
- 相关推荐
高中函数概念教学设计(通用10篇)
作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。我们应该怎么写教学设计呢?以下是小编精心整理的高中函数概念教学设计,欢迎大家分享。
高中函数概念教学设计 1
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题 (华东师范大学出版社)
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,ky=kx ,ky= , k0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么?
解:s=0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x2+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1 (2) s=3-2t2
(3)y=(x+3)2- x2 (4) s=10r2
(5) y=22+2x (6)y=x4+2x2+1(可指出y是关于x2的二次函数)
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的'面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
高中函数概念教学设计 2
一、教材分析
函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。
二、学情分析
从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。
从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。
三、教学目标
知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。
过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。
情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。
四、教学难重点重点:理解函数的概念;
难点:概念的形成过程及理解函数符号y = f (x)的含义。
[重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。
从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。
五、教法与学法选择
充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。
六、教学过程设计引入
现实世界是充满变化的,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题
问题提出
1、请回忆在初中我们学过那些函数?(学生回答老师补充)
2、回忆初中函数的定义是什么?一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
知识探究一函数
给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B或y=f(x),x∈A.其中,x叫做自变量,与x值相对应的f(x)值叫做函数值。 x的取值范围称为定义域,函数值f(x)的取值范围称为值域。定义理解一y=f(x)
1.x是自变量,它是法则所施加的对象。
2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。
3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。
定义理解二唯一确定
通过三个例子和学生共同总结出:
1、函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的.
2.A中元素不能剩,B中元素可以剩下。
定义理解三定义域值域
根据定义,函数是两个数集A,B间的对应关系
自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域。例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x
定义域为{0,1,2},值域为{0,2,4}从而共同探究出:值域是集合B的子集
函数的三要素:
定义域、对应关系、值域;
函数的值域由函数的定义域和对应关系所确定;定义域相同,对应关系完全一致,则两个函数相等。 f(x)=3x+1与f(t)=3t+1是同一个函数。 x2f(x)=x与f(x)=不是同一个函数。 x然后和学生共同探究常见的已学函数的定义域和值域:
知识探究二区间
(设a, b为实数,且a
例题:试用区间表示下列数集:
(1){x|x ≤ -1或5 ≤ x
(5){x|x≥0且x≠1}
练习作业:把常见的函数的定义域和值域用区间表示。
七、小结
1.用集合的语言描述函数的概念
2.函数的三要素
3.用区间表示数集
八、作业
1.P28练习1,2 2.P34习题2-1A组:1,2
高中函数概念教学设计 3
教学目标
1.知识目标:正确理解现阶段函数的概念,理解定义域的概念
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点让学生理解现阶段函数的概念,定义域的概念。
难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。
学情
分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。
信息化教学资源
1.动画设计《世界在不断的变化》
2.专业录频软件;
3.视频后期处理软件;
4.QQ;
5.其它图片、背景音乐。
课前准备
复习初中数学函数概念
教学过程
环节设计:教师活动、学生活动、设计意图
环节一创设情境
兴趣导入首先让学生观看视频《世界在不断的变化》
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的.人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
1看视频。
2听老师解说,函数是研究世界变化规律的数学模型之一。
3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.
用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提
所以我们重新定义函数,将自变量x的取值范围用集合D来表示
函数的定义:
在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三
知识总结
(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测
实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数
要求学生把做题结果拍成照片,发到邮箱,及时反馈,学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。
高中函数概念教学设计 4
教学目标:
1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;
2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;
3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.
教学重点:
两集合间用对应来描述函数的概念;求基本函数的定义域和值域.
教学过程:
一、问题情境
1.情境.
正方形的边长为a,则正方形的周长为 ,面积为 .
2.问题.
在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的.函数模型有哪些?
二、学生活动
1.复述初中所学函数的概念;
2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;
3.举出生活中的实例,进一步说明函数的对应本质.
三、数学建构
1.用集合的语言分别阐述23页的问题(1)、(2)、(3);
问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:
(1)这一变化过程中,有哪几个变量?
(2)这几个变量的范围分别是多少?
问题2 略.
问题3 略(详见23页).
2.函数:一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有惟一的元素和它对应,这样的对应叫做从A到B的一个函数,通常记为=f(x),x∈A.其中,所有输入值x组成的集合A叫做函数=f(x)的定义域.
(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;
(2)函数的本质是一种对应;
(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格
(4)对应是建立在A、B两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).
3.函数=f(x)的定义域:
(1)每一个函数都有它的定义域,定义域是函数的生命线;
(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没
有指明定义域,那么就认为定义域为一切实数.
四、数学运用
例1.判断下列对应是否为集合A 到 B的函数:
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
(3)A={1,2,3,4,5},B=N,f:x→2x.
练习:判断下列对应是否为函数:
(1)x→2x,x≠0,x∈R;
(2)x→,这里2=x,x∈N,∈R。
例2 求下列函数的定义域:
(1)f(x)=x—1;(2)g(x)=x+1+1x。
例3 下列各组函数中,是否表示同一函数?为什么?
A.=x与=(x)2; B.=x2与=3x3;
C.=2x-1(x∈R)与=2t-1(t∈R); D.=x+2x-2与=x2-4
练习:课本26页练习1~4,6.
五、回顾小结
1.生活中两个相关变量的刻画→函数→对应(A→B)
2.函数的对应本质;
3.函数的对应法则和定义域.
六、作业:
课堂作业:课本31页习题2。1(1)第1,2两题.
高中函数概念教学设计 5
一、教材分析及处理
函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状
学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析
1、知识与技能(重点和难点)
(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法
函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:
(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
(2)、面向全体学生,根据课本大纲要求授课。
(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。
3、情感态度与价值观
(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。
(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。
三、教学器材
多媒体ppt课件
四、教学过程
教学内容教师活动学生活动设计意图
《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活
知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的.性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫
思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接
新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题
对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识
函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法
注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点
习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系
映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫
小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点
五、教学评价
为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。
在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。
虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。
高中函数概念教学设计 6
一、教材分析
本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。
托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。
二、学生学习情况分析
函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。
1.有利条件
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件
用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析
课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.
1.知识与能力目标:
⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;
⑵理解函数的三要素的含义及其相互关系;
⑶会求简单函数的定义域和值域
2.过程与方法目标:
⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;
⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用
3.情感、态度与价值观目标:
感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
四、教学重点、难点分析
1.教学重点:对函数概念的理解,用集合与对应的`语言来刻画函数;
重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。
突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。
2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解
难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。
突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。
五、教法与学法分析
1.教法分析
本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。
2.学法分析
在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。
高中函数概念教学设计 7
自读要求:
1、理解“记忆所蕴涵着的真谛”及“门槛”的象征意义。
2、体会两篇散文诗中所饱含的作者的思想感情,品味隽永的富有哲理的语言。
3、学习比喻、象征等手法的运用,认知散文诗的基本特点,初步学会对散文诗的欣赏。
学习重点:
从品味语言入手,通过两首散文诗的对比阅读,归纳散文诗的基本特点,进而欣赏两首散文诗的语言美、形式美、意境美。
◆自读程序
记忆
一、导语设计
前苏联作家高尔基的《海燕》运用象征的手法,使人们在鸟儿(海燕、海鸥、海鸭、企鹅……)“叽叽喳喳”的叫喊声中听出了革命先驱对暴风雨的渴望,看到了革命勇士搏击长空的雄姿,文章具有散文的形式美,更具有诗歌的意境美。这种诗歌散文化、散文诗歌化的文学体裁,人们称之为散文诗。今天我们再阅读两篇散文诗,了解体会这种文体。
二、整体感知——理解,感受结构美
首先明确本文是一篇散文诗,它具有诗一样优美的语言,优美的意境;同时又兼具散文的形散神聚的特点。
1,学生快速默读《记忆》,根据文章的内容,将其划分一下层次,理出作者的写作思路。
明确:
第一部分:1—7自然段,引出记忆的话题。以文学家的笔墨来表现记忆的社会本质。
第二部分:8—14自然段,谈到记忆,既涉及话题,又脱离话题。描述有关记忆的`种种现象,进一步探讨记忆的社会本质。
第三部分:15—24自然段,用比喻性的说法正面回答什么是记忆。
第四部分:25—31自然段,描写各种人对待记忆的态度,或者说记忆在各种人身上的表现。
综合以上,本文围绕“记忆”展开话题,但却始终没有明确点出记忆到底是什么,。可见记忆不过是作者思想感情赖以表达的凭借,作者真正想表达的是对正义、对高尚情操的歌颂,对恶势力、对卑下行为的批判,但这写作意图藏而不露。
2,论“记忆所蕴涵着的真谛”。学生自由发言,回答文中“记忆”究竟指什么?进而初步了解作者所表达的观点态度。
明确:本文从记忆这一角度入手,对纷繁的社会现象和人们的种种品行作了概括而生动的描写,表达了对真善美的歌颂,对假恶丑的批判。从根本上说,这里的“记忆”,是广大人民心中判断是非曲直的客观尺度。
三、揣摩剖析——悟读,领悟意境美
1,理解“记忆嘛,没有重量……又可以使另一个人的灵魂贬值到零以下”这段话的含义。
明确:
“没有重量”——过去犯了错误,而又没有正确对待,那么犯错误的记忆就可以压得你匍匐在地;由于你刻苦学习从而取得了学习或工作的进步,学或工作进步的记忆就可以鼓舞你在理想的空间里飞翔。
“没有体积”——襟怀坦荡,光明磊落的做事的记忆,可以让人去拥抱整个世界;反之以小心眼处事,那么你的世界会很狭小。
“没有色彩”——做过的有损于社会的事情的记忆,就可以使人的心灵变得苍白幽暗;而对人民,对社会做出贡献的记忆,可以使人的内心世界绚丽辉煌。
“没有标价”——对人民对社会做出巨大贡献的的记忆,可以让一个人生命价值上升到崇高境界,而做出严重危害社会危害人民的记忆,则可以是一个人的灵魂贬值到零以下。
1,轻声阅读“记忆没有体积……”这部分,讨论记忆对人有哪些影响。学生自由发言,回答作者从人生的哪些方面对人类品性作了剖析?你还能列举出哪些方面?
2,默读两个传说,轻读“嗯,只记得一己忧患的,是庸人。……才是勇士,真正的勇士!”讨论:两个传说表达了作者的什么观点?后面的议论表达了作者什么样的爱憎情感?
3,综合以上两大段,讨论:你体会到了作者什么样的心灵境界?
四、鉴别赏析——品读,欣赏形式美
1,声情并茂阅读“……而你,朋友,却执拗地望着我……他就永不会从后人的记忆中泯灭”。讨论:这一段语言有何特色?运用了哪些表达方式?通过哪些表现手法表达情感?
2,由此段推及全文,讨论语言、结构形式、体裁有何特色,从而掌握散文诗的一般特点。
五、迁移运用——练读,体验鉴赏美
1,自读《门槛》,揣摩“门槛”的象征意
2,讨论文中“俄罗斯的姑娘”具有怎样的性格特征。
3,比较《记忆》与《门槛》在语言、取材、表现手法、意境上的异同。
◆自读点拨
1、多方面的美感在《记忆》中的体现。
①情操美:见“自读程序”三。
②结构美:全文采用了层进式与错综分承式相结合的开放性创新结构。对“人生价值”这一永恒的话题,以一老者向年轻人谈话的形式,娓娓而谈,步步推进,赋予了有形的篇章以无限的联想空间。
③章法美:成功地运用了美学中“和谐”与“奇异”的原理,采用的是参照系方法。在关于“记忆真谛”方面,采用虚实参照,表现出奇异。
④语言美:化虚为实,变抽象说理为形象思考,极具感染力,不仅具有视觉美和听觉美,更具有灵觉美(使读者心灵受到感动)。形式上既有诗歌视觉整齐,听觉爽朗,富有气势的特点,又有散文“形散神聚”、意象广博、文化价值内涵丰富的特征,形象、生动、精练、深邃、隽永,富有哲理。
⑤意境美:文中化虚为实,又因实悟虚,以“记忆”作为审视“人生真谛”的载体,进行多层面、多视角的价值评判,从而构成了开阔的、积极向上的多视角意象和多层面意境。
2、强烈感情在《记忆》中的表现。
对记忆真谛揭示的全过程,鲜明地表现了作者的爱憎。首先是对“记忆”的价值评判中,四句名言,作者从忘却(记忆的反面)的角度表达了对忘恩负义和背叛的坚决否定。接着,在描述“记忆”时,以“重量”“体积”“色彩”“标价”为突破口,对理想远大、胸怀?宽阔、心灵绚丽、价值崇高的人生予以了充分的肯定;同时对胸无大志、心胸狭隘、心灵幽暗、价值低下的人生给予了彻底的批判。随后的设喻更是对勇于奉献精神的高度赞美。两个传说对流芳千古与遗臭万年的人生态度十分鲜明,加上反面的议论,使作者对庸人、叛徒、蠢货、懦夫的愤慨,和对智者、勇士的颂扬得到充分的体现,作者的感情也达到了高潮。
3、《记忆》与《门槛》在语言、取材、表现手法、情感、意境上有许多异同点。
◆自读训练
课外阅读一篇散文诗,说说散文诗这种文体的一些特征。
高中函数概念教学设计 8
【高考要求】:三角函数的有关概念(B).
【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.
理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.
【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.
【知识复习与自学质疑】
一、问题.
1、角的概念是什么?角按旋转方向分为哪几类?
2、在平面直角坐标系内角分为哪几类?与 终边相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?
4、弧度制下圆的弧长公式和扇形的面积公式是什么?
5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?
6、你能在单位圆中画出正弦、余弦和正切线吗?
7、同角三角函数有哪些基本关系式?
二、练习.
1.给出下列命题:
(1)小于 的角是锐角;(2)若 是第一象限的角,则 必为第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;
(5)相等的角必是终边相同的角;终边相同的角不一定相等;
(6)角2 与角 的终边不可能相同;
(7)若角 与角 有相同的终边,则角( 的终边必在 轴的非负半轴上。其中正确的.命题的序号是
2.设P 点是角终边上一点,且满足 则 的值是
3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB长=
4.若 则角 的终边在 象限。
5.在直角坐标系中,若角 与角 的终边互为反向延长线,则角 与角 之间的关系是
6.若 是第三象限的角,则- , 的终边落在何处?
【交流展示、互动探究与精讲点拨】
例1.如图, 分别是角 的终边.
(1)求终边落在阴影部分(含边界)的所有角的集合;
(2)求终边落在阴影部分、且在 上所有角的集合;
(3)求始边在OM位置,终边在ON位置的所有角的集合.
例2.(1)已知角的终边在直线 上,求 的值;
(2)已知角的终边上有一点A ,求 的值。
例3.若 ,则 在第 象限.
例4.若一扇形的周长为20 ,则当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?最大面积是多少?
【矫正反馈】
1、若锐角 的终边上一点的坐标为 ,则角 的弧度数为 .
2、若 ,又 是第二,第三象限角,则 的取值范围是 .
3、一个半径为 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是 弧度或角度,该扇形的面积是 .
4、已知点P 在第三象限,则 角终边在第 象限.
5、设角 的终边过点P ,则 的值为 .
6、已知角 的终边上一点P 且 ,求 和 的值.
【迁移应用】
1、经过3小时35分钟,分针转过的角的弧度是 .时针转过的角的弧度数是 .
2、若点P 在第一象限,则在 内 的取值范围是 .
3、若点P从(1,0)出发,沿单位圆 逆时针方向运动 弧长到达Q点,则Q点坐标为 .
4、如果 为小于360 的正角,且角 的7倍数的角的终边与这个角的终边重合,求角 的值.
高中函数概念教学设计 9
学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本P29—P31,填充以下空格。
1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
。
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本P33,练习A 1、2;练习B 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的`是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
练习:已知下列四组函数,表示同一函数的是( )
A. 和 B. 和
C. 和 D. 和
题型三:函数的定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本P33练习A组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( A )
A、 B、
C、 D、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了。
其中正确的有( B )
A. 1 个 B. 2 个 C. 3个 D. 4 个
4、下列函数完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四个图形中,不能表示函数的图象的是 ( B )
6、设 ,则 等于 ( D )
A. B. C. 1 D.0
7、已知函数 ,求 的值.( )
高中函数概念教学设计 10
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法
通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。
利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。
首先利用多媒体展示生活实例
(1)某山的海拔高度与气温的变化关系;
(2)汽车匀速行驶,路程和时间的变化关系;
(3)沸点和气压的变化关系。
引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。
预设:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。
接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题
问题1:函数的概念是什么?初中与高中对函数概念的定义的异同点是什么?符号“x”的含义是什么?
问题2:构成函数的三要素是什么?
问题3:区间的概念是什么?区间与集合的`关系是什么?在数轴上如何表示区间?
十分钟过后,组织学生进行全班交流。
预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。
函数的三要素包括:定义域、值域、对应法则。
区间:
为了使得学生对函数概念的本质了解的更加深入此时进行追问
追问1:初中的函数概念与高中的函数概念有什么异同点?
讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。
追问2:符号“y=f(x)”的含义是什么?“y=g(x)”可以表示函数吗?
讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。
追问3:对应关系f可以是什么形式?
讲解过程中注意强调,对应关系f可以是解析式、图象、表格
追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。
讲解过程中注意强调,函数的三要素缺一不可。
追问5:用区间表示三个实例的定义域和值域。
设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。
(三)课堂练习
接下来是巩固提高环节。
组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定义域和值域并用区间表示。
这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:函数的概念、函数的三要素、区间的表示。
本节课的课后作业我设计为:
1.求解下列函数的值
(1)已知f(x)=5x-3,求发(x)=4。
(2)已知
求g(2)。
2.如图,某灌溉渠道的横截面是等腰梯形,底宽2m,渠深1.8m,边坡的倾角是45°
(1)试用解析表达式将横截面中水的面积A表示成水深h的函数
(2)确定函数的定义域和值域
(3)尝试绘制函数的图象
这样的设计能让学生理解本节课的核心,并为下节课学习函数的表示方法做铺垫。
【高中函数概念教学设计】相关文章:
《函数的概念》说课稿函数的概念的说课稿03-31
函数的概念教学反思06-03
函数的概念教学反思06-03
高中数学《函数的概念》教学反思12-24
数学函数的概念教学反思03-06
函数概念教案11-26
《函数的概念》说课稿07-27
《函数的概念》说课稿07-27
《函数概念》说课稿07-07
高中数学函数的概念说课稿04-07