- 相关推荐
高二数学试卷练习题及答案
无论在学习或是工作中,我们最离不开的就是练习题了,多做练习方可真正记牢知识点,明确知识点则做练习效果事半功倍,必须双管齐下。你知道什么样的习题才是规范的吗?以下是小编为大家整理的高二数学试卷练习题及答案,仅供参考,大家一起来看看吧。

高二数学试卷练习题及答案 1
一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。)
1.抛物线的准线方程为( )
A B C D
2.下列方程中表示相同曲线的是( )
A , B ,C , D ,3.已知椭圆的焦点为和,点在椭圆上,则椭圆的标准方程为( )
A B C D
4.已知双曲线的离心率为,则的渐近线方程为( )
A B C D
5.与圆及圆都外切的圆的圆心在( )
A 一个椭圆上 B 双曲线的一支上 C 一条抛物线 D 一个圆上
6.点在双曲线上,且的焦距为4,则它的离心率为
A 2 B 4 C D
7.已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到抛物线准线的距离为( )
A 1 B 2 C 3 D 4
8.过点且与抛物线只有一个公共点的直线有( )
A 1条 B 2条 C 3条 D 无数条
9.设是双曲线的两个焦点,点在双曲线上,且,则点到轴的距离为( )
A B 3 C D
10.以下四个关于圆锥曲线的命题中正确的个数为( )
①曲线与曲线有相同的焦点;
②方程的两根可分别作为椭圆和双曲线的离心率;
③过椭圆的右焦点作动直线与椭圆交于两点,是椭圆的左焦点,则的周长不为定值。
④过抛物线的焦点作直线与抛物线交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条。
A 1个 B 2个 C 3个 D 4个
11.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为( )
A 18 B 24 C 28 D 32
12.抛物线的焦点为,准线为,是抛物线上的"两个动点,且满足,过线段的中点作直线的.垂线,垂足为,则的最大值,是( )
A B C D
二、填空题(本大题共有4个小题,每小题5分,共20分)
13.已知点在抛物线的准线上,抛物线的焦点为_____,则直线的斜率为 。
14.过双曲线左焦点的直线交双曲线的左支于两点,为其右焦点_____,则的值为_____
15.直三棱柱中,分别是的中点,_____,则与所成角的余弦值为_____。
16.设点是曲线上任意一点,其坐标均满足_____,则的取值范围为_____。
三、解答题
17.(10分)在极坐标系中,求圆的圆心到直线的距离。
18.(12分)如图(1),在中,点分别是的中点,将沿折起到的位置,使如图(2)所示,M为的中点,求与面所成角的正弦值。
19.(12分)经过椭圆的左焦点作直线,与椭圆交于两点,且,求直线的方程。
20.(12分)如图,在长方体中,点E在棱上移动。
(1)证明:;
(2)等于何值时,二面角的余弦值为。
21.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
22.(12分)已知抛物线C的顶点为坐标原点,焦点为,(1)求抛物线的方程;
(2)过点 作直线交抛物线于两点,若直线分别与直线交于两点,求的取值范围。
高二数学试卷练习题及答案 2
1.数学余弦定理练习题高二1.在△ABC中,已知a=4,b=6,C=120,则边c的值是()
A.8 B.217
C.62 D.219
解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-246cos 120=76,c=219.
2.在△ABC中,已知a=2,b=3,C=120,则sin A的值为()
A.5719 B.217
C.338 D.-5719
解析:选A.c2=a2+b2-2abcos C
=22+32-223cos 120=19.
c=19.
由asin A=csin C得sin A=5719.
3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.
解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a222a2a=78.
答案:78
4.在△ABC中,若B=60,2b=a+c,试判断△ABC的形状.
解:法一:根据余弦定理得
b2=a2+c2-2accos B.
∵B=60,2b=a+c,
(a+c2)2=a2+c2-2accos 60,
整理得(a-c)2=0,a=c.
△ABC是正三角形.
法二:根据正弦定理,
2b=a+c可转化为2sin B=sin A+sin C.
又∵B=60,A+C=120,
C=120-A,
2sin 60=sin A+sin(120-A),
整理得sin(A+30)=1,
A=60,C=60.
△ABC是正三角形.
课时训练
一、选择题
1.在△ABC中,符合余弦定理的是()
A.c2=a2+b2-2abcos C
B.c2=a2-b2-2bccos A
C.b2=a2-c2-2bccos A
D.cos C=a2+b2+c22ab
解析:选A.注意余弦定理形式,特别是正负号问题.
2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是()
A.1213 B.513
C.0 D.23
解析:选C.∵ca,c所对的角C为最大角,由余弦定理得cos C=a2+b2-c22ab=0.
3.已知△ABC的三边分别为2,3,4,则此三角形是()
A.锐角三角形 B.钝角三角形
C.直角三角形 D.不能确定
解析:选B.∵42=1622+32=13,边长为4的边所对的角是钝角,△ABC是钝角三角形.
4.在△ABC中,已知a2=b2+bc+c2,则角A为()
A. B.6
C.2 D.3或23
解析:选C.由已知得b2+c2-a2=-bc,
cos A=b2+c2-a22bc=-12,
又∵0
5.在△ABC中,下列关系式
①asin B=bsin A
②a=bcos C+ccos B
③a2+b2-c2=2abcos C
④b=csin A+asin C
一定成立的有()
A.1个 B.2个
C.3个 D.4个
解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A=sin Bcos C+sin Ccos B=sin(B+C),显然成立.对于④由正弦定理sin B=sin Csin A+sin Asin C=2sin Asin C,则不一定成立.
6.在△ABC中,已知b2=ac且c=2a,则cos B等于()
A.14 B.34
C.24 D.23
解析:选B.∵b2=ac,c=2a,
b2=2a2,
cos B=a2+c2-b22ac=a2+4a2-2a22a2a
=34.
二、填空题
7.在△ABC中,若A=120,AB=5,BC=7,则AC=________.
解析:由余弦定理,
得BC2=AB2+AC2-2ABACcosA,
即49=25+AC2-25AC(-12),
AC2+5AC-24=0.
AC=3或AC=-8(舍去).
答案:3
8.已知三角形的两边分别为4和5,它们的.夹角的余弦值是方程2x2+3x-2=0的根,则第三边长是________.
解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-24512=21,第三边长是21.
答案:21
9.在△ABC中,若sin A∶sin B∶sin C=5∶7∶8,则B的大小是________.
解析:由正弦定理,
得a∶b∶c=sin A∶sin B∶sin C=5∶7∶8.
不妨设a=5k,b=7k,c=8k,
则cos B=5k2+8k2-7k225k8k=12,
B=3.
答案:3
三、解答题
10.已知在△ABC中,cos A=35,a=4,b=3,求角C.
解:A为b,c的夹角,
由余弦定理得a2=b2+c2-2bccos A,
16=9+c2-635c,
整理得5c2-18c-35=0.
解得c=5或c=-75(舍).
由余弦定理得cos C=a2+b2-c22ab=16+9-25243=0,
∵0
11.在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sin A+sin B-sin C)=3asin B,求C的大小.
解:由题意可知,
(a+b+c)(a+b-c)=3ab,
于是有a2+2ab+b2-c2=3ab,
即a2+b2-c22ab=12,
所以cos C=12,所以C=60.
12.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状.
解:由余弦定理知cos B=a2+c2-b22ac,代入c=acos B,
得c=aa2+c2-b22ac,c2+b2=a2,
△ABC是以A为直角的直角三角形.
又∵b=asin C,b=aca,b=c,
△ABC也是等腰三角形.
综上所述,△ABC是等腰直角三角形.
余弦定理练习题
高二数学试卷练习题及答案 3
选修2-2 1.1 第3课时 导数的几何意义
一、选择题
1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()
A.f(x0)0 B.f(x0)0
C.f(x0)=0 D.f(x0)不存在
[答案] B
[解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-120.故应选B.
2.曲线y=12x2-2在点1,-32处切线的倾斜角为()
A.1 B.4
C.544
[答案] B
[解析] ∵y=limx0 [12(x+x)2-2]-(12x2-2)x
=limx0 (x+12x)=x
切线的斜率k=y|x=1=1.
切线的倾斜角为4,故应选B.
3.在曲线y=x2上切线的倾斜角为4的点是()
A.(0,0) B.(2,4)
C.14,116 D.12,14
[答案] D
[解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14.
4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为()
A.y=3x-4 B.y=-3x+2
C.y=-4x+3 D.y=4x-5
[答案] B
[解析] y=3x2-6x,y|x=1=-3.
由点斜式有y+1=-3(x-1).即y=-3x+2.
5.设f(x)为可导函数,且满足limx0 f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为()
A.2 B.-1
C.1 D.-2
[答案] B
[解析] limx0 f(1)-f(1-2x)2x=limx0 f(1-2x)-f(1)-2x
=-1,即y|x=1=-1,
则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.
6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()
A.不存在 B.与x轴平行或重合
C.与x轴垂直 D.与x轴斜交
[答案] B
[解析] 由导数的几何意义知B正确,故应选B.
7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f(5)分别为()
A.3,3 B.3,-1
C.-1,3 D.-1,-1
[答案] B
[解析] 由题意易得:f(5)=-5+8=3,f(5)=-1,故应选B.
8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为()
A.(1,0)或(-1,-4) B.(0,1)
C.(-1,0) D.(1,4)
[答案] A
[解析] ∵f(x)=x3+x-2,设xP=x0,
y=3x20x+3x0(x)2+(x)3+x,
yx=3x20+1+3x0(x)+(x)2,
f(x0)=3x20+1,又k=4,
3x20+1=4,x20=1.x0=1,
故P(1,0)或(-1,-4),故应选A.
9.设点P是曲线y=x3-3x+23上的任意一点,P点处的切线倾斜角为,则的取值范围为()
A.0,23 B.0,56
C.23 D.2,56
[答案] A
[解析] 设P(x0,y0),
∵f(x)=limx0 (x+x)3-3(x+x)+23-x3+3x-23x
=3x2-3,切线的斜率k=3x20-3,
tan=3x20-3-3.
0,23.故应选A.
10.(2016福州高二期末)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,4],则点P横坐标的取值范围为()
A.[-1,-12] B.[-1,0]
C.[0,1] D.[12,1]
[答案] A
[解析] 考查导数的几何意义.
∵y=2x+2,且切线倾斜角[0,4],
切线的斜率k满足01,即01,
-1-12.
二、填空题
11.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为________.
[答案] 4x-y-1=0
[解析] ∵f(x)=x2+3,x0=2
f(2)=7,y=f(2+x)-f(2)=4x+(x)2
yx=4+x.limx0 yx=4.即f(2)=4.
又切线过(2,7)点,所以f(x)在(2,f(2))处的切线方程为y-7=4(x-2)
即4x-y-1=0.
12.若函数f(x)=x-1x,则它与x轴交点处的切线的方程为________.
[答案] y=2(x-1)或y=2(x+1)
[解析] 由f(x)=x-1x=0得x=1,即与x轴交点坐标为(1,0)或(-1,0).
∵f(x)=limx0 (x+x)-1x+x-x+1xx
=limx0 1+1x(x+x)=1+1x2.
切线的斜率k=1+11=2.
切线的方程为y=2(x-1)或y=2(x+1).
13.曲线C在点P(x0,y0)处有切线l,则直线l与曲线C的公共点有________个.
[答案] 至少一
[解析] 由切线的定义,直线l与曲线在P(x0,y0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.
14.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为________.
[答案] 3x-y-11=0
[解析] 设切点P(x0,y0),则过P(x0,y0)的切线斜率为 ,它是x0的函数,求出其最小值.
设切点为P(x0,y0),过点P的切线斜率k= =3x20+6x0+6=3(x0+1)2+3.当x0=-1时k有最小值3,此时P的坐标为(-1,-14),其切线方程为3x-y-11=0.
三、解答题
15.求曲线y=1x-x上一点P4,-74处的切线方程.
[解析] y=limx0 1x+x-1x-(x+x-x)x
=limx0 -xx(x+x)-xx+x+xx
=limx0 -1x(x+x)-1x+x+x=-1x2-12x .
y|x=4=-116-14=-516,
曲线在点P4,-74处的切线方程为:
y+74=-516(x-4).
即5x+16y+8=0.
16.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于点P的.直线方程y=g(x).
[解析] (1)y=limx0 (x+x)3-3(x+x)-3x3+3xx=3x2-3.
则过点P且以P(1,-2)为切点的直线的斜率
k1=f(1)=0,
所求直线方程为y=-2.
(2)设切点坐标为(x0,x30-3x0),
则直线l的斜率k2=f(x0)=3x20-3,
直线l的方程为y-(x30-3x0)=(3x20-3)(x-x0)
又直线l过点P(1,-2),
-2-(x30-3x0)=(3x20-3)(1-x0),
x30-3x0+2=(3x20-3)(x0-1),
解得x0=1(舍去)或x0=-12.
故所求直线斜率k=3x20-3=-94,
于是:y-(-2)=-94(x-1),即y=-94x+14.
17.求证:函数y=x+1x图象上的各点处的切线斜率小于1.
[解析] y=limx0 f(x+x)-f(x)x
=limx0 x+x+1x+x-x+1xx
=limx0 xx(x+x)-x(x+x)xx
=limx0 (x+x)x-1(x+x)x
=x2-1x2=1-1x21,
y=x+1x图象上的各点处的切线斜率小于1.
18.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1l2.
(1)求直线l2的方程;
(2)求由直线l1、l2和x轴所围成的三角形的面积.
[解析] (1)y|x=1
=limx0 (1+x)2+(1+x)-2-(12+1-2)x=3,
所以l1的方程为:y=3(x-1),即y=3x-3.
设l2过曲线y=x2+x-2上的点B(b,b2+b-2),
y|x=b=limx0 (b+x)2+(b+x)-2-(b2+b-2)x
=2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)(x-b),即y=(2b+1)x-b2-2.
因为l1l2,所以3(2b+1)=-1,所以b=-23,所以l2的方程为:y=-13x-229.
(2)由y=3x-3,y=-13x-229,得x=16,y=-52,
即l1与l2的交点坐标为16,-52.
又l1,l2与x轴交点坐标分别为(1,0),-223,0.
所以所求三角形面积S=12-521+223=12512.
【高二数学试卷练习题及答案】相关文章:
高二语文滕王阁序练习题及答案12-17
小升初数学试卷:模拟试题及参考答案06-27
《老王》练习题及答案04-25
方程练习题及答案08-24
病句练习题及答案12-08
病句练习题及答案10-18
病句练习题及答案(经典)10-19
英语练习题及答案08-19
病句练习题及答案07-25