=k,k是常数,且k≠0。

  (提醒学生:要注意常数的位置,并可利用它来判别函数的种类。)

  2、反比例函数的解析式又可以写成:y=k/x=kx–1(k是常数,k≠0)

  3、要求出反比例函数的解析式,只要求出k即可。

  (四)讨论研究——深化概念

  在这里我给出两道习题让学生练习

  1、下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

  y=0、4/xy=x/2xy=2y=5x–1

  学生自由组合思考回答后教师给出正确答案。

  教师分析思路:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=k/x(k是常数,k≠0)

  2、当m为何值时,函数y=4/x2m——2是反比例函数,并求出其函数解析式。(本题交给学生,教师矫正)

  教师给出正确的解法:由反比例函数的定义可知:2m—2=1,即m=3/2。所以反比例函数的解析式为y=4/x。

  设计意图:学生通过对上面两道题的观察、讨论、交流后更进一步理解和掌握反比例函数的概念。

  (五)随堂练习

  教科书P50练习第1题

  (六)总结反思——提高认识

  由学生总结本节课所学习的主要内容:

  A、反比例函数的意义;

  B、反比例函数的判别;

  C、反比例函数解析式的求法。

  设计意图:让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  (七)布置作业

  教科书P52习题18、4第2、4题

  (作业的布置能帮助学生巩固知识,强化对知识的理解和应用)

  (八)板书设计

  黑板分为左、中、右三部分,中间与右边用于教师板书课本例题等,写满后擦去更新。左边用于板书以下内容:

  形如y=k/x(k是常数,k≠0)的函数叫反比例函数。

  要求反比例函数的解析式,可通过待定系数法求出k值,即可确定。

  (板书设计是让学生对本节知识有一个系统的认识,突出本节课的重点)

反比例说课稿推荐5

  说教学目标:

  1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

  2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

  3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

  4、体会数学从实践中来又到实际中去的研究、应用过程;

  5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

  说教学重点:

  结合图象分析总结出反比例函数的性质;

  教学难点:描点画出反比例函数的图象

  说教学用具:直尺

  教学方法:小组合作、探究式

  说教学过程:

  1、从实际引出反比例函数的概念

  我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

  即vt=S(S是常数);

  当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

  从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

  (S是常数)

  (S是常数)

  一般地,函数(k是常数,)叫做反比例函数.

  如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

  在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

  2、列表、描点画出反比例函数的图象

  例1、画出反比例函数与的图象

  解:列表

  说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

  一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.

  3、观察图象,归纳、总结出反比例函数的性质

  前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

  显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

  (1)的图象在第一、三象限.可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

  的讨论与此类似.

  抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

  (2)函数的图象,在每一个象限内,y随x的'增大而减小;

  从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.

  同样可以推出的图象的性质.

  (3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.

  函数的图象性质的讨论与次类似.

  4、小结:

  本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

  5、布置作业习题13.81-4

反比例说课稿推荐6

  一、说教材

  《反比例》是北师大版数学六年级下册第二单元《反比例》第一课时内容。本节课的内容是在认识了相关联的量和正比例意义的基础上进行教学的,教材要求紧密联系学生已有的生活和学习经验,设计系列情景,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处。从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例量以及反比例在生活中的广泛存在。利用反比例的意义,判断两个相关联的量是否成反比例,利用反比例解决一些简单的生活问题。

  二、说教学目标

  《新课程标准》明确了义务教育阶段数学课程的总目标应以知识与技能、数学思考、解决问题、情感和态度四个方面来阐述,使学生得到充分、自由、和谐、全面的发展。因此,以《新课程标准》为依据,结合小学数学教材编排意图,我确立了以下教学目标:

  知识与技能目标:

  1、结合丰富的实例,认识反比例。

  2、能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3、利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  4、进一步培养学生观察、分析、综合和概括等能力。让学生掌握和判断两种相关联的量成不成反比例的方法,培养学生判断推理的能力。

  情感与态度目标:

  使学生在自主探索合作交流中体验成功的愉悦,进一步树立学习数学的自信心,同时在教学中渗透事物之间是相互联系和相互转化的辩证唯物主义的观点。

  教学重点:正确理解反比例的意义。

  教学难点:引导学生研究两种相关联的量的变化规律。

  三、说教法、学法

  记得有一个外国科学家叙利亚说过:“学习任何知识的最佳途径是由自己发现,因为这种发现,理解最深,也最容易掌握其中的规律,性质和联系。”其实,这正是我们《新课程标准》提出的总体要求。因此,我在教学时就充分相信学生,尊重学生,改变传统的填压式教学模式,采用大量的情景把学生由被动听转化为主动学,放手让他们主动去探索新知识,最大限度的充分发挥学生的主观能动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激发学生的学习兴趣。如通过大量的生活情境,直观图示,让学生充分感知,比较,归纳,概括总结出反比例的意义,从而使学生的抽象思维过渡到形象思维,让他们在不知不觉中接受了新知识。并提高了利用已有的知识解决新问题的能力。

  四、说教学程序

  教学程序是一个展示知识生成和应用的过程。

  本节课的教学程序如下:

  1、复习旧知

  复习这一环节往往是新旧知识的衔接,利用复习正比例的意义,加深学生对正比例意义的理解,为学习反比例做好铺垫。

  2、提问引入

  “同学们。当你们带着一顶数目的钱去超市购物,怎么样才能买到同一物品的数量比较多呢?”学生回答:买的东西越便宜,数量就越多。这一问题,让学生感受到单价与数量之间的关系,为后面学习反比例打下基础。

  3、事例解读,理解反比例的意义

  “通过具体问题认识成反比例量,掌握成反比例的`量的变化规律及其特征”这是本节课的重难点之一。在这一教学环节中,我采用了生活中常见的情景事例:(1)换零钱;(2)上班与上学;(3)分果汁这三个常见的情景,让学生感受到两种相关联的量之间的量变关系。在这里我没有直接引出反比例的意义,而是通过让学生对这几组相关联的量的变化规律,和以前所学的正比例意义进行对比,让学生在对比中自学,自悟总结出反比例的意义。从而加深了对反比例意义的理解,也让学生对正比例,反比例的异同有了明确的认识。将比较抽象的知识很形象的展示在学生的面前,易于学生的接受。最后得出反比例关系式为:xy=k(一定)。

  4、合作探究,初步渗透成反比例量的函数图像

  教材中提供了加法和是12的直线及乘法表中积是12的曲线,在比较探讨中,让学生初步感知两个变化关系不相同,乘法表中积是12的曲线,直观,动态地体现了“成反比”的过程,但是让学生必须明确加法表中的和是12的直线幷不表示两个加数成正比例,最后可以指明两个加数之间的关系不成比例。

  5、实践应用

  能有效地解决日常生活中的问题,是本节课的重难点之一,也是学生学习数学的首要目标。在这一环节中,我设计大量的与生活有密切关系的实际问题,由易到难,突出了阶梯性,鼓励学生大胆发言,目的是培养他们用所学知识解决生活中的实际问题的能力。

  6、总结评价

  “你有什么收获?”让学生进行自我评价,既能梳理所学的知识,又可以培养学生的反思意识。其后,课件出示本节要点,再次点明本节的知识要点,让学生对本节知识加以牢固。

  五、说教学反思

  数学知识来源于生活,同时也服务与生活,在教学这一课时我从实际引入,采用了大量的生活情境,为同学创造了探索知识的条件,将学生参与到获取新知识的过程中去,将抽象的知识形象化,让学生在不知不觉中接受了新知识;在与旧知识的对比中掌握了新知识;在阶梯式的练习中,巩固了新知识。这是本节课的亮点所在。

  当然,这节课也存在着有待改进的地方,如课堂容量比较大,课堂评价应该多样化,要充分调动每一位学生的积极性等,在今后的教学中我将予以克服。

反比例说课稿推荐7

  一、教材

  (一)说教材

  《反比例的意义》是新课标人教版小学数学六年级下册第42页例3的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。

  (二)说教学目标

  以《新课程标准》为依据,结合小学数学教材编排意图,基于此,我确立以下教学目标:

  知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

  能力目标:提高学生归纳、总结和概括的能力。

  情感与态度目标:在教学中渗透事物之间是相互联系和相互转化的辨证唯物主义的观点。

  (三)说教学重、难点

  本节课的教学重点:正确理解反比例的意义。

  教学难点:掌握反比例的特征,能够正确判断反比例关系。

  (四)说教学理念

  在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题(成反比例的量),例3的学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。

  (五)说教学具准备:课件

  二、说教法、学法

  教学时充分相信学生、尊重学生,改变传统的填压式教学模式,把学生由被动听转化为主动学,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。

  三、教学过程

  (一)复习引入

  1、成正比例的量有什么特征?

  2、在生活中两个相关联的量不仅能形成正比例关系,而且还能形成另外一种特征,今天这节课我们就来学习数量关系的另一种特征,成反比例的量。

  (二)探究新知

  1、我们先来看一个实验,出示课件。

  高度(厘米)302015105

  底面积(平方厘米)1015203060

  体积(立方厘米)

  提问:从中你发现了什么?本题与教材第39页例1有什么不同?

  (2)学生讨论交流。

  (3)引导学生回答:表中的两个量是高度和底面积。

  高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

  每两个相对应的数的乘积都是300.

  (4)计算后你又发现了什么?

  每两个相对应的数的乘积都是300,乘积一定。

  小结:那我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

  教师提问:高底面积和体积,怎样用式子表示他们的关系?(板书:高×底面积=体积)

  (5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?(板书:x×y=k)

  小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

  (6)、比较归纳正反比例的异同点。

  课件出示成反比例的量改变规律的图像与成正比例的量改变规律的'图像

  设计意图:比较思想是在小学数学教学中应用十分普遍的数学思想方法,比较是把事物的个别属性加以分析,综合而后肯定它们之间的同异,从而得出必定规律的数学思想方法。《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,比较合实用比较法。在学习本课的过程中,学生对于相似的内容,可以从知识的差别中找到同一,也可以从同一中找出差别。帮忙学生把新知识深化拓展。

  (三)巩固练习。

  1、生活中,哪些相关联的量成反比例关系,举例说一说。

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  3、完成第43页做一做。

  (四)、总结:

  今天我们学习了什么?(揭示课题)你有什么收获?在计算时你要提示大家注意什么?你对今天的学习还有什么疑问吗?

  (设计意图:培养学生敢于质疑,勇于创新的精神)

反比例说课稿推荐8

  一、说教学内容

  (一)、本课时的内容、地位及作用

  本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

  (二)、本课题的教学目标:

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

  1、知识目标

  (1)通过对实际问题的探究,理解反比例函数的实际意义。

  (2)体会反比例函数的不同表示法。

  (3)会判断反比例函数。

  2、能力目标

  (1)通过两个实际问题,培养学生勤于思考和分析归纳能力。

  (2)在思考、归纳过程中,发展学生的合情说理能力。

  (3)让学生会求反比例函数关系式。

  3、情感目标

  (1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。

  (2)理论联系实际,让学生有学有所用的感性认识。

  4、本课题的重点、难点和关键

  重点:反比例函数的概念

  难点:求反比例函数的解析式。

  关键:如何由实际问题转化为数学模型。

  二、说教学方法:

  本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

  由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

  对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

  三、说学法指导:

  课堂,只有宝贵的'四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。

  为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

  在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

  教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到理论来自于实践,而理论又反过来指导实践的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

  四、说教学过程:

  1、复习引入:

  师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。

  (一)创设情景,激发热情

  我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。

  多媒体课件展示

  (问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。

  让学生分析变量关系,然后教师总结:依矩形面积可得XY=36即Y=36/X

  (问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校20xx米)

  (1)、在这个故事中,有几种交通工具?

  (2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?

  师生共同探究,时间的变化是由速度所引起的,设时间为T,速度为V,则有T=20xx/V

  (二)观察归纳——形成概念

  由实例XY=36即Y=36/X和T=20xx/V两个式子教师引导学生概括总结出本课新的知识点:

  一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。

  在此教师对该函数做些说明。

  (三)讨论研究——深化概念

  学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念

  多媒体课件展示、

  例1、下列函数关系中,哪些是反比例函数?

  (1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?

  (2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系;

  (3)、某地有耕地346.2公顷,人口数量N逐年发生变化,那么该村人均占有耕地面积M(公顷?(人))是全村人口数N的函数吗?是反比例函数吗?为什么?

  (4)某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。

  学生回答后教师给出正确答案。

  四、即时训练——巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  多媒体课件展示

  (巩固练习:)

  (口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

  Y=5/XY=0.4/XY=X/2XY=2

  5)Y=-1/X(给学困生发表见解的机会,激发他们的学习兴趣)

  学生回答后教师给出正确答案。

反比例说课稿推荐9

  一、说教材

  《反比例》是北师大版小学数学义务教育课程标准实验教材第二单元第五课时的内容,本节课是在教学了正比例的基础上进行教学的,是小学阶段比例初步知识教学中的又一重要内容。

  二、说教学目标。

  以《新课改标准》为依据,综合小学数学教材编排意图。我确定了以下教学目标:

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的.量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  三、说教法、学法

  我在教学时就充分相信学生、尊重学生,把学生由被动听转化为主动学,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观能动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。如:通过直观图示,让学生充分感知、比较、归纳、概括总结出反比例的意义,从而使学生的思维以形象思维过度到抽象思维,采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。

  五、说教学设计

  在教学过程的设计上,分为四步:

  a)通过“分果汁”和“游长城”两个生活情境,引导学生在观察中思考,在思考中探索,自主发现其中的规律,并逐渐领会反比例的意义,培养学生的观察能力和思维能力,增强学生的主动性和自觉性,为获取新知奠定基础。b)引导学生观察比较两个表格概括它们的相同点,得出反比例的意义。在学生了解反比例意义后引导学生讨论情境中成反比例量的原因,加深对新知的理解和消化。

  c)在学生掌握了反比例的意义后,让学生切实去判断24页的两个表,加法表和乘法表中的量是否成反比例。做到学以致用。

  练习判断生活中的例子是否成反比例,加深对知识的掌握,使学生牢固掌握知识。

  六、说作业设计

  作业是“练一练”第2题

  作业的设计不仅巩固了所学的知识,还训练学生应用知识解决实际问题的能力。

反比例说课稿推荐10

  一、说教材

  1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1、出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2、启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的'一般形式:y=k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1、基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5②y=6x—1③y=—3x—2④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346、2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a、写出这个反比例函数的表达式;

  b、根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

  2、能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=—1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

【反比例说课稿】相关文章:

反比例函数的说课稿设计01-12

初中数学反比例函数说课稿04-03

《反比例》说课稿范文(通用10篇)05-09

初中数学《反比例函数》说课稿范文01-08

《反比例函数及其图象》说课稿07-09

《反比例函数图像和性质》说课稿08-07

反比例函数说课稿范文(精选5篇)01-30

反比例函数复习课的说课稿(精选12篇)03-23

《反比例函数的图象及性质》说课稿范文05-22