高中物理教学设计

时间:2024-11-18 23:09:28 海洁 教学设计 我要投稿

高中物理教学设计(精选19篇)

  作为一名教师,常常需要准备教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的高中物理教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

高中物理教学设计(精选19篇)

  高中物理教学设计 1

  教学目标:

  1、知识与技能

  (1)解释速度的概念,能够概括速度的定义、公式、符号、单位和物理意义。

  (2)解释平均速度、瞬时速度的定义并学会辨析。

  (3)能够说出速率的概念并辨认速度与速率。

  2、过程与方法

  (1)在概念转变的教学过程中形成全面、正确的关于速度的概念。

  (2)通过平均速度引出瞬时速度的过程,锻炼使用极限思维。

  (3)通过对平均速度与瞬时速度、速度与速率的区别和分辨,学会运用辨析的方法。

  3、情感态度与价值观

  (1)对速度全面正确地解释来积极培育自身科学严谨的态度。

  (2)积极将自己的观点及见解与老师、同学进行交流。

  (3)通过本节课的学习尝试体会物理学中蕴含的对立统一。

  课型:

  新授课

  课时:

  一课时

  学情分析:

  一般而言,高一学生在经历了初中阶段的学习后,思维能力得到了较好的发展,抽象逻辑思维逐渐取代形象思维占据主要地位、学生的一般特征主要表现为以下几个方面:

  (1)学生能够按照探究性学习的过程利用假设思维进行学习;

  (2)学生在学习过程中自我调控能力得到了进一步加强,学习过程更加具有目的性;

  (3)在某种程度下学生思维不再是“抱残守缺”,而是较为容易接受新事物;

  (4)学生学习动机由兴趣支撑逐渐转变为由意志支撑,学习的目的性更加明确;

  (5)学生之间的交流对于学生学习具有一定的影响、

  关于“速度”的学习,学生在初中阶段科学学科中所接受的定义是,单位时间内通过的路程、这与高中对于“速度”的定义截然不同,学生虽然通过初中阶段的学习具备了一定的基础,但这个基础里大部分仍然是迷思概念、如何将初中阶段所接受到的关于“速度”的迷思概念转变为科学概念,达到一个新的认知平衡是本节课的一条主线、同时也应该认识到学生在初中阶段的'学习以及前面关于“位移”、“路程”的学习为本节课奠定了一个很好的基础。

  本节课可能存在的问题有两个,一是学生根据初中阶段的学习积累对于“速度”难以产生正确、客观的认识,其中所存在的迷思概念需要在教学过程中进行转变;二是学生对于“平均速度”、“瞬时速度”两个概念可能会有所混淆,教师应该利用课堂呈现的问题情境引导学生进行有效区分。

  教学重点:

  速度的概念,由平均速度通过极限的思维方法引出瞬时速度。

  教学难点:

  对瞬时速度的理解,怎样由平均速度引出瞬时速度。

  教学方法:

  问题情境引入、探测已有概念、产生认知冲突、解构迷思概念和建构科学概念、形成新的认知平衡。

  教学过程:

  引入:速度的二段式测验3道题,情境引入,激发学生产生冲突。

  (一)速度

  “速度”的引入:运动会上,要比较哪位运动员跑得快,可以用什么方法?通过相同的位移比较时间的长短。若运动的时间是相等的,我们可以根据位移的大小来比较。如果运动的位移、所用的时间都不一样,又如何比较呢?

  在物理学中,我们引入速度这个物理量来描述物体运动的快慢。

  1、定义:位移Δx与发生这个位移所用时间Δt的比值(比值定义法)。

  描述物体运动快慢的物理量。

  2、国际单位:m/s或m·s—1,其他单位:km/h等

  3、速度是矢量,方向与运动方向相同。

  在匀速直线运动中,速度保持不变。如果物体做变速直线运动,速度的大小不断改变,根据求得的则表示物体在Δt时间内的平均快慢程度,称为平均速度。

  (二)平均速度和瞬时速度

  1、平均速度

  ⑴公式:

  ⑵平均速度是矢量,方向即位移的方向。

  对于变速直线运动,各段的平均速度一般并不相同,求平均速度必须指明“哪段时间”或“哪段位移”。

  ⑶求平均速度必须指明“哪段时间”或“哪段位移”。

  过渡:平均速度只能粗略的描述物体运动的快慢,为了精确地描述做变速直线运动的物体运动的快慢,我们可以将时间Δt取得非常小,接近于零,这是求得的速度值就应该是物体在这一瞬时的速度,称为瞬时速度。

  2、瞬时速度

  ⑴定义:物体在某一时刻(或某一瞬间)的速度。

  ⑵瞬时速度简称速度,方向为物体的运动方向。

  在日常生活中,人们对“速度”这一概念并不一定明确指出是“平均速度”还是“瞬时速度”,我们应根据上下文去判断。“平均速度”对应的是一段时间,“瞬时速度”对应的是某一时刻。

  3、瞬时速率:瞬时速度的大小,简称速率。

  例:课本P16汽车速度计上指针所指的刻度是汽车的瞬时速率。

  (三)平均速率:物体运动的路程与所用时间的比值。

  与“平均速度的大小”完全不同。

  例1:下列对各种速率和速度的说法中,正确的是()

  A、平均速率就是平均速度

  B、瞬时速率是指瞬时速度的大小

  C、匀速直线运动中任意一段时间内的平均速度都等于其任一时刻的瞬时速度

  D、匀速直线运动中任何一段时间内的平均速度都相等

  例2:一辆汽车沿平直的公路行驶,⑴若前一半位移的平均速度是v1,后一半位移的平均速度是v2,求全部路程的平均速度;⑵若汽车前一半时间的平均速度是v1,后一半时间的平均速度是v2,求全部路程的平均速度。

  总结:平均速度不是速度的平均值,应严格按照定义来计算。

  例3:人乘自动扶梯上楼,如果人站在扶梯上不动,扶梯将人送上楼去需用30s。若扶梯不动,某人沿扶梯走到楼上需20s。试计算这个人在扶梯开动的情况下仍以原来的速度向上走,需要多长时间才能到楼上?(12s)

  作业:

  必做:p18—1、2、3、4

  选做:新新学案第一章第三节

  高中物理教学设计 2

  教学目标

  知识目标

  了解超导体以及超导体在现代科学技术中的应用、

  能力目标

  通过超导体知识的学习,扩展知识面、

  情感目标

  知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神。

  教学建议

  教材分析

  教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识、进一步讲解超导的优点、缺点和目前科学家面临的问题。

  教法建议

  本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际。

  可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习。

  也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力。

  教学设计方案

  方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益?

  方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法、实例如下

  实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向。

  【板书设计】

  1、超导体概念超导现象

  2、超导体的'优缺点

  3、我国的超导体的研究

  探究活动

  【课题】

  超导现象的历史

  【组织形式】

  个人或学习小组

  【活动流程】

  制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作。

  【参考方案】

  1、尝试总结超导体的发展现况。

  2、讨论超导体的未来发展趋势。

  【资料来源】

  1、图书馆、互联网查找资料。

  2、交流,发现共性和差异。

  高中物理教学设计 3

  一、教学目标

  知识与技能:

  1、初步了解做功与能量变化的关系。

  2、知道做功的两个要素,理解功的概念,正确应用功的公式计算。

  3、知道功是标量,正确理解正功和负功的本质含义。

  4、知道总功的两种计算方法。过程与方法:

  1、通过推导功的公式,让学生体会由特殊到一般,再由一般到特殊的研究方法,培养学生的逻辑推理能力和科学论证能力。

  2、通过求解分力做功、总功和变力做功等问题,让学生在熟练掌握公式的同时,初步接受“微元法”处理问题的思想。

  情感、态度与价值观:

  1、通过分析日常生活中的物理现象,让学生体会物理与生活、生产、科技的密切联系,激发学生的学习兴趣。

  2、工作、学习都要讲效率,“正功”“负功”可以促使学生的勤奋向上思想意识,合作式学习可以培养学生善于发表见解的意识和与他人交流的愿望。

  二、教学重点、难点

  重点:明确引入功的物理定义,掌握功的概念和功的计算公式。

  难点:

  1、理解功的公式的使用条件,体会处理变力功的思想方法。

  2、理解正功与负功的含义,体会功是标量。

  三、课前准备

  PPt课件、小钢球、纸巾

  四、教学过程

  (一)情境导入

  在上课之前我请同学们和我一起完成一个小实验,有请两位同学。教师将小钢球放在纸巾上,小钢球静止。教师将小钢球举高,请同学们观察小钢球落下后纸巾有无损坏。

  通过这个实验,同学们受到什么启发?

  被举高的物理具有穿过纸张的能力,也就是具有了能量。

  实际上人们在研究能量的过程中往往涉及到做功,这节课我们来看第七章第二节功。

  (二)功的定义

  1、功的两个要素

  在刚才的例子当中,同学们说我将小球举高了,我对小球做了功,你是怎么知道的?因为我对小球有力,并且向上移动了一段距离。那么,在生活当中你还能不能举出做功的例子?

  对学生所举例子进行分析,都有两点值得注意,一个是存在力的作用,还有就是一定要发生一段位移。显然这是做功不可缺少的两个因素。那么有力有位移,这个力就一定对物体做功吗?显然不是,而应该在力的方向上存在位移。那么我们就得到了做功的两个要素:力和力方向上的位移。

  2、功的定义式刚才的这些例子当中,都存在做功过程,那么究竟力对物体做了多少功?你能不能计算出来?实际上在初中我们已经知道了,当力和位移同方向时功的计算。(展示ppt),一个质量为m的物体,受到力F的作用并向前移动了s,这个力对物体做的功W=Fs。如果情况变化一下,力F与s不在一条直线上,你会不会求这个力所做的功呢?请同学们尝试着回答。

  方法有两个,一是分解力,二是分解位移。无论哪种方法,得到的结果都是一样的,W=Fscosa。有了这个公式,我请同学们帮我计算一个问题。我现在用100N的力水平踢一个足球,踢了一脚之后足球水平向前滚动了50m,求我对球做的功等于多少?请同学们回答。

  显然这个情况不能用这个公式计算,要想脚对球一直存在作用力,那你这个脚得跟着球向前走50m。所以应用公式要注意:(1)F、s要对应,即在s中要一直都有力的作用

  再请同学们观察这个表达式,你还注意到了什么?引出cosa有正有负,那么功是标量还是矢量?是标量那功的正负表示什么呢?实际功的正负既不表示方向,也不表示大小。如果力对物体做了正功,表示这个力是个动力,如果是负功则是阻力。(换句话说,如果力做了正功,那表示有能量转移到这个物体上来,反之做了负功就表示有能量从这个物体中转移出去。)

  那在我们的例子当中,这些力是什么样的力?细心观察你会发现都是恒力,这个公式仅适用于恒力做功,变力做功不能用它。当然如果在过程中物体受到阶段性变化的力,每个阶段都是恒力,那自然我们可以将过程分段处理,每一段又都变成恒力了,最后再把各个阶段所做的功代数求和即可。

  (三)合力的功

  如果在某一个过程中物体受到多个力的作用,那么这些力的合力做了多少功又怎么求呢?请同学们回答。方法有两个:

  1、先求各个力的功,再取代数和。

  2、先求合力,再求合力所做的功。比如,光滑水平面上有一个物体受到水平面内相互垂直的两个力,物体发生5m的位移,求各个力做的功、合力所做的功?

  (四)几种可以转化成恒力的变力做功问题

  这是我们这节课介绍的有关恒力做功的计算方法,实际上除了刚才所说的.阶段性的变力可以转化成恒力来计算做功,还有两种情况我们也可以处理。当力与速度始终同向,而速度方向不断变化时,你会不会计算这个力所做的功呢?引导学生学会用微分的方法处理。

  另外如果力方向不变,大小随位移线性变化,我们也可以处理。比如一个弹簧处于原长放在光滑的水平面上,一端固定。用一个力缓慢地拉物体,那么这个力做了多少功呢?在学习匀变速直线运动时,如果初速度是零,末速度是v,它和速度是v/2的匀速直线运动是等效的,我们就用这个平均速度替换掉了这个变化的速度。现在你能不能受到这个例子的启发?我们也可以用一个平均的力替换掉这个变化的力,我们说这是方向不变,大小随位移线性变化的力,它的平均值刚好我们会求,那么这个例子中拉力和弹簧的弹力所做的功就等于kx/2与x的乘积。

  五、课堂小结

  这节课我们从特殊的情况入手,得到了一般情况下恒力做功的定义式,知道了合力做功的计算方法以及几种能够转变成恒力的变力做功的计算方法,初步体会到了做功与能量变化之间的关系。在接下来的学习中我们会进一步的探讨两者之间的关系。

  六、板书设计

  7.2功

  一功的定义

  二合力的功

  1功的两个要素

  1先求各个力的功,再取代数和力和力方向上的位移

  高中物理教学设计 4

  教学目标:

  1、理解什么是自由落体运动,知道它是初速度为零的匀加速直线运动。

  2、知道什么是自由落体的加速度,知道它的方向,知道在地球的不同地方,重力加速度大小不同。

  3、掌握自由落体运动的规律。

  教学重点

  掌握自由落体运动的规律

  教学难点

  通过实验得出自由落体运动的规律

  教学方法

  实验现象+合力推理+实验验证

  教学用具

  用薄纸糊一纸袋、两小钢球、抽气机、牛顿管、有关知识的投影片

  课时安排

  1课时

  教学步骤

  一、导入新课

  1、复习:什么是匀变速直线运动,其速度公式、位移公式分别是什么?

  2、导入:同学们,我们通常有这样的生活经验:重的物体比轻的物体落得快,物体下落的速度到底与物体的质量有没有关系呢?我们这节课就来研究这个问题。

  二、新课教学

  演示实验:让一个纸袋与小钢球同时自由下落,可看到什么现象?

  学生:钢球落得快。

  老师:对,这就是我们的生活经验,这也是公元前希腊的哲学家亚里斯多德的观点。这个观点使人们在错误的结论下走的XX多年。同学们听说过伽利略的两个铁球同时落地的故事吗?伽利略做过大量的由静止下落的实验,并且还用归谬法、数学图利都证明了亚里斯多德的观点是错误的。同学下去看课后阅读材料,伽利略为了证明亚里斯多德观点的错误,他就拿了一个质量是另一个质量10倍的铁球站在比萨斜塔上,使两铁球同时下落,结果两铁球几乎同时落地。

  且再看实验:把刚才的纸袋揉成团,和小钢球由静止同时下落,同学再观察:

  学生:几乎同时落地。

  师:同一个纸袋,为什么形状不一样,其下落时间就不一样呢?

  学生:这是因为空气的阻力的影响。把纸袋揉成团,所受空气的`阻力要比纸袋所受空气的阻力小得多,所以与小钢球几乎同时落地。

  老师:如果真的把质量、形状不同的物体放在真空中,从同一高度自由下落,和伽利略的结论一样吗?

  演示:把事先抽成真空(空气相当稀薄)的牛顿管拿出来,让牛顿管中的硬币、鸡毛、纸片、粉笔头从静止一起下落。

  学生:同时落下。

  演示:把小钢球装进纸袋,与另一个小钢球同时下落。

  现象:同时落地。

  老师:这就是自由落体运动。同学们根据这些过程、结论,给其下一个定义。

  学生回答:

  在真空中物体只受重力,或者在空气中,物体所受空气阻力很小,和物体重力相比可忽略的条件下,物体从静止竖直下落。

  1、自由落体运动

  板书:自由落体运动:物体只在重力的作用下从静止开始下落的运动。

  2、自由落体运动的加速度

  距我们三百多年前的伽利略经过大量的实验、严密的数学推理、得出:自由落是初速度为零的匀加速直线运动。

  高中物理教学设计 5

  教材分析

  本节重点讲述了人造卫星的发射原理,推导了第一宇宙速度,并介绍了第二、第三宇宙速度。人造卫星是万有引力定律在天文学上应用的一个非常重要实例,是人类征服自然的见证,体现了知识的力量,是学生学习了解现代科技知识的一个极好素材。教材不但介绍了人造卫星中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。学生通过行星的运动一节已经知道了行星的运动规律,因此在分析人造卫星的运动学特点,和动力学特点可采取类比的方法,近而进一步理解应用万有引力定律分析天体运动的方法。因此,本节课是“万有引力定律与航天”中的重点内容,是学生进一步学习、研究、探索天体物理问题的理论基础。另外,学生通过对人类在宇宙航行领域中的伟大成就及我国在航天领域成就的了解,增强学生的民族自信心和自豪感。

  学情分析

  学生已掌握了运动的合成与分解、牛顿运动定律、圆周运动等章节的理论。并在本章之前学习了天体的运动,和万有引力定律的知识,能运用万有引力定律揭示一些天体运动的特点。学生可以类比行星运动的特点原理自己分析人造卫星的规律。另外学生也可以利用前面的知识和对宇宙奥秘的好奇心来探索人造卫星的发射及宇宙速度。学生可以通过联想上一章所学的对平抛物体的运动的处理方法来探究牛顿的思考,以地心为参考系平抛出去的物体从空间运动效果上可分解为指向地心的自由落体运动和绕地心的匀速圆周运动。而这两个分运动都是变速度运动,它们都需要一个指向地心的力来维持它们各自的运动状态。因此万有引力就有要改变两个运动状态的效果,即要既要产生自由落体加速度又要产生向加速度。当万有引力只能提供向心力时,自由落体加速度就变成零,这样平抛出去的物体就落不下来了,从而得到第一宇宙速度。再根据圆周运动和机械运动的知识可知道速度再大一些会做椭圆运动或摆脱地球对它的约束。这样,人们就可以到更远的地方去探索宇宙的奥秘了……

  教学目标

  知识与技能

  1.了解人造卫星的有关知识

  2.分析人造卫星的运动规律

  3.掌握三个宇宙速度的物理意义,

  4.会推导第一宇宙速度;

  5.简单了解航天发展史;

  6.能用所学知识求解卫星基本问题。

  过程与方法

  1.培养学生观察数据分析数据的能力;

  2.培养学生科学推理、探索能力;

  3.培养学生在处理实际问题时,如何 构建物理模型的能力;

  4.学习科学的思维方法培养学生归纳、分析和推导及合理表达能力。

  情感态度与价值观

  介绍世界及我国航天事业的发展现状,激发学习科学,热爱科学的激情,增强民族自信心和自豪感。

  教学重点

  卫星运行的动力学特点规律,第一宇宙速度的推导。

  教学难点:

  1.卫星的运行速度与发射速度的区别;

  2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度

  教学过程

  新课引入

  教师:仰望星空,浩瀚的宇宙苍穹给人以无限遐想,千百年来,人类一直向往能插上翅膀飞出地球,去探索宇宙的奥秘,李白的“俱怀逸兴壮思飞,欲上青天揽明月”是怎样的一种豪情?到今天这一梦想实现了吗?

  学生:实现了。(激起学生兴趣)

  教师:世界上第一颗人造卫星的发射,揭开了人类探索宇宙的新篇章。

  提问(1):

  1.世界上第一颗人造卫星是哪一年由哪一国家发射的?

  2.我国哪一年发射了自己的人造卫星?

  3.迄今我国共发射了多少颗人造卫星?

  教师:从1970年4月24日东方红一号的成功发射,到2007年10月24日嫦娥一号发射

  我国发射人造卫星和其他探测器60多个,他们分别在通信,气象,探测,导航等多个领域发挥着重要作用。

  引入新课。

  一、人造卫星规律的探究

  教师:现在我们地球上空有这么多卫星,他们运行的速度一样吗?他们是怎样被发射升空的今天我们就通过的学习来解决这一问题。

  教师:这是我国目前发射的部分卫星的运行规律的数据。

  提问观察数据思考:

  1.不同卫星的其运行轨道相同吗?

  2.不同的卫星运行时有什么规律?

  3.你能试着用你学过的知识解释为什么有这样的规律吗?

  卫星名称 卫星质量(kg) 轨道近地点(km) 轨道远地点(km) 运行周期(h)

  返回型遥感卫星 2100 205 315 1.48

  东方红2号甲通信卫星 441 35786 35863 23.9

  东方红2号试验通信卫星 461 35469 35782 23.76

  返回型遥感卫星 2100 175 400 1.5

  风云1号A 750 900 901 1.7

  巴达尔1 50 210 992 1.57

  大气1号 873 900 1.712

  学生:

  1.观察数据,发现规律。

  2.合作交流,类比行星运动特点分析人造卫星的运行特点。

  3.试着从力和运动的角度分析问题。

  教师引导学生发现。

  人造卫星运行特点运动学特点:(板书)

  1.轨迹:椭圆 有的近似为圆

  2.人造卫星的半径不同,其运行的周期也不同,而且半径越大,其周期越大。

  3.类比行星运动分析原因,卫星围绕地球作匀速圆周运动,需要向心力。

  地球和卫星之间的引力提供向心力。

  4.学生自己应用前面万有引力知识分析

  卫星与地球间的万有引力提供了向心力(板书)

  (1)由 得 ,

  ∴r越大,v越小.

  (2)由 得 ,

  ∴r越大, 越小.

  (3)由 得 ,

  ∴r越大,T越大

  教师小结:卫星绕地运转轨道半径越大,速度越小、角速度越小、周期越大;(板书)

  演示课件:几颗不同轨道卫星同时绕地运行动画,从而直观判断以上变化关系

  二、应用知识解决问题

  教师:学习了卫星的相关知识,我判断一下下列几种轨道哪一种是可能的为什么?

  思考问题1:

  下图中,有三颗人造地球卫星围绕地球运动,它们运行的轨道

  可能是 ,不可能是 。

  学生:分组讨论阐述观点

  教师:结合学生讨论引导学生从动力学角度解决问题。

  卫星近似做匀速圆周运动,需要向心力,且向心力时刻指向圆心。所以地球与卫星之间指向地心的万有引力提供向心力,所以卫星作圆周运动的圆心应该是地心。

  思考问题2:

  如图所示,a、b、c是在地球大气层外圆形轨道上运动的3颗卫星,

  1.试比较三颗卫星的线速度、角速度、加速度、周期,万有引力的关系。

  2.如果c 的速度增加,能否与同轨道的b相撞。

  三、卫星发射原理

  教师:过渡:不同的轨道的卫星其速度不同,那人类是怎样将卫星发送到指定轨道上的呢?

  介绍牛顿的卫星设想(FLASH)

  教师引导:我们抛一物体怎样才能抛的远?

  讨论:依据平抛运动学生知道:速度越大,越远,那速度足够大,又有什么现象?

  学生探讨:统一结论:不落回地球。

  教师总结:这时由于有引力在,卫星想落回地面,但有一定的速度又落不回地面就形成了卫星?

  思考:物体需要多大的发射速度,才能刚好贴着地面转?

  学生讨论

  教师点拨:这时(r=R)

  学生

  得出第一宇宙速度7.9 km/s

  四、宇宙速度

  1.第一宇宙速度7.9 km/s

  定义:人造卫星在地面附近绕地球作匀速圆周运动所必须具有的.速度。

  思考:发射什么样的卫星最容易?

  统一结论:高轨道发射卫星比低轨道发射卫星困难,原因是高轨道发射卫星时火箭要克服地球对它的引力做更多的功。

  以第一宇宙速度发射卫星时其刚好能在地球表面附近作匀速圆周运动;如果卫星的速度小于第一宇宙速度,卫星将落到地面而不能绕地球运转;

  进入半径越大的轨道,所需要的发射V 越大。

  思考:这与刚才得出的半径越大的轨道,所需要的 运行速度V 越小矛盾吗?

  讨论:

  人造卫星的发射速度与运行速度是两个不同的概念。

  (1)发射速度

  所谓发射速度是指被发射物在地面附近离开发射装置时的初速度,并且一旦发射后就再无能量补充,被发射物仅依靠自己的初动能克服地球引力上升一定的高度,进入运动轨道。要发射一颗人造地球卫星,发射速度不能小于第一宇宙速度。若发射速度等于第一宇宙速度,卫星只能“贴着”地面近地运行。如果要使人造卫星在距地面较高的轨道上运行,就必须使发射速度大于第一宇宙速度。

  (2)运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动的线速度。当卫星“贴着”地面运行时,运行速度等于第一宇宙速度。根据 可知,人造卫星距地面越高(即轨道半径r越大),运行速度越小。实际上,由于人造卫星的轨道半径都大于地球半径,所以卫星的实际运行速度一定小于发射速度。

  (板书)运行速度 指卫星在稳定的轨道上绕地球转动的线速度

  发射速度 指被发射物体离开地面时的水平初速度

  类比得出:

  (板书)2.第二宇宙速度(脱离速度):

  ①意义:使卫星挣脱地球的引力束缚,成为绕太阳运行的人造行星的最小发射速度。[Ks5u.com]

  ②如果人造天体的速度大于11.2km/s而小于16.7km/s,则它的运行轨道相对于太阳将是椭圆,太阳就成为该椭圆轨道的一个焦点。

  (板书)3.第三宇宙速度(逃逸速度):

  ①意义:使卫星挣脱太阳引力束缚的最小发射速度。

  ②如果人造天体具有这样的速度并沿着地球绕太阳的公转方向发射时,就可以摆脱地球和太阳引力的束缚而邀游太空了。

  这个速度目前能做到吗?教师介绍以第三速度发射的探测器,先驱者一号。

  教师小结:只有你想不到的,没有你做不到的。

  随着科学技术的发展,我们探测太空的脚步会越走越快,越走越远。也许有一天我们也能到其它星球旅游定居。

  但是今天我们就必须掌握一些必备知识。也就是我们这节课的重点。

  分层练习:

  C类

  1.关于第一宇宙速度,下面说法:①它是人造卫星绕地球飞行的最小速度;②它是发射人造卫星进入近地圆轨道的最小速度;③它是人造卫星绕地球飞行的最大速度;④它是发射人造卫星进入近地圆轨道的最大速度。以上说法中正确的有( )

  A.①② B.②③ C.①④ D.③④

  B类

  2.对于绕地球做匀速圆周运动的人造地球卫星,下列说法正确的是( )

  A.人造地球卫星的实际绕行速率一定大于7.9km/s

  B.从卫星上释放的物体将作平抛运动

  C.在卫星上可以用天平称物体的质量

  D.我国第一颗人造地球卫星(周期是6.84×103s)离地面高度比地球同步卫星离地面高度小

  A类

  3.三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC 。若在某一时刻,它们正好运行到同一条直线上,如图所示。那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是( )

  高中物理教学设计 6

  教学目标

  知识目标 了解超导体以及超导体在现代科学技术中的应用.

  能力目标 通过超导体知识的学习,扩展知识面.

  情感目标 知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神.

  教学建议

  教材分析 教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识.

  进一步讲解超导的优点、缺点和目前科学家面临的问题.

  教法建议 本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际.

  可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习.

  也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力.

  教学设计方案

  【教学过程设计】

  方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益?

  方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下

  实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向.

  【板书设计】

  1.超导体 概念 超导现象

  2.超导体的优缺点

  3. 我国的.超导体的研究

  探究活动

  【课题】超导现象的历史

  【组织形式】个人或学习小组

  【活动流程】 制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作.

  【参考方案】

  1、尝试总结超导体的发展现况.

  2、讨论超导体的未来发展趋势.

  【资料来源】

  1、图书馆、互联网查找资料.

  2、交流,发现共性和差异.

  高中物理教学设计 7

  教学目标

  (一)知识与技能

  1、掌握楞次定律的内容,能运用楞次定律判断感应电流方向。

  2、培养观察实验的能力以及对实验现象分析、归纳、总结的能力。

  3、能够熟练应用楞次定律判断感应电流的方向

  4、掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。

  (二)过程与方法

  1、通过实践活动,观察得到的实验现象,再通过分析论证,归纳总结得出结论。

  2、通过应用楞次定律判断感应电流的方向,培养学生应用物理规律解决实际问题的能力。

  (三)情感、态度与价值观

  在本节课的学习中,同学们直接参与物理规律的发现过程,体验了一次自然规律发现过程中的乐趣和美的享受,并在头脑中进一步强化“实践是检验真理的唯一标准”这一辩证唯物主义观点。

  教学重点

  1、楞次定律的获得及理解。

  2、应用楞次定律判断感应电流的方向。

  3、利用右手定则判断导体切割磁感线时感应电流的方向。

  教学难点

  楞次定律的理解及实际应用。

  教学方法

  发现法,讲练结合法

  教学用具:

  干电池、灵敏电流表、外标有明确绕向的大线圈、条形磁铁、导线。

  教学过程

  (一)引入新课

  教师:[演示]按下图将磁铁从线圈中插入和拔出,引导学生观察现象,提出:

  ①为什么在线圈内有电流?

  ②插入和拔出磁铁时,电流方向一样吗?为什么?

  ③怎样才能判断感应电流的方向呢?

  本节我们就来学习感应电流方向的判断方法。

  (二)进行新课

  1、楞次定律

  教师:让我们一起进行下面的实验。(利用CAI课件,屏幕上打出实验内容)

  [实验目的]研究感应电流方向的判定规律。

  [实验步骤]

  (1)按右图连接电路,闭合开关,记录下G中流入电流方向与电流表G中指针偏转方向的关系。(如电流从左接线柱流入,指针向右偏还是向左偏?)

  (2)记下线圈绕向,将线圈和灵敏电流计构成通路。

  (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈中拔出,每次记下电流表中指针偏转方向,然后根据步骤(1)结论,判定出感应电流方向,从而可确定感应电流的磁场方向。

  根据实验结果,填表:

  磁铁运动情况N极下插N极上拔S极下插S极上拔磁铁产生磁场方向线圈磁通量变化感应电流磁场方向

  教师:N极向下插入线圈中,磁铁在线圈中产生的磁场方向如何?

  教师:再把该磁铁从线圈中拔出时,磁铁在线圈中产生的磁场方向如何?

  教师:S极向下插入线圈中,情况怎样呢?

  教师:再把S极从线圈中拔出时,情况如何?

  教师:通过上面的实验,同学们发现了什么?

  教师:刚才几位同学的说法都正确。物理学家楞次概括了各种实验结果,在1834年提出了感应电流方向的判定方法,这就是楞次定律。投影打出楞次定律的内容。

  [投影]

  感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律。

  (师生共同活动:理解楞次定律的内涵)

  (1)“阻碍”并不是“阻止”,一字之差,相去甚远。要知道原磁场是主动的,感应电流的磁场是被动的,原磁通仍要发生变化,感应电流的磁场只是起阻碍变化而已。

  (2)楞次定律判断感应电流的方向具有普遍意义。

  教师:楞次定律符合能量守恒。从上面的实验可以发现:感应电流在闭合电路中要消耗能量,在磁体靠近(或远离)线圈过程中,都要克服电磁力做功,克服电磁力做功的过程就是将其他形式的能转化为电能的过程。

  楞次定律也符合唯物辩证法。唯物辩证法认为:“矛盾是事物发展的动力”。电磁感应中,矛盾双方即条形磁铁的磁场(B原)和感应电流的磁场(B感),两者都处于同一线圈中,且感应电流的.磁场总要阻碍原磁场的变化,形成既相互排斥又相互依赖的矛盾,在回路中对立统一,正是“阻碍”的形成产生了电磁感应现象。

  2、楞次定律的应用

  教师:[投影]应用楞次定律判断感应电流方向的基本步骤:

  (1)明确原磁场的方向。

  (2)明确穿过闭合电路的磁通量是增加还是减少。

  (3)根据楞次定律确定感应电流的磁场方向。

  (4)利用安培定则确定感应电流的方向。

  教师:下面让我们通过对例题的分析,熟悉应用楞次定律判断感应电流方向的基本步骤,同时加深对楞次定律的理解。

  高中物理教学设计 8

  一、教学目标

  知识与技能:

  1、理解力的分解概念。

  2、知道力的分解是合成的逆运算,并知道力的分解遵循平行四边形定则。

  3、学会按力的实际作用效果分解力。

  4、学会用力的分解知识解释一些简单的物理现象。

  过程与方法:

  1、通过生活情景的再现和实验模拟体会物理与实际生活的密切联系。

  3、通过对力的实际作用效果的分析,理解按实际作用效果分解力的意义,并感受具体问题具体分析的方法。情感、态度与价值观:

  1、通过联系生活实际情景,激发求知欲望和探究的兴趣。

  2、通过对力的分解实际应用的分析与讨论,养成理论联系实际的自觉性,培养解决生活实际问题的能力。

  二、教学重点难点

  教学重点:理解力的分解的概念,利用平行四边形定则按力的作用效果进行力的分解。

  教学难点:力的实际作用效果的分析。

  三、教学过程

  (一)引入:

  1、观察一幅打夯的图片,分析为什么需要那么多人一起打夯。

  2、模拟打夯,指出用多个力的共同作用来代替一个力的作用的实际意义,突出等效替代的思想。

  3、引出力的分解的概念:把一个力分解成几个分力的方法叫力的分解。

  (二)一个力可分解为几个力?

  由打夯的例子可以看出一个力的作用可以分解为任意几个力,最简单的情况就是把一个力分解为两个力。

  (三)一个力分解成两个力遵循什么规则?

  力的分解是力的合成的逆运算,因此把一个力分解为两个分力也遵循平行四边形定则。

  (四)力的分解实例分析

  以一个力为对角线作平行四边形可以作出无数个平行四边形,因此把一个力分解为两个力有无数组解,但如果已知两个分力的方向,那力的分解就只有唯一解了。如何确定两个分力的方向呢?在解决实际问题时要根据力的实际作用效果确定分力的方向。

  一、斜面上重力的分解

  [演示]用薄塑料片做成斜面,将物块放在斜面上,斜面被压弯,同时物块沿斜面下滑

  [结论]重力G产生两个效果:使物体沿斜面下滑和压紧斜面

  [分析]重力的两个分力大小跟斜面的倾斜角有何关系?

  [结论]通过作图和实验演示可看出倾角越大,下压分力越小而下滑分力越大。

  [问题]游乐场的滑梯为什么倾角很大?山路为什么要修成盘山状?

  [分析]斜面倾角越大,使物体下滑的力越大,物体越容易下滑,故公园滑梯倾角较大,但山路若直接从山脚往山顶修,则倾角太大,车辆上坡艰难而下坡又不安全,是不可行的,修成盘山状则可解决这个问题。

  二、直角支架所受拉力的'分解

  [实验模拟]同学甲用一手撑腰,同学乙用力向下拉甲同学的肘部,让同学谈体会,即分析向下拉肘部的力产生的作用效果。

  [实验演示]在支架上挂一重物,观察橡皮膜的变化,分析重物对支架的拉力产生的作用效果。

  [分析]支架所受拉力一方面挤压水平杆,另一方面拉伸倾斜杆。

  [分解]按效果分解拉力并作出平行四边形法。

  三、劈木柴刀背上力的分解

  [观察图片]为什么一斧头下去,木桩被劈开了?作用在斧头上的力实际产生了什么效果?

  [小实验]同学甲双手合十,同学乙用一只手试图从甲的两手中间劈下去,体会手上的感觉。

  [分析]乙同学的手向两侧挤压甲同学的两只手,因此刀背上的力的作用效果也是使得刀的两个侧面去挤压木柴。

  [分解]按力的作用效果分解刀背上的力,作出平行四边形,并比较分力与合力的大小关系。

  [思考]由生活经验可知砍柴的刀越锋利越容易把柴劈开,为什么?分析分力大小跟分力夹角的关系。

  [体验]通过小实验体会在合力一定的情况下,分力大小随其夹角变化而变化的规律:

  ○用一根羊绒线,中间吊一个砝码,观察当抓住线的两手距离不断增大时线有何变化。

  ○用两个弹簧秤共同拉一个砝码,拉的夹角逐渐增大,观察弹簧秤示数的变化。

  [规律总结]在合力一定的情况下,对称分布的两个分力的夹角越大,分力越大。

  [应用]

  ○如何把陷进泥潭的汽车拉出来?

  ○如何移动一只很重的箱子?

  (五)小结:

  1、知道什么叫力的分解

  2、知道力的分解遵循平行四边形定则

  3、掌握在解决实际问题时按力的实际作用效果分解的方法。

  高中物理教学设计 9

  教学目标

  一、知识目标

  1、知道什么是反冲运动,能举出几个反冲运动的实例;

  2、知道火箭的飞行原理和主要用途。

  二、能力目标

  1、结合实际例子,理解什么是反冲运动;

  2、能结合动量守恒定律对反冲现象做出解释;

  3、进一步提高运用动量守恒定律分析和解决实际问题的能力

  三、德育目标

  1、通过实验,分析得到什么是反冲运动,培养学生善于从实验中总结规律和热心科学研究的兴趣、勇于探索的品质。

  2、通过介绍我国成功地研制和发射长征系列火箭的事实,结合我国古代对于火箭的发明和我国的现代火箭技术已跨入世界先进先烈,激发学生热爱社会主义的情感。

  教学重点

  1、知道什么是反冲。

  2、应用动量守恒定律正确处理喷气式飞机、火箭一类问题。

  教学难点

  如何应用动量守恒定律分析、解决反冲运动。

  教学方法

  1、通过观察演示实验,总结归纳得到什么是反冲运动。

  2、结合实例运用动量守恒定律解释反冲运动。

  教学用具

  反冲小车、玻璃棒、气球、酒精、反冲塑料瓶等

  课时安排

  1课时

  教学步骤

  导入新课

  [演示]拿一个气球,给它充足气,然后松手,观察现象。

  [学生描述现象]释放气球后,气球内的气体向后喷出,气球向相反的方向飞出。

  [教师]在日常生活中,类似于气球这样的运动很多,本节课我们就来研究这种。

  新课教学

  (一)反冲运动 火箭

  1、教师分析气球所做的运动

  给气球内吹足气,捏紧出气孔,此时气球和其中的气体作为一个整体处于静止状态。松开出气孔时,气球中的气体向后喷出,气体具有能量,此时气体和气球之间产生相互作用,气球就向前冲出。

  2、学生举例:你能举出哪些物体的运动类似于气球所作的运动?

  学生:节日燃放的礼花。喷气式飞机。反击式水轮机。火箭等做的运动。

  3、同学们概括一下上述运动的特点,教师结合学生的叙述总结得到:

  某个物体向某一方向高速喷射出大量的液体,气体或弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动

  4、分析气球。火箭等所做的反冲运动,得到:

  在反冲现象中,系统所受的合外力一般不为零;

  但是反冲运动中如果属于内力远大于外力的情况,可以认为反冲运动中系统动量守恒。

  (二)学生课堂用自己的装置演示反冲运动。

  1、学生做准备:拿出自己的在课下所做的反冲运动演示装置。

  2、学生代表介绍实验装置,并演示。

  学生甲:

  装置:在玻璃板上放一辆小车,小车上用透明胶带粘中一块浸有酒精的棉花。

  实验做法:点燃浸有酒精的棉花,管中的酒精蒸气将橡皮塞冲出,同时看到小车沿相反方向运动。

  学生乙:

  装置:二个空摩丝瓶,在它们的底部用大号缝衣针各钻一个小洞,这样做成二个简易的火箭筒,在铁支架的立柱端装上顶轴,在放置臂的两侧各装一只箭筒,再把旋转系统放在顶轴上,往火箭筒内各注入约4 mL的酒精,并在火箭筒下方的棉球上注入少量酒精。点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃,这时可以看到火箭旋转起来。

  学生丙:用可乐瓶做一个水火箭,方法是用一段吸管和透明胶带在瓶上固定一个导向管,瓶口塞一橡皮塞,在橡皮塞上钻一孔,在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管,在瓶中先注入约1/3体积的水,用橡皮塞把瓶口塞严,将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的'上框上,另一端拴在板凳腿上,要使线拉直,将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去。

  过渡引言:同学们通过自己设计的实验装置得到并演示了什么是反冲运动,那么反冲运动在实际生活中有什么应用呢?下边我们来探讨这个问题。

  (三)反冲运动的应用和防止

  1、学生阅读课文有关内容。

  2、学生回答反冲运动应用和防止的实例。

  学生:反冲有广泛的应用:灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是反冲的重要应用。

  学生:用枪射击时,要用肩部抵住枪身,这是防止或减少反冲影响的实例。

  3、用多媒体展示学生所举例子。

  4、要求学生结合多媒体展示的物理情景对几个物理过程中反

  冲的应用和防止做出解释说明:

  ①对于灌溉喷水器,

  当水从弯管的喷嘴喷出时,弯管因反冲而旋转,可以自动地改变喷水的方向。

  ②对于反击式水轮机:当水从转轮的叶片中流出时,转轴由于反冲而旋转带动发电机发电。

  ③对于喷气式飞机和火箭,它们靠尾部喷出气流的反冲作用而获得很大的速度。

  ④用枪射击时,子弹向前飞去枪身向后发生反冲,枪身的反冲会影响射击的准确性,所以用步枪时我们要把枪身抵在肩部,以减少反冲的影响。

  教师:通过我们对几个实例的分析,明确了反冲既有有利的一面,同时也有不利的一面,在看待事物时我们要学会用一分为二的观点。

  我们知道:反冲现象的一个重要应用是火箭,下边我们一认识火箭:

  (四)火箭:

  1、演示:把一个废旧白炽灯泡敲碎取出里面的一根细玻璃管,往细玻璃管装由火柴刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热。

  现象:当管内的药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反方向飞去。教师讲述:上述装置就是火箭的原理模型。

  2、多媒体演示古代火箭,现代火箭的用途及多级火箭的工作过程,同时学生边看边阅读课文。

  3、用实物投影仪出示阅读思考题:

  ①介绍一下我国古代的火箭。

  ②现代的火箭与古代火箭有什么相同和不同之处?

  ③现代火箭主要用途是什么?

  ④现代火箭为什么要采用多级结构?

  4、学生解答上述问题:

  ①我国古代的火箭是这样的:

  在箭上扎一个火药筒,火药筒的前端是封闭的,火药点燃后生成的燃气以很大速度向后喷出,火箭由于反冲而向前运动。

  ②现代火箭与古代火箭原理相同,都是利用反冲现象来工作的。

  但现代火箭较古代火箭结构复杂得多,现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧产生的高温高压燃气从尾喷管迅速喷出,火箭就向前飞去。

  ③现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利用火箭作为运载工具。

  ④在现代技术条件下,一级火箭的最终速度还达不到发射人造卫星所需要的速度,发射卫星时要使用多级火箭。

  用CAI课件展示多级火箭的工作过程:

  多级火箭由章单级火箭组成,发射时先点燃第一级火箭,燃料用完工以后,空壳自动脱落,然后下一级火箭开始工作。

  教师介绍:多级火箭能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的温度,可用来完成洲际导弹,人造卫星、宇宙飞船等的发射工作,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。

  那么火箭在燃料燃尽时所能获得的最终速度与什么有关系呢?

  5、出示下列问题:

  火箭发射前的总质量为M、燃料燃尽后的质量为m,火箭燃气的喷射速度为v1,燃料燃尽后火箭的飞行速度v为多大?

  [学生分析并解答]:

  解:在火箭发射过程中,由于内力远大于外力,所以动量守恒。

  发射前的总动量为0,发射后的总动量为(M-m)v-mv1(以火箭的速度方向为正方向)则:(M-m)v-mv1=0

  师生分析得到:燃料燃尽时火箭获得的最终速度由喷气速度及质量比M/m决定。

  巩固训练 水平方向射击的大炮,炮身重450 kg,炮弹射击速度是450 m/s,射击后炮身后退的距离是45 cm,则炮受地面的平均阻力是多大?

  小结

  1、当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量而向相反方向运动,这种向相反方向的运动,通常叫做反冲运动。

  2、对于反冲运动,所遵循的规律是动是守恒定律,在具体的计算中必须严格按动量守恒定律的解题步骤来进行。

  3、反冲运动不仅存在于宏观低速物体间,也存在于微观高速物体。

  高中物理教学设计 10

  一、教学任务分析

  匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。

  学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。

  从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。

  通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。

  通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。

  通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣。

  二、教学目标

  1、知识与技能

  (1)知道物体做曲线运动的条件。

  (2)知道圆周运动;理解匀速圆周运动。

  (3)理解线速度和角速度。

  (4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。

  2、过程与方法

  (1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。

  (2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。

  3、态度、情感与价值观

  (1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。

  (2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。

  三、教学重点难点

  重点:

  (1)匀速圆周运动概念。

  (2)用线速度、角速度描述圆周运动的快慢。

  难点:理解线速度方向是圆弧上各点的切线方向。

  四、教学资源

  1、器材:壁挂式钟,回力玩具小车,边缘带孔的旋转圆盘,玻璃板,建筑用黄沙,乒乓球,斜面,刻度尺,带有细绳连接的'小球。

  2、课件:flash课件——演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;——演示同样时间内,两个运动半径所转过角度不同的匀速圆周运动。

  3、录像:三环过山车运动过程。

  五、教学设计思路

  本设计包括物体做曲线运动的条件、匀速圆周运动、线速度与角速度三部分内容。

  本设计的基本思路是:以录像和实验为基础,通过分析得出物体做曲线运动的条件;通过观察对比归纳出匀速圆周的特征;以情景激疑认识对匀速圆周运动快慢的不同描述,引入线速度与角速度概念;通过讨论、释疑、活动、交流等方式,巩固所学知识,运用所学知识解决实际问题。

  本设计要突出的重点是:匀速圆周运动概念和线速度、角速度概念。方法是:通过对钟表指针和过山车两类圆周运动的观察对比,归纳出匀速圆周运动的特征;设置地月对话的情景,引入对匀速圆周运动快慢的描述;再通过多媒体动画辅助,并与匀速直线运动进行类比得出匀速圆周运动的概念和线速度、角速度的概念。

  本设计要突破的难点是:线速度的方向。方法是:通过观察做圆周运动的小球沿切线飞出,以及由旋转转盘边缘飞出的红墨水在纸上的径迹分布这两个演示实验,直观显示得出。

  本设计强调以视频、实验、动画为线索,注重刺激学生的感官,强调学生的体验和感受,化抽象思维为形象思维,概念和规律的教学体现“建模”、“类比”等物理方法,学生的活动以讨论、交流、实验探究为主,涉及的问题联系生活实际,贴近学生生活,强调对学习价值和意义的感悟。

  完成本设计的内容约需2课时。

  六、教学流程

  1、教学流程图

  2、流程图说明

  情境I录像,演示,设问1

  播放录像:三环过山车,让学生看到物体的运动有直线和曲线。

  演示:让学生向正在做直线运动的乒乓球用力吹气,体验球在什么情况下将做曲线运动。

  设问1:物体在什么情况下将做曲线运动?

  情境II观察、对比,设问2

  观察、对比钟表指针和过山车这两类圆周运动。

  设问2:以上两类圆周运动有什么不同?钟表指针所做的圆周运动有什么共同特征?建立匀速圆周运动的概念。

  情境III演示,动画

  情景:月、地快慢之争。

  多媒体动画:演示同样时间内两个运动所经过的弧长不同的匀速圆周运动,比较得出线速度表

  表达式。

  演示1:用细绳捆着小球在水平面内做圆周运动,突然松开绳的一端,看到小球沿着圆弧切线方向运动。

  演示2:通过实物投影演示旋转的转盘边缘飞出的红墨水在纸上的径迹分布,显示线速度的方向。

  情景:变换教室内电风扇的变速档,看到圆周运动转动快慢的不同情况,引入角速度概念。

  多媒体动画:演示同样时间内两个运动半径所转过角度不同的匀速圆周运动,比较得出角速度表达式。

  活动讨论、实验、交流、小结。

  识别:请同学们说说生活中有哪些圆周运动可以看作是匀速圆周运动。了解学生对匀速圆周运动的理解以及是否具有建模能力。

  观察分析:磁带、涂改修正带、自行车链条等传动设备中,两轮轴边缘各点的线速度有何关系。了解对线速度概念的理解情况。

  算一算:计算壁挂钟的时针、分针、秒针针尖的线速度大小和它们角速度的倍数关系。了解能否通过实际测量获取有用数据,灵活运用线速度的公式和角速度公式解决实际问题。

  小实验:提供回力玩具小车,玻璃板,建筑用黄沙,通过对实验的观察说明汽车车轮的挡泥板应安装在什么位置合适,了解对线速度方向的掌握情况。

  释疑:评判地球与月亮之争。

  小结:幻灯片小结。

  3、教学主要环节本设计可分为四个主要的教学环节:

  第一环节,通过播放录像和演示,归纳物体做曲线运动的条件。

  第二环节,通过观察对比,建立理想模型,归纳匀速圆周运动特征,类比匀速直线运动得出匀速圆周运动概念。

  第三环节,以情景激疑引入用线速度、角速度描述圆周运动,借助多媒体动画,类比匀速直线运动得出线速度、角速度定义和公式。

  第四环节,以学生活动为中心,针对几个实际问题开展讨论、探究、交流,深化对本节课知识的理解和应用。

  七、教案示例

  第一环节物体做曲线运动的条件

  [创设情景]播放录像:森林公园三环过山车的运动。

  [提出问题]

  1、请同学们说说过山车都做了哪些不同性质的运动? (匀速直线运动、匀加速直线运动、匀减速直线运动、曲线运动、圆周运动等)

  2、什么条件下物体将做曲线运动?

  [演示]让乒乓球从斜面上滚下到达水平桌面上做直线运动,请一个同学向着与球运动不一致的方向用力吹球,观察球的运动轨迹有何变化?

  [结论]当物体受到的合力与速度方向不在一条直线上时,物体就做曲线运动。

  [引言]运动轨迹是圆的曲线运动叫做圆周运动,下面我们就从圆周运动开始学习如何对曲线运动进行研究。

  第二环节匀速圆周运动的概念

  [观察讨论]钟表的时针、分针、秒针的圆周运动有什么共同的特征?它们与过山车的圆周运动有什么不同?

  (钟表的时针、分针、秒针的圆周运动,它们的共同特征是匀速转动的,而过山车的圆周运动列车的速度大小是不断变化的)

  [提出问题]怎样给匀速圆周运动下定义呢?(引导学生类比匀速直线运动定义匀速圆周运动)

  [结论]质点在任何相同时间内,所通过的弧长都相等的圆周运动叫做匀速圆周运动。

  匀速圆周运动是最基本最简单的圆周运动,它是一种理想化的物理模型。

  [引言]我们如何对圆周运动进行研究呢?

  第三环节线速度、角速度概念

  [创设情景]地、月快慢之争

  地球:我绕太阳运动1秒走29.79千米,你绕我1秒才走1.02千米,你太慢了!

  月亮:你一年才绕一圈,我28天就绕一圈,你才慢呢!

  [提出问题]怎样定义描述圆周运动快慢的物理量?(引导学生与匀速直线运动的速度类比)多媒体动画:演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;

  [结论]线速度定义:质点经过的圆弧长度s与所用时间t的比值,叫做圆周运动的线速度。

  公式:单位:m/s(米/秒)

  [问题]速度是矢量,圆周运动的线速度方向是怎样的?

  [演示] 1、用一端连有细线的小球,将线的一端套在钉子上,钉子竖直立在桌面上,给球初速让球在水平桌面上做圆周运动,突然向上抽出钉子,看到球沿圆周的切线方向运动;

  2、通过投影仪观察旋转圆盘边缘红墨水飞出的情景以及落在纸面上的径迹分布;

  [结论]线速度方向:沿圆弧的切线方向

  线速度表示圆周运动的瞬时速度,它是矢量;圆周运动的线速度方向是不断改变的,所以匀速圆周运动是变速运动,匀速圆周运动中的“匀速”是“匀速率”的意思。

  [情景]打开教室内的电风扇,变换不同的档观察它转动的快慢。(引导学生认识要引入与线速度不同的、描述圆周运动转动快慢的物理量)

  高中物理教学设计 11

  教学目标

  知识目标

  1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解;

  2、使学生了解并掌握万有引力定律;

  3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).

  能力目标

  1、使学生能应用万有引力定律解决实际问题;

  2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.

  情感目标

  1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的让学生在应用万有引力定律的过程中应多观察、多思考.

  教学建议

  万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.

  教学目的:

  1、了解万有引力定律得出的思路和过程;

  2、理解万有引力定律的含义并会推导万有引力定律;

  3、掌握万有引力定律,能解决简单的万有引力问题;

  教学难点:

  万有引力定律的应用

  教学重点:

  万有引力定律

  教具:

  展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.

  教学过程

  (一)新课教学(20分钟)

  1、引言

  展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:

  十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.

  伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:

  (1)牛顿是怎样研究、确立《万有引力定律》的呢

  (2)《万有引力定律》是如何反映物体间相互作用规律的

  以上两个问题就是这节课要研究的重点.

  2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法.

  苹果在地面上加速下落:(由于受重力的原因):

  月亮绕地球作圆周运动:(由于受地球引力的`原因);

  行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)

  牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.

  3、引入课题.

  板书:第二节、万有引力定律

  (1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)

  (2)万有引力定律:宇宙间的一切物体都是相互吸引的两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书)

  式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).

  (二)应用(例题及课堂练习)

  学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起(请学生带着这个疑问解题)

  例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少

  解:由万有引力定律得:

  代入数据得:

  通过计算这个力太小,在许多问题的计算中可忽略

  例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度.

  求:

  (1)地球表面一质量为10kg物体受到的万有引力

  (2)地球表面一质量为10kg物体受到的重力

  (3)比较万有引力和重力

  解:(1)由万有引力定律得:

  (2)代入数据得:

  (3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.

  (三)课堂练习:

  教师请学生作课本中的练习,教师引导学生审题,并提示使用万有引力定律公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.

  (四)小结:

  1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么它不足以影响物体的运动,故常常可忽略不计.

  2、应用万有引力定律公式解题,值选,式中所涉其它各量必须取国际单位制.

  (五)布置作业(3分钟):教师可根据学生的情况布置作业.

  探究活动

  组织学生编写相关小论文,通过对资料的收集,了解万有引力定律的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.

  1、万有引力定律发现的历史过程.

  2、第谷在发现万有引力定律上的贡献.

  高中物理教学设计 12

  教学目标

  1、知识与技能

  (1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;

  (2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;

  (3)了解万有引力定律在天文学上有重要应用。

  2、过程与方法:

  (1)培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法;

  (2)培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法;

  (3)培养学生归纳总结建立模型的能力与方法。

  3、情感态度与价值观:

  (1)培养学生认真严禁的科学态度和大胆探究的心理品质;

  (2)体会物理学规律的简洁性和普适性,领略物理学的优美。

  教学重难点

  教学重点

  地球质量的计算、太阳等中心天体质量的计算。

  教学难点

  根据已有条件求中心天体的质量。

  教学工具

  多媒体、板书

  教学过程

  一、计算天体的质量

  1、基本知识

  (1)地球质量的计算

  ①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即

  ②结论:

  只要知道g、R的值,就可计算出地球的质量。

  (2)太阳质量的计算

  ①依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即

  ②结论:

  只要知道卫星绕行星运动的周期T和半径r,就可以计算出行星的质量。

  2、思考判断

  (1)地球表面的物体,重力就是物体所受的万有引力。(×)

  (2)绕行星匀速转动的卫星,万有引力提供向心力。(√)

  (3)利用地球绕太阳转动,可求地球的质量。(×)

  3、探究交流

  若已知月球绕地球转动的周期T和半径r,由此可以求出地球的质量吗?能否求出月球的质量呢?

  【提示】能求出地球的质量。利用

  为中心天体的质量。做圆周运动的月球的质量m在等式中已消掉,所以根据月球的周期T、公转半径r,无法计算月球的质量。

  二、发现未知天体

  1、基本知识

  (1)海王星的发现

  英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道。1846年9月23日,德国的加勒在勒维耶预言的位置附近发现了这颗行星——海王星。

  (2)其他天体的发现

  近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体。

  2、思考判断

  (1)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性。(√)

  (2)科学家在观测双星系统时,同样可以用万有引力定律来分析。(√)

  3、探究交流

  航天员翟志刚走出“神舟七号”飞船进行舱外活动时,要分析其运动状态,牛顿定律还适用吗?

  【提示】适用。牛顿将牛顿定律与万有引力定律综合,成功分析了天体运动问题。牛顿定律对物体在地面上的运动以及天体的运动都是适用的。

  三、天体质量和密度的计算

  【问题导思】

  1、求天体质量的思路是什么?

  2、有了天体的'质量,求密度还需什么物理量?

  3、求天体质量常有哪些方法?

  1、求天体质量的思路

  绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量。

  2、计算天体的质量

  下面以地球质量的计算为例,介绍几种计算天体质量的方法:

  (1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力,即

  (2)若已知月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

  (3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

  (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得

  解得地球质量为

  3、计算天体的密度

  若天体的半径为R,则天体的密度ρ

  误区警示

  1、计算天体质量的方法不仅适用于地球,也适用于其他任何星体。注意方法的拓展应用。明确计算出的是中心天体的质量。

  2、要注意R、r的区分。R指中心天体的半径,r指行星或卫星的轨道半径。以地球为例,若绕近地轨道运行,则有R=r.

  例:要计算地球的质量,除已知的一些常数外还需知道某些数据,现给出下列各组数据,可以计算出地球质量的有哪些?()

  A.已知地球半径R

  B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v

  C.已知卫星绕地球做匀速圆周运动的线速度v和周期T

  D.已知地球公转的周期T′及运转半径r′

  【答案】ABC

  归纳总结:求解天体质量的技巧

  天体的质量计算是依据物体绕中心天体做匀速圆周运动,万有引力充当向心力,列出有关方程求解的,因此解题时首先应明确其轨道半径,再根据其他已知条件列出相应的方程。

  四、分析天体运动问题的思路

  【问题导思】

  1、常用来描述天体运动的物理量有哪些?

  2、分析天体运动的主要思路是什么?

  3、描述天体的运动问题,有哪些主要的公式?

  1、解决天体运动问题的基本思路

  一般行星或卫星的运动可看做匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:

  2、四个重要结论

  设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动

  以上结论可总结为“越远越慢,越远越小”。

  误区警示

  1、由以上分析可知,卫星的an、v、ω、T与行星或卫星的质量无关,仅由被环绕的天体的质量M和轨道半径r决定。

  2、应用万有引力定律求解时还要注意挖掘题目中的隐含条件,如地球的公转周期是365天,自转一周是24小时,其表面的重力加速度约为9.8m/s2.

  例:)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的480(1),母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的()

  【答案】B

  归纳总结:解决天体运动的关键点

  解决该类问题要紧扣两点:一是紧扣一个物理模型:就是将天体(或卫星)的运动看成是匀速圆周运动;二是紧扣一个物体做圆周运动的动力学特征,即天体(或卫星)的向心力由万有引力提供。还要记住一个结论:在向心加速度、线速度、角速度和周期四个物理量中,只有周期的值随着轨道半径的变大而增大,其余的三个都随轨道半径的变大而减小

  五、双星问题的分析方法

  例:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)

  归纳总结:双星系统的特点

  1、双星绕它们共同的圆心做匀速圆周运动,它们之间的距离保持不变;

  2、两星之间的万有引力提供各自需要的向心力;

  3、双星系统中每颗星的角速度相等;

  4、两星的轨道半径之和等于两星间的距离。

  高中物理教学设计 13

  教学目的

  1.了解组成物质的分子具有动能及势能,并且了解分子平均动能和分子势能都与哪些因素有关。

  2.理解物体的内能以及物体内能由物体的状态所决定。

  教学重点

  物体的内能是一个重要的概念,是本章教学的一个重点。学生只有正确理解物体的内能才能理解做功和热传递及物体内能的变化关系。

  教学难点

  分子势能。

  教学过程

  一、复习提问

  什么样的能是势能?弹性势能的大小与弹簧的形变关系怎样?

  二、新课教学

  1.分子动能。

  (1)组成物质的分子总在不停地运动着,所以运动着的分子具有动能,叫做分子动能。

  (2)启发性提问:根据你对布朗运动实验的观察,分子运动有什么样的特点?

  应答:分子运动是杂乱无章的,在同一时刻,同一物体内的分子运动方向不相同,分子的运动速率也不相同。

  教师分析分子速率分布特点——在同一时刻有的分子速率大,有的分子速率小,从大量分子总体来看,速率很大和速率很小的分子是少数,大多数分子是中等大小的速率。

  教帅进一步指出:由于分子速率不同,所以每个分子的动能也不同。对于热现象的研究来说,每个分子的动能是毫无意义的,而有意义的是物体内所有分子动能的平均值,此平均值叫做分子的平均动能。

  (3)要学生讨论研究。

  用分子动理论的观点,分析冷、热水的区别。

  讨论结论应是:组成冷、热水的大量分子的速率各不相同,则其动能也各不相同,但就冷水总体来说分子的平均动能小于热水的分子平均动能。

  教师指出:由此可见,温度是物体分子平均动能的标志。

  2.分子势能。

  (1)根据复习提问的回答(地面上的物体与地球之间有相互作用力;发生了形变的弹簧各部分间存在着相互作用力,因此在它们的相对位置发生变化时,它们之间便具有势能)说明分子间也存在着相互作用力,所以分子也具有由它们相对位置所决定的能,称之为分子势能。

  (2)分子势能与分子间距离的关系。

  提问:分子力与分子间距离有什么关系?

  应答:当r=r0时,F=0,r<r0时,F为斥力,r>r0时,F为引力。

  教师指出:由于分子间既有引力又有斥力,好象弹簧形变有伸长或压缩两种情况,因此分子势能与分子间距离也分两种情况。

  ①当r>r0时,F为引力,分子势能随着r的增大而增加。此种情况与弹簧被拉长弹性势能的增加很相似。

  ②当r< p="">

  小结:分子势能随着分子间距离变化而变化,而组成物体的大量分子间距离若增大(减小)则宏观表现为物体体积增大(减小)。可见分子势能跟物体体积有关。

  (3)物体的内能。

  教师指出:物体里所有的分子动能和势能的总和叫做物体的内能。由此可知一切物体都具有内能。

  ①物体的内能是由它的状态决定的(状态是指温度、体积、物态等)。

  提问:对于质量相等、温度都是100℃的水和水蒸气来说它们的内能相同吗?

  应答,质量相等意味着它们的分子数相同,温度相等意味着它们的平均动能相同,但由于水蒸气分子间平均距离比水分子间平均距离大得多,分子势能也大得多,因而质量相等的水蒸气的内能比水大。

  ②物体的状态发生变化时,物体的内能也随着变化。

  举例说明:当水沸腾时,水的温度保持不变,所供给的大量能用于把分子拉开,增大了分子势能,因而增大了物体的内能,当水汽凝结时,分子动能没有明显变化,但分子靠得更紧密了,分子势能便减小了,因此物体的内能减小了。

  ③物体的内能是不同于机械能的另一种形式的能。

  a.静止在地面上的物体以地球为参照物,物体的机械能等于0,但物体内部的分子仍然在不停地运动着和相互作用着,物体的内能永远不能为0。

  b.物体在具有一定的内能时,也可以具有一定的机械能。如飞行的子弹。

  C.不能把物体的机械能和物体的内能混淆。只要物体的温度、体积、物态不变,不论物体的机械能怎样变化其内能仍保持不变。反之,尽管物体的内能在变化,它的机械能可以保持不变。

  (4)学生讨论题:

  ①静止在光滑水平地面上的木箱具有什么能?若木箱沿光滑水平地面加速运动,木箱具有什么能?此时木箱的内能与静止时相比较变化了没有?

  ②质量相等而温度不相等的两杯水,哪一杯水具有较大的内能?温度相同而质量不等的两杯水,哪一杯水具有较大的内能?

  最后总结一下本课要点。

  1.了解内能的概念,能简单描述温度和内能的关系。

  2.知道做功和热传递都可以改变物体的内能。

  3.了解热量的概念,知道热量的单位是焦耳。

  重点目标

  1.内能、热量概念的建立.

  2.改变物体内能的途径.难点目标内能、热量概念的建立.

  导入示标凉爽的秋夜,仰望星空时,会突然发现一颗流星在夜色中划过,并留下一条美丽的弧线.流星是怎样形成的呢?

  目标三导学做思一:物体的内能

  问题1:组成物质的.分子在不停地做热运动,分子应具有什么能?物体的分子之间有引力和斥力,且分子之间有间隔,分子应具有什么能?什么叫物体的内能?你能说出它的单位吗?机械能和内能有什么区别吗?

  小结:物体内所有分子由于热运动而具有的动能,以及分子之间势能的总和叫做物体的内能.它的单位是焦耳,简称焦,符号为J.机械能是宏观的,能看得到的,内能是微观的,是看不到的

  问题2:把红墨水滴入装满水的烧杯里,过一段时间,整杯水变为红色,这种现象说明了什么?当红墨水分别滴入热水和冷水中时,发现热水变色比冷水快,这又说明了什么?

  小结:温度高的物体分子运动剧烈,内能大.所以物体的内能与温度有关.

  问题3:小明说:“炽热的铁水温度很高,具有内能;冰冷的冰块温度很低,不具有内能.”小刚说:“炽热的铁水温度高,内能大;冰冷的冰山温度低,内能小.”你认为他们的说法正确吗?说出理由.

  小结:一切物体都具有内能.物体的内能还与质量有关.

  问题3:处理例1和变式练习1

  例1:【解析】物体内所有分子热运动的动能与分子势能的总和叫做物体的内能温度越高,物体内能越大温度相同的同种物质,分子个数越多,分子热运动的动能与分子势物体内能越大

  问题1:如右图所示,在一个配有活塞的厚玻璃筒里放一小团硝化棉,把活塞迅速往下压,你能观察到什么现象(棉花燃烧),该实验说明了什么?你再将一根铁丝反复弯折数十次,用手接触弯折处,有什么感觉,该实验又说明了什么?

  小结:做功可以改变物体的内能.

  问题2:做饭时,铁锅为什么能烫手?放在阳光下的被子,为什么能被晒得暖乎乎?

  小结:热传递也可以改变物体的内能.

  问题3:处理例2和变式练习2

  例2:【解析】来回拉绳子,绳子与管壁之间克服摩擦做功,使管内的酒精内能增大,温度升高;当把塞子冲出时,管内的酒精蒸气对塞子做功,将内能转化成机械能.正确的答案为A选项.

  答案:A

  变式练习

  让学生进一步理解改变内能的途径有做功和热传递两种方法,选项ABD是做功改变物体的内能,选项C是通过热传递的方式改变物体的内能.

  答案:C

  学做思三:热量

  问题1:什么叫热量?它的单位是什么?它用什么字母表示?

  小结:物体通过热传递方式所改变的内能称为热量,它的单位是J,它用字母Q表示.

  问题2:在热传递现象中,高温物体和低温物体的温度、内能和热量如何变化?

  小结:在热传递过程中,高温物体放出热量,温度降低,内能减小;低温物体吸收热量,温度升高,内能增大.所以热传递过程中传递的是热量,改变了物体的内能,表现在物体温度的变化.

  高中物理教学设计 14

  一、教学目标

  【知识与技能】

  1、知道常见的形变,了解物体的弹性;

  2、知道弹力产生的条件;

  3、知道压力、支持力、绳的拉力都是弹力,能在力的示意图中画出它们的方向。

  【过程与方法】

  通过探究弹力的存在,能提高在实际问题中确定弹力方向的能力,体会假设推理法解决问题的巧妙。

  【情感态度与价值观】

  观察和了解形变的有趣现象,感受自然界的奥秘,感受学习物理的乐趣,建立把物理学习与生活实践结合起来的习惯。

  二、教学重难点

  【重点】

  弹力产生的条件及弹力方向的判定

  【难点】

  接触的物体是否发生形变及弹力方向的确定

  三、教学过程

  环节一:导入新课

  教学一开始前,给每个学生小组分发弹簧和尺子,让每个小组试着把玩这些物件,如用力拉或压弹簧,用力弯动尺子等。在操作过程中思考被拉或压的弹簧,弯动的尺子的有什么共同点是什么?大家可否试着举出生活中其他的一些诸如这个弹簧和尺子的例子?

  物体的形状都发生了改变。由此引入物体的形态发生了变化是源于物体都受到了力的作用,这种力就是今天要学习的弹力。

  环节二:新课讲授

  (一)弹性形变和弹力

  概念:物体在力的作用下形状或体积的改变叫做形变。

  提问:刚才举的那些例子都很容易观察到,如果一本书放在桌面上,书和桌面发生形变了没有?

  学生会产生疑惑分歧,但教师此时可以不用详解,而是做现场演示实验1,让学生观察用手挤压时XX形变(双手握住注满红墨水的烧瓶,用力挤压底部。上插玻璃管中的红墨水液面上升。)

  为了让学生有更直观深刻的印象,也会用视频播放演示实验2:桌面微小形变的激光演示(在一个大桌上放两个平面镜M和N,让一束光依次被这两面镜子反射,最后射在刻度尺上形成一个光点。用力压桌面,观察刻度尺上光点位置的变化。)

  学生观察后思考:通过上面的实验,我们观察到什么样的实验现象?我们用了什么样的方法?那书放在桌面上,书和桌面发生形变了没有?

  分析得出:通过微观放大的方法观察,我们发现原来不容易观察的瓶子和桌面也发生了形变。

  归纳:由此我们可以想到一切物体都可以发生形变,形变分为很多种类,有些物体在形变后能够恢复原状,这种形变叫做弹性形变。

  提问:发生弹性形变的物体是不是在所有的情况下都可以恢复原状呢?请举例说明?

  学生能举出有时弹簧拉得过长就恢复不了原状。指出:如果形变过大,超过一定的限度,撤去作用力后物体不能完全恢复原来的'形状,这个限度叫做弹性限度。

  根据前面的铺垫,总结弹力的概念:发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。例举蹦床的例子说明。

  (二)几种弹力的方向

  教师在黑板上画出书与桌面之间的相互作用力,与学生一起分析之间的相互作用关系,指出书对桌面的压力和桌面对书的支持力都是弹力。

  举出实例:给出吊灯图片,做出分析。以灯为研究受力对象,链子指向链子收缩的方向吊住吊灯,链子发生形变。链子被拉长,就要企图恢复形变。这里施力物体——链子,受力物体——灯。这时候链子对灯的拉力的方向是——竖直向上,指向链子收缩的方向。

  做出总结:弹力方向——施力物体形变恢复的方向;与施力物体形变方向相反。压力和支持力的方向总是垂直于接触面指向受力物体,绳的拉力总是沿着绳子指向绳收缩的方向。

  环节三:巩固提高

  给出如下三个图片,要求学生画出弹力的示意图。

  归纳总结:

  三种接触情况下弹力的方向:

  (1)面面接触,垂直于接触面指向被支持的物体

  (2)点面接触,垂直于接触面指向被支持的物体

  (3)点点接触,垂直于接触点的切面指向被支持物体。

  环节四:小结作业

  小结:师生归纳弹力的相关知识点。

  作业:预习后面胡克定律,了解弹力大小的特点。

  高中物理教学设计 15

  教材分析

  三相电流在生产和生活中有广泛的应用,学生应对它有一定的了解。但这里只对学生可能接触较多的知识做些介绍,而不涉及太多实际应用中的具体问题。三相交变电流在生产生活实际中应用广泛,所以其基本常识应让每个学生了解。

  1、在介绍三相交变电流的产生时,除课本中提供的插图外,教师可以再找一些图片或模型,使学生明白,三个相同的线圈同时在同一磁场中转动,产生三相交变电流,它们依次落后1/3周期。三相交变电流就是三个相同的交变电流,它们具有相同的最大值、周期、频率。每一个交变电流是一个单相电。

  2、要让学生知道,三个线圈相互独立,每一个都可以相当于一个独立的电源单独供电。由于三个线圈平面依次相差120o角。它们达到最大值(或零)的时间就依次相差1/3周期。用挂图配合三相电机的模型演示,效果很好。

  让三个线圈通过星形连接或三角形连接后对外供电,一方面比用三个交变电流单独供电大大节省了线路的材料,另一方面,可同时提供两种不同电压值的交变电流。教师应组织学生观察生活实际中的交变电流的连接方式,理解课本中所介绍的三相电的.连接。

  教学设计方案

  三相交变电流

  教学目的

  1、知道三相交变电流的产生及特点。

  2、知道星形接法、三角形接法和相电压、线电压知识。

  教具:演示用交流发电机

  教学过程:

  一、引入新课

  本章前面学习了一个线圈在磁场中转动,电路中产生交变电流的变化规律。如果三组互成120°角的线圈在磁场中转动,三组线圈产生三个交变电流。这就是我们今天要学习的三相交变电流。

  板书:第六节三相交变电流

  二、进行新课

  演示单相交流发电机模型:只有一个线圈在磁场中转动,电路中只产生一个交变电动势,这样的发电机叫单相交流发电机。它发出的电流叫单相交变电流。

  演示:三相交流发电机模型,提出研究三相交变电流的产生。

  板书:

  一、三相交变电流的产生

  1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流。

  2、三相交变电流的特点:最大值和周期是相同的。

  板书:三组线圈到达最大值(或零值)的时间依次落后1/3周期

  我们还可以用图像描述三相交变电流

  板书:三相交变电流的图像

  三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?

  板书:

  二、星形连接和三角形连接

  1、星形连接

  说明:在实际应用中,三相发电机和负载并不用6条导线连接,而是把线圈末端和负载之间用一条导线连接,这就是我们要学习的星形连接

  ①把线圈末端和负载之间用一条导线连接的方法叫星形连接(符号Y)

  ②端线、火线和中性线、零线。

  从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线。从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线。

  ③相电压和线电压

  端线和中性线之间的电压叫做相电压。

  两条端线之间的电压叫做线电压。

  我国日常电路中,相电压是220V、线电压是380V。

  2、三角形连接

  ①把发电机的三个线圈始端和末端依次相连的方式叫三角板连接(符号△)。

  ②相电压和线电压。

  两条端线之间的电压就是其中一个线圈的相电压,所以三角形连接中相电压等于线电压。

  高中物理教学设计 16

  一、教学目标

  1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此规律有初步理解。

  2、介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。

  3、通过牛顿发现万有引力定律的思考过程和卡文迪许扭秤的设计方法,渗透科学发现与科学实验的方法论教育。

  二、重点、难点分析

  1、万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。

  2、由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。

  三、教具

  卡文迪许扭秤模型。

  四、教学过程

  (一)引入新课

  1、引课:前面我们已经学习了有关圆周运动的知识,我们知道做圆周运动的物体都需要一个向心力,而向心力是一种效果力,是由物体所受实际力的合力或分力来提供的。另外我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?(学生一般会回答:地球对月球有引力。)

  我们再来看一个实验:我把一个粉笔头由静止释放,粉笔头会下落到地面。

  实验:粉笔头自由下落。

  同学们想过没有,粉笔头为什么是向下运动,而不是向其他方向运动呢?同学可能会说,重力的方向是竖直向下的,那么重力又是怎么产生的呢?地球对粉笔头的引力与地球对月球的引力是不是一种力呢?(学生一般会回答:是。)这个问题也是300多年前牛顿苦思冥想的问题,牛顿的结论也是:yes。

  既然地球对粉笔头的引力与地球对月球有引力是一种力,那么这种力是由什么因素决定的,是只有地球对物体有这种力呢,还是所有物体间都存在这种力呢?这就是我们今天要研究的万有引力定律。

  板书:万有引力定律

  (二)教学过程

  1、万有引力定律的推导

  首先让我们回到牛顿的年代,从他的角度进行一下思考吧。当时“日心说”已在科学界基本否认了“地心说”,如果认为只有地球对物体存在引力,即地球是一个特殊物体,则势必会退回“地球是宇宙中心”的说法,而认为物体间普遍存在着引力,可这种引力在生活中又难以观察到,原因是什么呢?(学生可能会答出:一般物体间,这种引力很小。如不能答出,教师可诱导。)所以要研究这种引力,只能从这种引力表现比较明显的物体——天体的问题入手。当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第

  其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。

  而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它

  用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。如果改

  其中G为一个常数,叫做万有引力恒量。(视学生情况,可强调与物体重力只是用同一字母表示,并非同一个含义。)

  应该说明的是,牛顿得出这个规律,是在与胡克等人的探讨中得到的。

  2、万有引力定律的理解

  下面我们对万有引力定律做进一步的说明:

  (1)万有引力存在于任何两个物体之间。虽然我们推导万有引力定律是从太阳对行星的引力导出的,但刚才我们已经分析过,太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是:

  板书:任何两个物体都是相互吸引的,引力的大小跟两个物体的质

  其中m1、m2分别表示两个物体的质量,r为它们间的'距离。

  (2)万有引力定律中的距离r,其含义是两个质点间的距离。两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。

  (3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。从这一产生原因可以看出:万有引力不同于我们初中所学习过的电荷间的引力及磁极间的引力,也不同于我们以后要学习的分子间的引力。

  3、万有引力恒量的测定

  牛顿发现了万有引力定律,但万有引力恒量G这个常数是多少,连他本人也不知道。按说只要测出两个物体的质量,测出两个物体间的距离,再测出物体间的引力,代入万有引力定律,就可以测出这个恒量。但因为一般物体的质量太小了,它们间的引力无法测出,而天体的质量太大了,又无法测出质量。所以,万有引力定律发现了100多年,万有引力恒量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个恒量。

  这是一个卡文迪许扭秤的模型。(教师出示模型,并拆装讲解)这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

  卡文迪许测定的G值为6.754×10—11,现在公认的G值为6.67×10—11。需要注意的是,这个万有引力恒量是有单位的:它的单位应该是乘以两个质量的单位千克,再除以距离的单位米的平方后,得到力的单位牛顿,故应为Nm2/kg2。

  板书:G=6.67×10—11Nm2/kg2

  由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10—7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。

  五、课堂小结

  本节课我们学习了万有引力定律,了解了任何两个有质量的物体之间都存在着一种引力,这个引力正比于两个物体质量的乘积,反比于两个物体间的距离。其大小的决定式为:

  其中G为万有引力恒量:G=6.67×10—11Nm2/kg2

  另外,我们还了解了科学家分析物体、解决问题的方法和技巧,希望对我们今后分析问题、解决问题能够有所借鉴。

  六、说明

  1、设计思路:本节课由于内容限制,以教师讲授为主。为能够吸引学生,引课时设计了一些学生习以为常的但又没有细致思考过的问题。讲授过程中以物理学史为主线,让学生以科学家的角度分析、思考问题。力争抓住这节课的有利时机,渗透“没有绝对特殊的物体”这一引起物理学几次革命性突破的辩证唯物主义观点。

  2、卡文迪许扭秤模型为自制教具,可仿课本插图用金属杆等焊制,外面可用有机玻璃制成外壳,并可拆卸。

  高中物理教学设计 17

  教学目标:

  (1)理解简谐振动的判断,掌握全过程的特点;

  (2)理解简谐振动方程的物理含义与应用;

  能力目标:

  (1)培养对周期性物理现象观察、分析;

  (2)训练对物理情景的理解记忆;

  教学过程:

  (一)、简谐振动的周期性:周期性的往复运动

  (1)一次全振动过程:基本单元

  平衡位置O:周期性的往复运动的对称中心位置

  振幅A:振动过程振子距离平衡位置的最大距离

  (2)全振动过程描述:

  周期T:完成基本运动单元所需时间

  T=2π

  频率f:1秒内完成基本运动单元的次数

  T=

  位移S:以平衡位置O为位移0点,在全振动过程中始终从平衡位置O点指向振子所在位置

  速度V:物体运动方向

  (二)、简谐振动的判断:振动过程所受回复力为线性回复力

  (F=-KX)K:简谐常量

  X:振动位移

  简谐振动过程机械能守恒:KA2=KX2+mV2=mVo2

  (三)、简谐振动方程:

  等效投影:匀速圆周运动(角速度ω=π)

  位移方程:X=Asinωt

  速度方程:V=Vocosωt

  加速度:a=sinωt

  线性回复力:F=KAsinωt

  上述简谐振动物理参量方程反映振动过程的规律性

  简谐振动物理参量随时间变化关系为正余弦图形

  课堂思考题:

  (1)简谐振动与一般周期性运动的区别与联系是什么?

  (2)如何准确描述周期性简谐振动?

  (3)你知道的物理等效性观点应用还有哪些?

  (四)、典型问题:

  (1)简谐振动全过程的特点理解类

  例题1、一弹簧振子,在振动过程中每次通过同一位置时,保持相同的物理量有()

  A速度B加速度C动量D动能

  例题2、一弹簧振子作简谐振动,周期为T,()

  A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍;

  B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反;

  C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动加速度一定相等;

  D.若Δt=T/2,则在t时刻和(t+Δt)时刻弹簧的长度一定相等

  同步练习

  练习1、一平台沿竖直方向作简谐运动,一物体置于振动平台上随台一起运动.当振动平台处于什么位置时,物体对台面的正压力最小

  A.当振动平台运动到最低点

  B.当振动平台运动到最高点时

  C.当振动平台向下运动过振动中心点时

  D.当振动平台向上运动过振动中心点时

  练习2、水平方向做简谐振动的`弹簧振子其周期为T,则:

  A、若在时间Δt内,弹力对振子做功为零,则Δt一定是的整数倍

  B、若在时间Δt内,弹力对振子做功为零,则Δt可能小于

  C、若在时间Δt内,弹力对振子冲量为零,则Δt一定是T的整数倍

  D、若在时间Δt内,弹力对振子冲量为零,则Δt可能小于

  练习3、一个弹簧悬挂一个小球,当弹簧伸长使小球在位置时处于平衡状态,现在将小球向下拉动一段距离后释放,小球在竖直方向上做简谐振动,则:

  A、小球运动到位置O时,回复力为零;

  B、当弹簧恢复到原长时,小球的速度最大;

  C、当小球运动到最高点时,弹簧一定被压缩;

  D、在运动过程中,弹簧的最大弹力大于小球的重力;

  (2)简谐振动的判断证明

  例题、在弹簧下端悬挂一个重物,弹簧的劲度为k,重物的质量为m。重物在平衡位置时,弹簧的弹力与重力平衡,重物停在平衡位置,让重物在竖直方向上离开平衡位置,放开手,重物以平衡位置为中心上下振动,请分析说明是否为简谐振动,振动的周期与何因素有关?

  解析:当重物在平衡位置时,假设弹簧此时伸长了x0,

  根据胡克定律:F=kx由平衡关系得:mg=kx0

  确定平衡位置为位移的起点,当重物振动到任意位置时,此时弹簧的形变量x也是重物该时刻的位移,此时弹力F1=kx

  由受力分析,根据牛顿第二定律F=Ma得:F1–mg=ma

  由振动过程中回复力概念得:F回=F1–mg

  联立(1)、(3)得:F回=kx-kx0=k(x-x0)

  由此可得振动过程所受回复力是线性回复力即回复力大小与重物运动位移大小成正比,其方向相反,所以是简谐振动。

  由(2)得:a=-(x-x0),结合圆周运动投影关系式:a=-ω2(x-x0)得:ω2=

  由ω=π得:T=2π此式说明该振动过程的周期只与重物质量的平方根成正比、跟弹簧的劲度的平方根成反比,跟振动幅度无关。

  同步练习:

  用密度计测量液体的密度,密度计竖直地浮在液体中。如果用手轻轻向下压密度计后,放开手,它将沿竖直方向上下振动起来。试讨论密度计的振动是简谐振动吗?其振动的周期与哪些因素有关?

  (3)简谐振动方程推导与应用

  例题:做简谐振动的小球,速度的最大值vm=0.1m/s,振幅A=0.2m。若从小球具有正方向的速度最大值开始计时,求:(1)振动的周期(2)加速度的最大值(3)振动的表达式

  解:根据简谐振动过程机械能守恒得:KA2=mVm2

  =Vm2/A2=0.25由T=2π=4π

  a=-A=0.05(m/s2)由ω=π=0.5由t=0,速度最大,位移为0则

  Acosφ=0v=-ωAsinφ则φ=-π/2即有x=0.2cos(0.5t–0.5π)

  高中物理教学设计 18

  教学目标

  知识与技能

  1.知道时间和时刻的区别和联系.

  2.理解位移的概念,了解路程与位移的区别.

  3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.

  4.能用数轴或一维直线坐标表示时刻和时间、位置和位移.

  5.知道时刻与位置、时间与位移的对应关系.

  过程与方法

  1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.

  2.会用坐标表示时刻与时间、位置和位移及相关方向

  3.会用矢量表示和计算质点位移,用标量表示路程.

  情感态度与价值观

  1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.

  2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.

  3.养成良好的思考表述习惯和科学的价值观.

  4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.

  教学重难点

  教学重点

  1.时间和时刻的概念以及它们之间的区别和联系

  2.位移的概念以及它与路程的区别.

  教学难点

  1.帮助学生正确认识生活中的时间与时刻.

  2.理解位移的概念,会用有向线段表示位移.

  教学工具

  教学课件

  多媒体课件

  教学过程

  [引入新课]

  师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念?

  生:质点、参考系、坐标系.

  师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况?

  生:不能.

  师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念?

  一部分学生可能预习过教材,大声回答,一部分学生可能忙着翻书去找.

  师指导学生快速阅读教材第一段,并粗看这节课的黑体字标题,提出问题:要描述物体的机械运动,本节课还将从哪几个方面去描述?

  生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了进一步描述物体的运动而引入的,要研究物体的运动还要学好这些基本概念.

  引言:宇宙万物都在时间和空间中存在和运动.我们每天按时上课、下课、用餐、休息。从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长.对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题--§1.2时间和位移.

  [新课教学]

  一、时刻和时间间隔

  [讨论与交流]

  指导学生仔细阅读“时刻和时间间隔”一部分,然后用课件投影展示本校作息时间表.

  师:同时提出问题;

  1.结合教材,你能列举出哪些关于时间和时刻的说法?

  2.观察教材第14页图1.2-1,如何用数轴表示时间?

  学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每

  组选出代表,发表见解,提出问题.

  生:我们开始上课的“时间”:8:00就是指的时刻;下课的“时间”:8:45也是指的时刻.这样每个活动开始和结束的那一瞬间就是指时刻.

  生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔.

  师:根据以上讨论与交流,能否说出时刻与时间的概念.

  教师帮助总结并回答学生的提问.

  师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间.

  让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论.

  教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况.

  (展示问题)根据下列“列车时刻表”中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间?

  T15站名T16

  18:19北京西14:58

  00:35 00:41郑州08:42 08:36

  05:49 05:57武昌03:28 03:20

  09:15 09:21长沙23:59 23:5l

  16:25广州16:52

  参考答案:6小时59分、15小时50分、22小时零6分.

  (教师总结)

  师:平常所说的“时间”,有时指时刻,有时指时间间隔,如有人问你:“你们什么时间上课啊?”这里的时间是指时间间隔吗?

  生:不是,实际上这里的时间就是指的时刻.

  师:我们可以用数轴形象地表示出时刻和时间间隔.

  教师课件投放教材图1.2-1所显示的问题,将其做成F1ash动画.

  学生分组讨论,然后说说怎样用时间轴表示时间和时刻.

  生:时刻:在时间坐标轴上用一点来表示时刻.时间:两个时刻的间隔表示一段时间.一段时间在时间坐标轴上用一线段表示.

  师:为了用具体数字说明时间,必须选择某一时刻作为计时起点,计时起点的选择是人为的单位秒(s).

  师:下图1-2-1给出了时间轴,请你说出第3秒,前3秒,第3秒初第3秒末,第n秒的意义.

  答:

  1.学习了时间与时刻,蓝仔、红孩、紫珠和黑柱发表了如下一些说法,正确的是…( )

  A.蓝仔说,下午2点上课,2点是我们上课的时刻

  B.红孩说,下午2点上课,2点是我们上课的时间

  C.紫珠说,下午2点上课,2点45分下课,上课的时刻是45分钟

  D.黑柱说,2点45分下课,2点45分是我们下课的时间

  答案:A

  2.关于时刻和时间,下列说法中正确的是…………………………………( )

  A.时刻表示时间较短,时间表示时间较长B.时刻对应位置,时间对应位移

  C.作息时间表上的数字表示时刻D.1 min内有60个时刻

  答案:BC

  解析:紧扣时间和时刻的定义及位置、位移与时刻、时间的关系,可知B、C正确,A错.一段时间内有无数个时刻,因而D错.

  以下提供几个课堂讨论与交流的例子,仅供参考.

  [讨论与交流]:我国在2003年10月成功地进行了首次载人航天飞行.10月15日09时0分,“神舟”五号飞船点火,经9小时40分50秒至15日18时40分50秒,我国宇航员杨利伟在太空中层示中国国旗和联合国旗,再经11小时42分10秒至16日06时23分,飞船在内蒙古中部地区成为着陆.在上面给出的时间或时刻中,哪些指的是时间,哪些又指的是时刻?

  参考答案:这里的“10月15日09时0分”、“15日18时40分50秒”和“16日06时23分”,分别是指这次航天飞行点火、展示国旗和着陆的时刻,而“9小时40分50秒”和“11小时62分10秒”分别指的是从点火到展示国旗和从展示国旗到着陆所用的时间.

  二、路程和位移

  (情景展示)中国西部的塔克拉玛干沙漠是我国的沙漠,在沙漠中,远眺不见边际,抬头不见飞鸟.沙漠中布满了100~200m高的沙丘.像大海的巨浪,人们把它称为“死亡之海”.

  许多穿越这个沙漠的勇士常常迷路,甚至因此而丧生.归结他们失败的原因都是因为在沙漠中搞不清这样三个问题:我在哪里?我要去哪里?选哪条路线?而这三个问题涉及三个描述物体运动的物理量:位置、位移、路程.

  师:(投影中国地图)让学生思考:从北京到重庆,观察地图,你有哪些不同的选择?这些选择有何相同或不同之处?

  生:从北京到重庆,可以乘汽车,也可以乘火车或飞机,还可以中途改变交通工具.选择的路线不同,运动轨迹不同,但就位置变动而言,都是从北京来到了重庆.

  师:根据上面的学习,你能给出位移及路程的定义吗?

  生:位移:从物体运动的起点指向运动的终点的有向线段.位移是表示物体位置变化的物理量.国际单位为米(m).

  路程:路程是质点实际运动轨迹的长度.(板)

  在坐标系中,我们也可以用数学的方法表示出位移.

  实例:质点从A点运动到B点,我们可以用有方向的线段来表示位移,从初始位置A向末位置B画有向线段,展示教材图1.2-3.

  [讨论与交流]

  请看下面的一段对话,找出里面的.哪些语言描述了位置,哪些语言描述了位置的变动.哪些是指路程,哪些是指位移.

  甲:同学,请问红孩去哪里了?

  乙:他去图书室了,五分钟前还在这儿.

  甲:图书室在哪儿?

  乙指着东北的方向说:在那个方位.

  甲:我还是不知道怎么走过去,有最近的路可去吗?

  乙:你可以从这儿向东到孔子像前再往北走,就能看见了.

  丙加入进来,说道;也可以先向北走,再向东,因为那边有好风景可看.

  甲:最近要多远?

  乙:大概要三百米吧.

  丙开玩笑说;不用,你如果能从索道直线到达也就是一百米.

  乙:别骗人了,哪有索道啊!

  丙:我是开玩笑的,那只好辛苦你了,要走曲线.

  甲:谢谢你们两位,我去找他了.

  学生分组讨论后,选代表回答问题.

  生1:乙手指的方向--东北,就是甲在找红孩的过程中发生的位移的方向.

  生2:里面的三百米是指路程,一百米的直线距离是指位移的大小.

  生3:他们谈话的位置和图书室是两个位置,也就是甲在找红孩过程中的初末位置.

  请你举出生活中更常见的例子说明路程和位移.(围绕跑道跑一圈的位移和路程)

  [讨论与思考]

  1.(用课件展示中国地图)在地图上查找上海到乌鲁木齐的铁路.请根据地图中的比例尺估算一下,坐火车从上海到乌鲁木齐的位移和经过的路程分别是多少?

  阅读下面的对话:

  甲:请问到市图书馆怎么走?

  乙:从你所在的市中心向南走400 m到一个十字路口,再向东走300m就到了.

  甲:谢谢!

  乙:不用客气.

  请在图1-2-3上把甲要经过的路程和位移表示出来.

  师:请你归纳一下:位移和路程有什么不同?

  生1:位移是矢量,有向线段的长度表示其大小,有向线段的方向表示位移的方向.

  生2:质点的位移与运动路径无关,只与初位置、末位置有关.

  生3:位移与路程不同,路程是质点运动轨迹的长度,路程只有大小没有方向,是标量.

  教师提出问题

  师:位移的大小有没有等于路程的时候?

  学生讨论后回答,并交流自己的看法.

  生:在直线运动中,位移的大小就等于路程。

  教师适时点拨,画一往复直线运动给学生讨论.

  生:在单方向的直线运动中,位移的大小就等于路程.

  教师总结

  师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小.

  [课堂训练]

  下列关于位移和路程的说法中,正确的是………………( )

  A位移大小和路程不一定相等,所以位移才不等于路程

  B位移的大小等于路程,方向由起点指向终点

  C位移描述物体相对位置的变化,路程描述路径的长短

  D位移描述直线运动,路程描述曲线运动

  答案:C

  解析:A选项表述的因果关系没有意义,故A错.位移的方向可以用从初位置指末位置的有向线段来表示,但位移的大小并不等于路程,往往是位移的大小小于等于路程,故选项B错.位移和路程是两个不同的物理量,位移描述物体位置的变化,路程描述物体运动路径的长短,所以选项C正确.位移的大小和路程不一定相等,只有当物体做单向直线运动时,位移的大小才等于路程.无论是位移还是路程都既可以描述直线运动,也可以描述曲线运动,故选项D也是错误的

  三、矢量和标量

  师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听.

  学生讨论后回答

  生:温度、质量、体积、长度、时间、路程.

  对于讨论中学生可能提出这样的问题,像电流、压强这两个学生学过的物理量,它们是有方向的,但它们仍然是标量.这在以后的学习中会更进一步加深对矢量和标量的认识.

  学生阅读课文后,说说矢量和标量的算法有什么不同.

  生:两个标量相加遵从算术加法的法则.

  [讨论与思考]

  一位同学从操场中心A出发,向北走了40 m,到达C点,然后又向东走了30 m,到达B点.用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移).三个位移的大小各是多少?你能通过这个实例总结出矢量相加的法则吗?

  解析:画图如图1-2-4所示.矢量相加的法则是平行四边形法则.

  [讨论与思考]

  气球升到离地面80m高空时,从气球上掉下一物体,物体又上升了10 m高后才开始下落,规定向上方向为正方向.讨论并回答下列问题,体会矢量的表示方向.

  (1)物体从离开气球开始到落到地面时的位移大小是多少米?方向如何?

  (2)表示物体的位移有几种方式?其他矢量是否都能这样表示?注意体会“+”“-”号在表示方向上的作用.

  解析:(1)一80m,方向竖直向下;(2)到现在有三种:语言表述法,如“位移的大小为80m,方向竖直向下”;矢量图法;“+”“一”号法,如“规定竖直向上为正方向,则物体的位移为一80m”.

  [课堂训练]

  (播放1 500m比赛的录像片断)

  在标准的运动场上将要进行1 500米赛跑,上午9时20分50秒,发令枪响,某运动员从跑道上最内圈的起跑点出发,绕运动场跑了3圈多,到达终点,成绩是4分38秒.请根据上面的信息讨论以下问题,并注意题中有关时间、时刻、路程、位置变化的准确含义.

  (1)该运动员从起跑点到达终点所花的时间是多少?(4分38秒)起跑和到达的时刻分别是多少?(上午9时20分50秒、上午9时25分28秒)

  (2)该运动员跑过的路程是多少?(1 500米)他的位置变化如何?(起跑点到终点的连线)

  四、直线运动的位置和位移

  提出问题:我们怎样用数学的方法描述直线运动的位置和位移?

  如果物体做的是直线运动,运动中的某一时刻对应的是物体处在某一位置,如果是一段时间,对应的是这段时间内物体的位移.

  如图1-2-6所示,物体在时刻t1处于“位置”x1,在时刻t2运动到“位置”x2

  那么(x2- x1)就是物体的“位移”,记为Δx =x2- x1

  可见,要描述直线运动的位置和位移,只需建立一维坐标系,用坐标表示位置,用位置坐标的变化量表示物体位移.

  在一维坐标系中,用正、负表示运动物体位移的方向.如图1-2-7所示汽车A的位移为负值,B的位移则为正值.表明汽车B的位移方向为x轴正向,汽车A的位移方向为x轴负向.

  课后小结

  时间和时刻这两个概念是同学们很容易混淆的,同学们要掌握时间坐标轴.在时间轴上,用点表示时刻,用线段表示一段时间间隔.位移和路程是两个不同的物理量,位移是用来表示质点变动的,它的大小等于运动物体初、末位置间的距离,它的方向是从初位置指向末位置,是矢量;而路程是物体实际运动路径的长度,是标量.只有物体做单向直线运动时,其位移大小才和路程相等,除此以外,物体的位移的大小总是小于路程.找位移的办法是从初位置到末位置间画有向线段.有向线段的方向就是位移的方向,有向线段的长度就是位移的大小.时刻对应位置,时间对应位移.在位置坐标轴上,用点来表示位置,用有向线段来表示位移.

  本节课用到的数学知识和方法:用数轴来表示时间轴和位移轴,在时间轴上,点表示时刻,线段表示时间间隔.要选计时起点(零时刻),计时起点前的时刻为负,计时起点后的时刻为正;在位移轴上,点表示某一时刻的位置,线段表示某段时间内的位移.要选位置参考点(位置零点),直线运动中,可选某一单一方向作为正方向,朝正方向离开参考点的位置都为正,朝负方向离开参考点的位置都为负.位移方向与规定方向相同时为正,相反时为负.标量遵从算术加法的法则,矢量遵从三角形定则(或平行四边形定则,以后会学到,不让学生知道).

  课后习题

  教材第16页问题与练习。

  高中物理教学设计 19

  教学目标:

  一、知识目标:

  1、知道什么是单位制,什么是基本单位,什么是导出单位;

  2、知道力学中的三个基本单位。

  二、能力目标:

  培养学生在计算中采用国际单位,从而使运算过程的书写简化;

  三、德育目标:

  使学生理解建立单位制的重要性,了解单位制的基本思想。

  教学重点:

  1、什么是基本单位,什么是导出单位;

  2、力学中的三个基本单位。

  教学难点:

  统一单位后,计算过程的正确书写。

  教学方法:

  讲练法,归纳法

  教学用具:

  投影仪、投影片

  教学步骤:

  一、导入新课

  前边我们已经学过许多物理量,它们的公式各不相同,并且我们知道,有的是通过有关的公式找到它们之间的联系的:那么各个物理量的单位之间有什么区别?它们又是如何构成单位制的呢?本节课我们就来共同学习这个问题。

  二、新课教学:

  (一)用投影片出示本节课的学习目标:

  1、知道什么是单位制,知道力学中的三个基本单位;

  2、认识单位制在物理计算中的作用。

  (二)学习目标完成过程:

  1、基本单位和导出单位:

  (1)举例:

  a:对于公式,如果位移s的单位用米,时间t的单位用秒;我们既可用公式得到v、s、t之间的数量关系,又能够确定它们单位之间的关系,即可得到速度的单位是米每秒。

  b:用公式F=ma时,当质量用千克做单位,加速度用米每二次方秒做单位,求出的力的单位就是千克米每二次方秒,也就是牛,并且我们也能得到力、质量、加速度之间的数量关系。

  (2)总结推广:

  物理公式在确定物理量的数量的同时,也确定了物理量的单位关系。

  (3)基本单位和导出单位:

  a:在物理学中,我们选定几个物理量的单位作为基本单位;

  b:据物理公式中这个物理量和其他物理量之间的关系,推导出其他物理量的单位,叫导出单位;

  c:举例说明:

  1)我们选定位移的单位米,时间的单位秒,就可以利用推导得到速度的单位米每秒。

  2)再结合公式,就可以推导出加速度的单位:米每二次方秒。

  3)如果再选定质量的单位千克,利用公式F=ma就可以推导出力的单位是牛。

  (4)基本单位和到单位一起构成了单位制。

  (5)学生阅读课文,归纳得到力学中的三个基本单位。

  a:长度的单位——米;

  b:时间的单位——秒;

  c:质量的单位——千克。

  (6)巩固训练:

  现有下列物理量或单位,按下面的要求填空:A:质量;B:N;C:m/s2D:密度;E:m/s;F:kg;G:cm;H:s;I:长度;J:时间。

  1)属于物理量的是。

  2)在国际单位制中作为基本单位的物理量有;

  3)在国际单位制中属于基本单位的有,属于导出单位的有。

  2、例题教学:

  (1)用投影片出示例题:

  一个原来静止的物体,质量是7千克,在14牛的恒力作用下:

  a:5秒末的速度是多大?

  b:5秒内通过的路程是多大?

  (2)分析:

  本题中,物体的受力情况是已知的,需要明确物体的运动情况,物体的初速度v0=0,在恒力的作用下产生恒定的加速度,所以它作初速度为零的匀加速直线运动,已知物体的质量m和所受的力F,据牛顿第二定律F=ma求出加速度a,即可用运动学共识求解得到最终结果。

  (3)学生在胶片上书写解题过程,选取有代表性的过程进行评析:

  已知:m=7kg,F=14N,t=5s

  求:vt和S

  解:

  vt=at=2m/s2×5s=10m/s

  s=at2=×2m/s2×25s2=25m

  (4)评析:刚才这位同学在解答过程中,题中各已知量的单位都是用国际单位表示的,计算的结果也是用国际单位表示的,做的很好。

  引申:既然如此,我们在统一各已知量的单位后,就不必一一写出各物理的单位,只在数字后面写出正确单位就可以了。

  (5)用投影片出示简化后的解题过程:

  (6)巩固训练:

  质量m=200g的物体,测得它的加速度为a=20cm/s2,则关于它所受的合力的大小及单位,下列运算既正确又符合一般运算要求的是。

  A:F=20020=400N;B:F=0.20.2=0.04N:

  C:F=0.20.2=0.04;D:F=0.2kg0.2m/s2=0.04N

  三、小结

  通过本节课的学习,我们知道了什么是导出单位,什么是基本单位,什么是单位制,以及统一单位后,解题过程的正确书写方法。

  四、作业:

  一个物体在光滑的水平面上受到一个恒力的.作用,在0.3秒的时间内,速度从0.2m/s增加到0.4m/s;这个物体受到另一个恒力的作用时,在相同的时间内,速度从0.5m/s增加到0.8m/s,第二个力和第一个力之比是多大?

  五、板书设计:

  五:力学单位制高一物理上学期知识点整理:力学部分

  高一物理上学期知识点整理:力学部分

  第一章..定义:力是物体之间的相互作用。

  理解要点:

  (1)力具有物质性:力不能离开物体而存在。

  说明:①对某一物体而言,可能有一个或多个施力物体。

  ②并非先有施力物体,后有受力物体

  (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

  说明:①相互作用的物体可以直接接触,也可以不接触。

  ②力的大小用测力计测量。

  (3)力具有矢量性:力不仅有大小,也有方向。

  (4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

  (5)力的种类:

  ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

  ②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

  说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

  重力

  定义:由于受到地球的吸引而使物体受到的力叫重力。

  说明:①地球附近的物体都受到重力作用。

  ②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

  ③重力的施力物体是地球。

  ④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

  (1)重力的大小:G=mg

  说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

  ②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

  ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

  (2)重力的方向:竖直向下(即垂直于水平面)

  说明:①在两极与在赤道上的物体,所受重力的方向指向地心。

  ②重力的方向不受其它作用力的影响,与运动状态也没有关系。

  (3)重心:物体所受重力的作用点。

  重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

  ②质量分布不均匀的物体的重心与物体的形状、质量分布有关。

  ③薄板形物体的重心,可用悬挂法确定。

  说明:①物体的重心可在物体上,也可在物体外。

  ②重心的位置与物体所处的位置及放置状态和运动状态无关。

  ③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。

  弹力

  (1)形变:物体的形状或体积的改变,叫做形变。

  说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。

  ②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

  (2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。

  说明:①弹力产生的条件:接触;弹性形变。

  ②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。

  ③弹力必须产生在同时形变的两物体间。

  ④弹力与弹性形变同时产生同时消失。

  (3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

  几种典型的产生弹力的理想模型:

  ①轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。

  ②点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。

  ③平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

  (4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。

  摩擦力

  (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:①摩擦力的产生是由于物体表面不光滑造成的。

  ②摩擦力具有相互性。

  ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。

  ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

  说明:①“与相对运动方向相反”不能等同于“与运动方向相反”

  ②滑动摩擦力可能起动力作用,也可能起阻力作用。

  ⅲ滑动摩擦力的大小:F=μFN

  说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

  ②μ与接触面的材料、接触面的粗糙程度有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

  ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

  (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

  说明:静摩擦力的作用具有相互性。

  ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。

  ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

  说明:①运动的物体可以受到静摩擦力的作用。

  ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

  ③静摩擦力可以是阻力也可以是动力。

  ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。

  说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

  ②最大静摩擦力大小决定于正压力与最大静摩擦因数(选学)Fm=μsFN。

  ⅳ效果:总是阻碍物体间的相对运动的趋势。

  对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:

  1.根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。

  2.把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

  3.对物体受力分析时,应注意一下几点:

  (1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

  (2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。

  (3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

  力的合成

  求几个共点力的合力,叫做力的合成。

  (1)力是矢量,其合成与分解都遵循平行四边形定则。

  (2)一条直线上两力合成,在规定正方向后,可利用代数运算。

  (3)互成角度共点力互成的分析

  ①两个力合力的取值范围是|F1-F2|≤F≤F1+F2

  ②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。

  ③同时作用在同一物体上的共点力才能合成(同时性和同体性)。

  ④合力可能比分力大,也可能比分力小,也可能等于某一个分力。

  力的分解

  求一个已知力的分力叫做力的分解。

  (1)力的分解是力的合成的逆运算,同样遵循平行四边形定则。

  (2)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解。

  要得到唯一确定的解应附加一些条件:

  ①已知合力和两分力的方向,可求得两分力的大小。

  ②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。

  ③已知合力、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小:

  若F1=Fsinθ或F1≥F有一组解

  若F>F1>Fsinθ有两组解

  若F<Fsinθ无解

  (3)在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。

  (4)力分解的解题思路

  力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题。因此其解题思路可表示为:

  必须注意:把一个力分解成两个力,仅是一种等效替代关系,不能认为在这两个分力方向上有两个施力物体。

  矢量与标量

  既要由大小,又要由方向来确定的物理量叫矢量;

  只有大小没有方向的物理量叫标量

  矢量由平行四边形定则运算;标量用代数方法运算。

  一条直线上的矢量在规定了正方向后,可用正负号表示其方向。

  思维升华——规律方法思路

  一、物体受力分析的基本思路和方法

  物体的受力情况不同,物体可处于不同的运动状态,要研究物体的运动,必须分析物体的受力情况,正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。

  分析物体的受力情况,主要是根据力的概念,从物体的运动状态及其与周围物体的接触情况来考虑。具体的方法是:

  1.确定研究对象,找出所有施力物体

  确定所研究的物体,找出周围对它施力的物体,得出研究对象的受力情况。

  (1)如果所研究的物体为A,与A接触的物体有B、C、D……就应该找出“B对A”、“C对A”、“D对A”、的作用力等,不能把“A对B”、“A对C”等的作用力也作为A的受力;

  (2)不能把作用在其它物体上的力,错误的认为可通过“力的传递”而作用在研究的对象上;

  (3)物体受到的每个力的作用,都要找到施力物体;

  (4)分析出物体的受力情况后,要检查能否使研究对象处于题目所给出的运动状态(静止或加速等),否则会发生多力或漏力现象。

  2.按步骤分析物体受力

  为了防止出现多力或漏力现象,分析物体受力情况通常按如下步骤进行:

  (1)先分析物体受重力。

  (2)其研究对象与周围物体有接触,则分析弹力或摩擦力,依次对每个接触面(点)分析,若有挤压则有弹力,若还有相对运动或相对运动趋势,则有摩擦力。

  (3)其它外力,如是否有牵引力、电场力、磁场力等。

  3.画出物体力的示意图

  (1)在作物体受力示意图时,物体所受的某个力和这个力的分力,不能重复的列为物体的受力,力的合成与分解过程是合力与分力的等效替代过程,合力和分力不能同时认为是物体所受的力。

  (2)作物体是力的示意图时,要用字母代号标出物体所受的每一个力。

  二、力的正交分解法

  在处理力的合成和分解的复杂问题上的一种简便的方法:正交分解法。

  正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。

  力的正交分解法步骤如下:

  (1)正确选定直角坐标系。通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。

  (2)分别将各个力投影到坐标轴上。分别求x轴和y轴上各力的投影合力Fx和Fy,其中:

  Fx=F1x+F2x+F3x+……;Fy=F1y+F2y+F3y+……

  注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。第2章的高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量

  1、加速度a与速度V的关系符合下式:V==at,t为时间变量,我们有

  a==V/t

  表明,加速度a,就是速度V在单位时间内的平均变化率。

  2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)

  数学知识指出,k是特定直线y=kx的斜率,直线斜率有如下性质:

  (1)不同直线(彼此不平行)的斜率,数值不等

  (2)同一直线上斜率的数值,处处相等(与y和x的数值无关)

  (3)直线斜率的数值,可以通过y和x的数值来求算:

  k==y/x

  (4)虽然k==y/x,但是,y==0,x==0,k不为零。

  仿此,(1)不同运动的加速度,数值不等

  (2)同一运动的加速度数值,处处相等(与V和t的数值无关)

  (3)运动的加速度数值,可以通过V和t的数值来求算:

  ==V/t

  (4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。

  .变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?

  变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。

  加速度在与速度方向在同一条直线上时才改变速度的大小,有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。

  刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)

  15米/秒加速度是5米/二次方秒那么停止需要3秒钟

  3秒通过的路程是s=15*3-1/2*5*3^2=22.5

  反应时间是0.8秒s=0.8*15=12

  总的距离就是22.5+12=34.5

  原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。

  要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。

  速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。

  加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。

  对比上面速度与加速度的概念,你就会容易理解一点的。

《高中物理教学设计(精选19篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【高中物理教学设计】相关文章:

高中物理教学设计08-15

高中物理教学设计03-26

高中物理教学设计09-16

高中物理教学设计11-15

高中物理教学设计思考07-26

高中物理教学设计模板03-13

高中物理《电荷》教学设计08-07

高中物理《宇宙航行》教学设计03-08

高中物理教学设计(15篇)10-10

论文-AI自动生成器

万字论文 一键生成

输入题目 一键搞定毕业范文模板
AI原创 低重复率 附赠査重报告

点击生成
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

高中物理教学设计(精选19篇)

  作为一名教师,常常需要准备教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的高中物理教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

高中物理教学设计(精选19篇)

  高中物理教学设计 1

  教学目标:

  1、知识与技能

  (1)解释速度的概念,能够概括速度的定义、公式、符号、单位和物理意义。

  (2)解释平均速度、瞬时速度的定义并学会辨析。

  (3)能够说出速率的概念并辨认速度与速率。

  2、过程与方法

  (1)在概念转变的教学过程中形成全面、正确的关于速度的概念。

  (2)通过平均速度引出瞬时速度的过程,锻炼使用极限思维。

  (3)通过对平均速度与瞬时速度、速度与速率的区别和分辨,学会运用辨析的方法。

  3、情感态度与价值观

  (1)对速度全面正确地解释来积极培育自身科学严谨的态度。

  (2)积极将自己的观点及见解与老师、同学进行交流。

  (3)通过本节课的学习尝试体会物理学中蕴含的对立统一。

  课型:

  新授课

  课时:

  一课时

  学情分析:

  一般而言,高一学生在经历了初中阶段的学习后,思维能力得到了较好的发展,抽象逻辑思维逐渐取代形象思维占据主要地位、学生的一般特征主要表现为以下几个方面:

  (1)学生能够按照探究性学习的过程利用假设思维进行学习;

  (2)学生在学习过程中自我调控能力得到了进一步加强,学习过程更加具有目的性;

  (3)在某种程度下学生思维不再是“抱残守缺”,而是较为容易接受新事物;

  (4)学生学习动机由兴趣支撑逐渐转变为由意志支撑,学习的目的性更加明确;

  (5)学生之间的交流对于学生学习具有一定的影响、

  关于“速度”的学习,学生在初中阶段科学学科中所接受的定义是,单位时间内通过的路程、这与高中对于“速度”的定义截然不同,学生虽然通过初中阶段的学习具备了一定的基础,但这个基础里大部分仍然是迷思概念、如何将初中阶段所接受到的关于“速度”的迷思概念转变为科学概念,达到一个新的认知平衡是本节课的一条主线、同时也应该认识到学生在初中阶段的'学习以及前面关于“位移”、“路程”的学习为本节课奠定了一个很好的基础。

  本节课可能存在的问题有两个,一是学生根据初中阶段的学习积累对于“速度”难以产生正确、客观的认识,其中所存在的迷思概念需要在教学过程中进行转变;二是学生对于“平均速度”、“瞬时速度”两个概念可能会有所混淆,教师应该利用课堂呈现的问题情境引导学生进行有效区分。

  教学重点:

  速度的概念,由平均速度通过极限的思维方法引出瞬时速度。

  教学难点:

  对瞬时速度的理解,怎样由平均速度引出瞬时速度。

  教学方法:

  问题情境引入、探测已有概念、产生认知冲突、解构迷思概念和建构科学概念、形成新的认知平衡。

  教学过程:

  引入:速度的二段式测验3道题,情境引入,激发学生产生冲突。

  (一)速度

  “速度”的引入:运动会上,要比较哪位运动员跑得快,可以用什么方法?通过相同的位移比较时间的长短。若运动的时间是相等的,我们可以根据位移的大小来比较。如果运动的位移、所用的时间都不一样,又如何比较呢?

  在物理学中,我们引入速度这个物理量来描述物体运动的快慢。

  1、定义:位移Δx与发生这个位移所用时间Δt的比值(比值定义法)。

  描述物体运动快慢的物理量。

  2、国际单位:m/s或m·s—1,其他单位:km/h等

  3、速度是矢量,方向与运动方向相同。

  在匀速直线运动中,速度保持不变。如果物体做变速直线运动,速度的大小不断改变,根据求得的则表示物体在Δt时间内的平均快慢程度,称为平均速度。

  (二)平均速度和瞬时速度

  1、平均速度

  ⑴公式:

  ⑵平均速度是矢量,方向即位移的方向。

  对于变速直线运动,各段的平均速度一般并不相同,求平均速度必须指明“哪段时间”或“哪段位移”。

  ⑶求平均速度必须指明“哪段时间”或“哪段位移”。

  过渡:平均速度只能粗略的描述物体运动的快慢,为了精确地描述做变速直线运动的物体运动的快慢,我们可以将时间Δt取得非常小,接近于零,这是求得的速度值就应该是物体在这一瞬时的速度,称为瞬时速度。

  2、瞬时速度

  ⑴定义:物体在某一时刻(或某一瞬间)的速度。

  ⑵瞬时速度简称速度,方向为物体的运动方向。

  在日常生活中,人们对“速度”这一概念并不一定明确指出是“平均速度”还是“瞬时速度”,我们应根据上下文去判断。“平均速度”对应的是一段时间,“瞬时速度”对应的是某一时刻。

  3、瞬时速率:瞬时速度的大小,简称速率。

  例:课本P16汽车速度计上指针所指的刻度是汽车的瞬时速率。

  (三)平均速率:物体运动的路程与所用时间的比值。

  与“平均速度的大小”完全不同。

  例1:下列对各种速率和速度的说法中,正确的是()

  A、平均速率就是平均速度

  B、瞬时速率是指瞬时速度的大小

  C、匀速直线运动中任意一段时间内的平均速度都等于其任一时刻的瞬时速度

  D、匀速直线运动中任何一段时间内的平均速度都相等

  例2:一辆汽车沿平直的公路行驶,⑴若前一半位移的平均速度是v1,后一半位移的平均速度是v2,求全部路程的平均速度;⑵若汽车前一半时间的平均速度是v1,后一半时间的平均速度是v2,求全部路程的平均速度。

  总结:平均速度不是速度的平均值,应严格按照定义来计算。

  例3:人乘自动扶梯上楼,如果人站在扶梯上不动,扶梯将人送上楼去需用30s。若扶梯不动,某人沿扶梯走到楼上需20s。试计算这个人在扶梯开动的情况下仍以原来的速度向上走,需要多长时间才能到楼上?(12s)

  作业:

  必做:p18—1、2、3、4

  选做:新新学案第一章第三节

  高中物理教学设计 2

  教学目标

  知识目标

  了解超导体以及超导体在现代科学技术中的应用、

  能力目标

  通过超导体知识的学习,扩展知识面、

  情感目标

  知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神。

  教学建议

  教材分析

  教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识、进一步讲解超导的优点、缺点和目前科学家面临的问题。

  教法建议

  本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际。

  可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习。

  也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力。

  教学设计方案

  方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益?

  方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法、实例如下

  实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向。

  【板书设计】

  1、超导体概念超导现象

  2、超导体的'优缺点

  3、我国的超导体的研究

  探究活动

  【课题】

  超导现象的历史

  【组织形式】

  个人或学习小组

  【活动流程】

  制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作。

  【参考方案】

  1、尝试总结超导体的发展现况。

  2、讨论超导体的未来发展趋势。

  【资料来源】

  1、图书馆、互联网查找资料。

  2、交流,发现共性和差异。

  高中物理教学设计 3

  一、教学目标

  知识与技能:

  1、初步了解做功与能量变化的关系。

  2、知道做功的两个要素,理解功的概念,正确应用功的公式计算。

  3、知道功是标量,正确理解正功和负功的本质含义。

  4、知道总功的两种计算方法。过程与方法:

  1、通过推导功的公式,让学生体会由特殊到一般,再由一般到特殊的研究方法,培养学生的逻辑推理能力和科学论证能力。

  2、通过求解分力做功、总功和变力做功等问题,让学生在熟练掌握公式的同时,初步接受“微元法”处理问题的思想。

  情感、态度与价值观:

  1、通过分析日常生活中的物理现象,让学生体会物理与生活、生产、科技的密切联系,激发学生的学习兴趣。

  2、工作、学习都要讲效率,“正功”“负功”可以促使学生的勤奋向上思想意识,合作式学习可以培养学生善于发表见解的意识和与他人交流的愿望。

  二、教学重点、难点

  重点:明确引入功的物理定义,掌握功的概念和功的计算公式。

  难点:

  1、理解功的公式的使用条件,体会处理变力功的思想方法。

  2、理解正功与负功的含义,体会功是标量。

  三、课前准备

  PPt课件、小钢球、纸巾

  四、教学过程

  (一)情境导入

  在上课之前我请同学们和我一起完成一个小实验,有请两位同学。教师将小钢球放在纸巾上,小钢球静止。教师将小钢球举高,请同学们观察小钢球落下后纸巾有无损坏。

  通过这个实验,同学们受到什么启发?

  被举高的物理具有穿过纸张的能力,也就是具有了能量。

  实际上人们在研究能量的过程中往往涉及到做功,这节课我们来看第七章第二节功。

  (二)功的定义

  1、功的两个要素

  在刚才的例子当中,同学们说我将小球举高了,我对小球做了功,你是怎么知道的?因为我对小球有力,并且向上移动了一段距离。那么,在生活当中你还能不能举出做功的例子?

  对学生所举例子进行分析,都有两点值得注意,一个是存在力的作用,还有就是一定要发生一段位移。显然这是做功不可缺少的两个因素。那么有力有位移,这个力就一定对物体做功吗?显然不是,而应该在力的方向上存在位移。那么我们就得到了做功的两个要素:力和力方向上的位移。

  2、功的定义式刚才的这些例子当中,都存在做功过程,那么究竟力对物体做了多少功?你能不能计算出来?实际上在初中我们已经知道了,当力和位移同方向时功的计算。(展示ppt),一个质量为m的物体,受到力F的作用并向前移动了s,这个力对物体做的功W=Fs。如果情况变化一下,力F与s不在一条直线上,你会不会求这个力所做的功呢?请同学们尝试着回答。

  方法有两个,一是分解力,二是分解位移。无论哪种方法,得到的结果都是一样的,W=Fscosa。有了这个公式,我请同学们帮我计算一个问题。我现在用100N的力水平踢一个足球,踢了一脚之后足球水平向前滚动了50m,求我对球做的功等于多少?请同学们回答。

  显然这个情况不能用这个公式计算,要想脚对球一直存在作用力,那你这个脚得跟着球向前走50m。所以应用公式要注意:(1)F、s要对应,即在s中要一直都有力的作用

  再请同学们观察这个表达式,你还注意到了什么?引出cosa有正有负,那么功是标量还是矢量?是标量那功的正负表示什么呢?实际功的正负既不表示方向,也不表示大小。如果力对物体做了正功,表示这个力是个动力,如果是负功则是阻力。(换句话说,如果力做了正功,那表示有能量转移到这个物体上来,反之做了负功就表示有能量从这个物体中转移出去。)

  那在我们的例子当中,这些力是什么样的力?细心观察你会发现都是恒力,这个公式仅适用于恒力做功,变力做功不能用它。当然如果在过程中物体受到阶段性变化的力,每个阶段都是恒力,那自然我们可以将过程分段处理,每一段又都变成恒力了,最后再把各个阶段所做的功代数求和即可。

  (三)合力的功

  如果在某一个过程中物体受到多个力的作用,那么这些力的合力做了多少功又怎么求呢?请同学们回答。方法有两个:

  1、先求各个力的功,再取代数和。

  2、先求合力,再求合力所做的功。比如,光滑水平面上有一个物体受到水平面内相互垂直的两个力,物体发生5m的位移,求各个力做的功、合力所做的功?

  (四)几种可以转化成恒力的变力做功问题

  这是我们这节课介绍的有关恒力做功的计算方法,实际上除了刚才所说的.阶段性的变力可以转化成恒力来计算做功,还有两种情况我们也可以处理。当力与速度始终同向,而速度方向不断变化时,你会不会计算这个力所做的功呢?引导学生学会用微分的方法处理。

  另外如果力方向不变,大小随位移线性变化,我们也可以处理。比如一个弹簧处于原长放在光滑的水平面上,一端固定。用一个力缓慢地拉物体,那么这个力做了多少功呢?在学习匀变速直线运动时,如果初速度是零,末速度是v,它和速度是v/2的匀速直线运动是等效的,我们就用这个平均速度替换掉了这个变化的速度。现在你能不能受到这个例子的启发?我们也可以用一个平均的力替换掉这个变化的力,我们说这是方向不变,大小随位移线性变化的力,它的平均值刚好我们会求,那么这个例子中拉力和弹簧的弹力所做的功就等于kx/2与x的乘积。

  五、课堂小结

  这节课我们从特殊的情况入手,得到了一般情况下恒力做功的定义式,知道了合力做功的计算方法以及几种能够转变成恒力的变力做功的计算方法,初步体会到了做功与能量变化之间的关系。在接下来的学习中我们会进一步的探讨两者之间的关系。

  六、板书设计

  7.2功

  一功的定义

  二合力的功

  1功的两个要素

  1先求各个力的功,再取代数和力和力方向上的位移

  高中物理教学设计 4

  教学目标:

  1、理解什么是自由落体运动,知道它是初速度为零的匀加速直线运动。

  2、知道什么是自由落体的加速度,知道它的方向,知道在地球的不同地方,重力加速度大小不同。

  3、掌握自由落体运动的规律。

  教学重点

  掌握自由落体运动的规律

  教学难点

  通过实验得出自由落体运动的规律

  教学方法

  实验现象+合力推理+实验验证

  教学用具

  用薄纸糊一纸袋、两小钢球、抽气机、牛顿管、有关知识的投影片

  课时安排

  1课时

  教学步骤

  一、导入新课

  1、复习:什么是匀变速直线运动,其速度公式、位移公式分别是什么?

  2、导入:同学们,我们通常有这样的生活经验:重的物体比轻的物体落得快,物体下落的速度到底与物体的质量有没有关系呢?我们这节课就来研究这个问题。

  二、新课教学

  演示实验:让一个纸袋与小钢球同时自由下落,可看到什么现象?

  学生:钢球落得快。

  老师:对,这就是我们的生活经验,这也是公元前希腊的哲学家亚里斯多德的观点。这个观点使人们在错误的结论下走的XX多年。同学们听说过伽利略的两个铁球同时落地的故事吗?伽利略做过大量的由静止下落的实验,并且还用归谬法、数学图利都证明了亚里斯多德的观点是错误的。同学下去看课后阅读材料,伽利略为了证明亚里斯多德观点的错误,他就拿了一个质量是另一个质量10倍的铁球站在比萨斜塔上,使两铁球同时下落,结果两铁球几乎同时落地。

  且再看实验:把刚才的纸袋揉成团,和小钢球由静止同时下落,同学再观察:

  学生:几乎同时落地。

  师:同一个纸袋,为什么形状不一样,其下落时间就不一样呢?

  学生:这是因为空气的阻力的影响。把纸袋揉成团,所受空气的`阻力要比纸袋所受空气的阻力小得多,所以与小钢球几乎同时落地。

  老师:如果真的把质量、形状不同的物体放在真空中,从同一高度自由下落,和伽利略的结论一样吗?

  演示:把事先抽成真空(空气相当稀薄)的牛顿管拿出来,让牛顿管中的硬币、鸡毛、纸片、粉笔头从静止一起下落。

  学生:同时落下。

  演示:把小钢球装进纸袋,与另一个小钢球同时下落。

  现象:同时落地。

  老师:这就是自由落体运动。同学们根据这些过程、结论,给其下一个定义。

  学生回答:

  在真空中物体只受重力,或者在空气中,物体所受空气阻力很小,和物体重力相比可忽略的条件下,物体从静止竖直下落。

  1、自由落体运动

  板书:自由落体运动:物体只在重力的作用下从静止开始下落的运动。

  2、自由落体运动的加速度

  距我们三百多年前的伽利略经过大量的实验、严密的数学推理、得出:自由落是初速度为零的匀加速直线运动。

  高中物理教学设计 5

  教材分析

  本节重点讲述了人造卫星的发射原理,推导了第一宇宙速度,并介绍了第二、第三宇宙速度。人造卫星是万有引力定律在天文学上应用的一个非常重要实例,是人类征服自然的见证,体现了知识的力量,是学生学习了解现代科技知识的一个极好素材。教材不但介绍了人造卫星中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。学生通过行星的运动一节已经知道了行星的运动规律,因此在分析人造卫星的运动学特点,和动力学特点可采取类比的方法,近而进一步理解应用万有引力定律分析天体运动的方法。因此,本节课是“万有引力定律与航天”中的重点内容,是学生进一步学习、研究、探索天体物理问题的理论基础。另外,学生通过对人类在宇宙航行领域中的伟大成就及我国在航天领域成就的了解,增强学生的民族自信心和自豪感。

  学情分析

  学生已掌握了运动的合成与分解、牛顿运动定律、圆周运动等章节的理论。并在本章之前学习了天体的运动,和万有引力定律的知识,能运用万有引力定律揭示一些天体运动的特点。学生可以类比行星运动的特点原理自己分析人造卫星的规律。另外学生也可以利用前面的知识和对宇宙奥秘的好奇心来探索人造卫星的发射及宇宙速度。学生可以通过联想上一章所学的对平抛物体的运动的处理方法来探究牛顿的思考,以地心为参考系平抛出去的物体从空间运动效果上可分解为指向地心的自由落体运动和绕地心的匀速圆周运动。而这两个分运动都是变速度运动,它们都需要一个指向地心的力来维持它们各自的运动状态。因此万有引力就有要改变两个运动状态的效果,即要既要产生自由落体加速度又要产生向加速度。当万有引力只能提供向心力时,自由落体加速度就变成零,这样平抛出去的物体就落不下来了,从而得到第一宇宙速度。再根据圆周运动和机械运动的知识可知道速度再大一些会做椭圆运动或摆脱地球对它的约束。这样,人们就可以到更远的地方去探索宇宙的奥秘了……

  教学目标

  知识与技能

  1.了解人造卫星的有关知识

  2.分析人造卫星的运动规律

  3.掌握三个宇宙速度的物理意义,

  4.会推导第一宇宙速度;

  5.简单了解航天发展史;

  6.能用所学知识求解卫星基本问题。

  过程与方法

  1.培养学生观察数据分析数据的能力;

  2.培养学生科学推理、探索能力;

  3.培养学生在处理实际问题时,如何 构建物理模型的能力;

  4.学习科学的思维方法培养学生归纳、分析和推导及合理表达能力。

  情感态度与价值观

  介绍世界及我国航天事业的发展现状,激发学习科学,热爱科学的激情,增强民族自信心和自豪感。

  教学重点

  卫星运行的动力学特点规律,第一宇宙速度的推导。

  教学难点:

  1.卫星的运行速度与发射速度的区别;

  2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度

  教学过程

  新课引入

  教师:仰望星空,浩瀚的宇宙苍穹给人以无限遐想,千百年来,人类一直向往能插上翅膀飞出地球,去探索宇宙的奥秘,李白的“俱怀逸兴壮思飞,欲上青天揽明月”是怎样的一种豪情?到今天这一梦想实现了吗?

  学生:实现了。(激起学生兴趣)

  教师:世界上第一颗人造卫星的发射,揭开了人类探索宇宙的新篇章。

  提问(1):

  1.世界上第一颗人造卫星是哪一年由哪一国家发射的?

  2.我国哪一年发射了自己的人造卫星?

  3.迄今我国共发射了多少颗人造卫星?

  教师:从1970年4月24日东方红一号的成功发射,到2007年10月24日嫦娥一号发射

  我国发射人造卫星和其他探测器60多个,他们分别在通信,气象,探测,导航等多个领域发挥着重要作用。

  引入新课。

  一、人造卫星规律的探究

  教师:现在我们地球上空有这么多卫星,他们运行的速度一样吗?他们是怎样被发射升空的今天我们就通过的学习来解决这一问题。

  教师:这是我国目前发射的部分卫星的运行规律的数据。

  提问观察数据思考:

  1.不同卫星的其运行轨道相同吗?

  2.不同的卫星运行时有什么规律?

  3.你能试着用你学过的知识解释为什么有这样的规律吗?

  卫星名称 卫星质量(kg) 轨道近地点(km) 轨道远地点(km) 运行周期(h)

  返回型遥感卫星 2100 205 315 1.48

  东方红2号甲通信卫星 441 35786 35863 23.9

  东方红2号试验通信卫星 461 35469 35782 23.76

  返回型遥感卫星 2100 175 400 1.5

  风云1号A 750 900 901 1.7

  巴达尔1 50 210 992 1.57

  大气1号 873 900 1.712

  学生:

  1.观察数据,发现规律。

  2.合作交流,类比行星运动特点分析人造卫星的运行特点。

  3.试着从力和运动的角度分析问题。

  教师引导学生发现。

  人造卫星运行特点运动学特点:(板书)

  1.轨迹:椭圆 有的近似为圆

  2.人造卫星的半径不同,其运行的周期也不同,而且半径越大,其周期越大。

  3.类比行星运动分析原因,卫星围绕地球作匀速圆周运动,需要向心力。

  地球和卫星之间的引力提供向心力。

  4.学生自己应用前面万有引力知识分析

  卫星与地球间的万有引力提供了向心力(板书)

  (1)由 得 ,

  ∴r越大,v越小.

  (2)由 得 ,

  ∴r越大, 越小.

  (3)由 得 ,

  ∴r越大,T越大

  教师小结:卫星绕地运转轨道半径越大,速度越小、角速度越小、周期越大;(板书)

  演示课件:几颗不同轨道卫星同时绕地运行动画,从而直观判断以上变化关系

  二、应用知识解决问题

  教师:学习了卫星的相关知识,我判断一下下列几种轨道哪一种是可能的为什么?

  思考问题1:

  下图中,有三颗人造地球卫星围绕地球运动,它们运行的轨道

  可能是 ,不可能是 。

  学生:分组讨论阐述观点

  教师:结合学生讨论引导学生从动力学角度解决问题。

  卫星近似做匀速圆周运动,需要向心力,且向心力时刻指向圆心。所以地球与卫星之间指向地心的万有引力提供向心力,所以卫星作圆周运动的圆心应该是地心。

  思考问题2:

  如图所示,a、b、c是在地球大气层外圆形轨道上运动的3颗卫星,

  1.试比较三颗卫星的线速度、角速度、加速度、周期,万有引力的关系。

  2.如果c 的速度增加,能否与同轨道的b相撞。

  三、卫星发射原理

  教师:过渡:不同的轨道的卫星其速度不同,那人类是怎样将卫星发送到指定轨道上的呢?

  介绍牛顿的卫星设想(FLASH)

  教师引导:我们抛一物体怎样才能抛的远?

  讨论:依据平抛运动学生知道:速度越大,越远,那速度足够大,又有什么现象?

  学生探讨:统一结论:不落回地球。

  教师总结:这时由于有引力在,卫星想落回地面,但有一定的速度又落不回地面就形成了卫星?

  思考:物体需要多大的发射速度,才能刚好贴着地面转?

  学生讨论

  教师点拨:这时(r=R)

  学生

  得出第一宇宙速度7.9 km/s

  四、宇宙速度

  1.第一宇宙速度7.9 km/s

  定义:人造卫星在地面附近绕地球作匀速圆周运动所必须具有的.速度。

  思考:发射什么样的卫星最容易?

  统一结论:高轨道发射卫星比低轨道发射卫星困难,原因是高轨道发射卫星时火箭要克服地球对它的引力做更多的功。

  以第一宇宙速度发射卫星时其刚好能在地球表面附近作匀速圆周运动;如果卫星的速度小于第一宇宙速度,卫星将落到地面而不能绕地球运转;

  进入半径越大的轨道,所需要的发射V 越大。

  思考:这与刚才得出的半径越大的轨道,所需要的 运行速度V 越小矛盾吗?

  讨论:

  人造卫星的发射速度与运行速度是两个不同的概念。

  (1)发射速度

  所谓发射速度是指被发射物在地面附近离开发射装置时的初速度,并且一旦发射后就再无能量补充,被发射物仅依靠自己的初动能克服地球引力上升一定的高度,进入运动轨道。要发射一颗人造地球卫星,发射速度不能小于第一宇宙速度。若发射速度等于第一宇宙速度,卫星只能“贴着”地面近地运行。如果要使人造卫星在距地面较高的轨道上运行,就必须使发射速度大于第一宇宙速度。

  (2)运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动的线速度。当卫星“贴着”地面运行时,运行速度等于第一宇宙速度。根据 可知,人造卫星距地面越高(即轨道半径r越大),运行速度越小。实际上,由于人造卫星的轨道半径都大于地球半径,所以卫星的实际运行速度一定小于发射速度。

  (板书)运行速度 指卫星在稳定的轨道上绕地球转动的线速度

  发射速度 指被发射物体离开地面时的水平初速度

  类比得出:

  (板书)2.第二宇宙速度(脱离速度):

  ①意义:使卫星挣脱地球的引力束缚,成为绕太阳运行的人造行星的最小发射速度。[Ks5u.com]

  ②如果人造天体的速度大于11.2km/s而小于16.7km/s,则它的运行轨道相对于太阳将是椭圆,太阳就成为该椭圆轨道的一个焦点。

  (板书)3.第三宇宙速度(逃逸速度):

  ①意义:使卫星挣脱太阳引力束缚的最小发射速度。

  ②如果人造天体具有这样的速度并沿着地球绕太阳的公转方向发射时,就可以摆脱地球和太阳引力的束缚而邀游太空了。

  这个速度目前能做到吗?教师介绍以第三速度发射的探测器,先驱者一号。

  教师小结:只有你想不到的,没有你做不到的。

  随着科学技术的发展,我们探测太空的脚步会越走越快,越走越远。也许有一天我们也能到其它星球旅游定居。

  但是今天我们就必须掌握一些必备知识。也就是我们这节课的重点。

  分层练习:

  C类

  1.关于第一宇宙速度,下面说法:①它是人造卫星绕地球飞行的最小速度;②它是发射人造卫星进入近地圆轨道的最小速度;③它是人造卫星绕地球飞行的最大速度;④它是发射人造卫星进入近地圆轨道的最大速度。以上说法中正确的有( )

  A.①② B.②③ C.①④ D.③④

  B类

  2.对于绕地球做匀速圆周运动的人造地球卫星,下列说法正确的是( )

  A.人造地球卫星的实际绕行速率一定大于7.9km/s

  B.从卫星上释放的物体将作平抛运动

  C.在卫星上可以用天平称物体的质量

  D.我国第一颗人造地球卫星(周期是6.84×103s)离地面高度比地球同步卫星离地面高度小

  A类

  3.三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC 。若在某一时刻,它们正好运行到同一条直线上,如图所示。那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是( )

  高中物理教学设计 6

  教学目标

  知识目标 了解超导体以及超导体在现代科学技术中的应用.

  能力目标 通过超导体知识的学习,扩展知识面.

  情感目标 知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神.

  教学建议

  教材分析 教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识.

  进一步讲解超导的优点、缺点和目前科学家面临的问题.

  教法建议 本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际.

  可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习.

  也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力.

  教学设计方案

  【教学过程设计】

  方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益?

  方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下

  实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向.

  【板书设计】

  1.超导体 概念 超导现象

  2.超导体的优缺点

  3. 我国的.超导体的研究

  探究活动

  【课题】超导现象的历史

  【组织形式】个人或学习小组

  【活动流程】 制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作.

  【参考方案】

  1、尝试总结超导体的发展现况.

  2、讨论超导体的未来发展趋势.

  【资料来源】

  1、图书馆、互联网查找资料.

  2、交流,发现共性和差异.

  高中物理教学设计 7

  教学目标

  (一)知识与技能

  1、掌握楞次定律的内容,能运用楞次定律判断感应电流方向。

  2、培养观察实验的能力以及对实验现象分析、归纳、总结的能力。

  3、能够熟练应用楞次定律判断感应电流的方向

  4、掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。

  (二)过程与方法

  1、通过实践活动,观察得到的实验现象,再通过分析论证,归纳总结得出结论。

  2、通过应用楞次定律判断感应电流的方向,培养学生应用物理规律解决实际问题的能力。

  (三)情感、态度与价值观

  在本节课的学习中,同学们直接参与物理规律的发现过程,体验了一次自然规律发现过程中的乐趣和美的享受,并在头脑中进一步强化“实践是检验真理的唯一标准”这一辩证唯物主义观点。

  教学重点

  1、楞次定律的获得及理解。

  2、应用楞次定律判断感应电流的方向。

  3、利用右手定则判断导体切割磁感线时感应电流的方向。

  教学难点

  楞次定律的理解及实际应用。

  教学方法

  发现法,讲练结合法

  教学用具:

  干电池、灵敏电流表、外标有明确绕向的大线圈、条形磁铁、导线。

  教学过程

  (一)引入新课

  教师:[演示]按下图将磁铁从线圈中插入和拔出,引导学生观察现象,提出:

  ①为什么在线圈内有电流?

  ②插入和拔出磁铁时,电流方向一样吗?为什么?

  ③怎样才能判断感应电流的方向呢?

  本节我们就来学习感应电流方向的判断方法。

  (二)进行新课

  1、楞次定律

  教师:让我们一起进行下面的实验。(利用CAI课件,屏幕上打出实验内容)

  [实验目的]研究感应电流方向的判定规律。

  [实验步骤]

  (1)按右图连接电路,闭合开关,记录下G中流入电流方向与电流表G中指针偏转方向的关系。(如电流从左接线柱流入,指针向右偏还是向左偏?)

  (2)记下线圈绕向,将线圈和灵敏电流计构成通路。

  (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈中拔出,每次记下电流表中指针偏转方向,然后根据步骤(1)结论,判定出感应电流方向,从而可确定感应电流的磁场方向。

  根据实验结果,填表:

  磁铁运动情况N极下插N极上拔S极下插S极上拔磁铁产生磁场方向线圈磁通量变化感应电流磁场方向

  教师:N极向下插入线圈中,磁铁在线圈中产生的磁场方向如何?

  教师:再把该磁铁从线圈中拔出时,磁铁在线圈中产生的磁场方向如何?

  教师:S极向下插入线圈中,情况怎样呢?

  教师:再把S极从线圈中拔出时,情况如何?

  教师:通过上面的实验,同学们发现了什么?

  教师:刚才几位同学的说法都正确。物理学家楞次概括了各种实验结果,在1834年提出了感应电流方向的判定方法,这就是楞次定律。投影打出楞次定律的内容。

  [投影]

  感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律。

  (师生共同活动:理解楞次定律的内涵)

  (1)“阻碍”并不是“阻止”,一字之差,相去甚远。要知道原磁场是主动的,感应电流的磁场是被动的,原磁通仍要发生变化,感应电流的磁场只是起阻碍变化而已。

  (2)楞次定律判断感应电流的方向具有普遍意义。

  教师:楞次定律符合能量守恒。从上面的实验可以发现:感应电流在闭合电路中要消耗能量,在磁体靠近(或远离)线圈过程中,都要克服电磁力做功,克服电磁力做功的过程就是将其他形式的能转化为电能的过程。

  楞次定律也符合唯物辩证法。唯物辩证法认为:“矛盾是事物发展的动力”。电磁感应中,矛盾双方即条形磁铁的磁场(B原)和感应电流的磁场(B感),两者都处于同一线圈中,且感应电流的.磁场总要阻碍原磁场的变化,形成既相互排斥又相互依赖的矛盾,在回路中对立统一,正是“阻碍”的形成产生了电磁感应现象。

  2、楞次定律的应用

  教师:[投影]应用楞次定律判断感应电流方向的基本步骤:

  (1)明确原磁场的方向。

  (2)明确穿过闭合电路的磁通量是增加还是减少。

  (3)根据楞次定律确定感应电流的磁场方向。

  (4)利用安培定则确定感应电流的方向。

  教师:下面让我们通过对例题的分析,熟悉应用楞次定律判断感应电流方向的基本步骤,同时加深对楞次定律的理解。

  高中物理教学设计 8

  一、教学目标

  知识与技能:

  1、理解力的分解概念。

  2、知道力的分解是合成的逆运算,并知道力的分解遵循平行四边形定则。

  3、学会按力的实际作用效果分解力。

  4、学会用力的分解知识解释一些简单的物理现象。

  过程与方法:

  1、通过生活情景的再现和实验模拟体会物理与实际生活的密切联系。

  3、通过对力的实际作用效果的分析,理解按实际作用效果分解力的意义,并感受具体问题具体分析的方法。情感、态度与价值观:

  1、通过联系生活实际情景,激发求知欲望和探究的兴趣。

  2、通过对力的分解实际应用的分析与讨论,养成理论联系实际的自觉性,培养解决生活实际问题的能力。

  二、教学重点难点

  教学重点:理解力的分解的概念,利用平行四边形定则按力的作用效果进行力的分解。

  教学难点:力的实际作用效果的分析。

  三、教学过程

  (一)引入:

  1、观察一幅打夯的图片,分析为什么需要那么多人一起打夯。

  2、模拟打夯,指出用多个力的共同作用来代替一个力的作用的实际意义,突出等效替代的思想。

  3、引出力的分解的概念:把一个力分解成几个分力的方法叫力的分解。

  (二)一个力可分解为几个力?

  由打夯的例子可以看出一个力的作用可以分解为任意几个力,最简单的情况就是把一个力分解为两个力。

  (三)一个力分解成两个力遵循什么规则?

  力的分解是力的合成的逆运算,因此把一个力分解为两个分力也遵循平行四边形定则。

  (四)力的分解实例分析

  以一个力为对角线作平行四边形可以作出无数个平行四边形,因此把一个力分解为两个力有无数组解,但如果已知两个分力的方向,那力的分解就只有唯一解了。如何确定两个分力的方向呢?在解决实际问题时要根据力的实际作用效果确定分力的方向。

  一、斜面上重力的分解

  [演示]用薄塑料片做成斜面,将物块放在斜面上,斜面被压弯,同时物块沿斜面下滑

  [结论]重力G产生两个效果:使物体沿斜面下滑和压紧斜面

  [分析]重力的两个分力大小跟斜面的倾斜角有何关系?

  [结论]通过作图和实验演示可看出倾角越大,下压分力越小而下滑分力越大。

  [问题]游乐场的滑梯为什么倾角很大?山路为什么要修成盘山状?

  [分析]斜面倾角越大,使物体下滑的力越大,物体越容易下滑,故公园滑梯倾角较大,但山路若直接从山脚往山顶修,则倾角太大,车辆上坡艰难而下坡又不安全,是不可行的,修成盘山状则可解决这个问题。

  二、直角支架所受拉力的'分解

  [实验模拟]同学甲用一手撑腰,同学乙用力向下拉甲同学的肘部,让同学谈体会,即分析向下拉肘部的力产生的作用效果。

  [实验演示]在支架上挂一重物,观察橡皮膜的变化,分析重物对支架的拉力产生的作用效果。

  [分析]支架所受拉力一方面挤压水平杆,另一方面拉伸倾斜杆。

  [分解]按效果分解拉力并作出平行四边形法。

  三、劈木柴刀背上力的分解

  [观察图片]为什么一斧头下去,木桩被劈开了?作用在斧头上的力实际产生了什么效果?

  [小实验]同学甲双手合十,同学乙用一只手试图从甲的两手中间劈下去,体会手上的感觉。

  [分析]乙同学的手向两侧挤压甲同学的两只手,因此刀背上的力的作用效果也是使得刀的两个侧面去挤压木柴。

  [分解]按力的作用效果分解刀背上的力,作出平行四边形,并比较分力与合力的大小关系。

  [思考]由生活经验可知砍柴的刀越锋利越容易把柴劈开,为什么?分析分力大小跟分力夹角的关系。

  [体验]通过小实验体会在合力一定的情况下,分力大小随其夹角变化而变化的规律:

  ○用一根羊绒线,中间吊一个砝码,观察当抓住线的两手距离不断增大时线有何变化。

  ○用两个弹簧秤共同拉一个砝码,拉的夹角逐渐增大,观察弹簧秤示数的变化。

  [规律总结]在合力一定的情况下,对称分布的两个分力的夹角越大,分力越大。

  [应用]

  ○如何把陷进泥潭的汽车拉出来?

  ○如何移动一只很重的箱子?

  (五)小结:

  1、知道什么叫力的分解

  2、知道力的分解遵循平行四边形定则

  3、掌握在解决实际问题时按力的实际作用效果分解的方法。

  高中物理教学设计 9

  教学目标

  一、知识目标

  1、知道什么是反冲运动,能举出几个反冲运动的实例;

  2、知道火箭的飞行原理和主要用途。

  二、能力目标

  1、结合实际例子,理解什么是反冲运动;

  2、能结合动量守恒定律对反冲现象做出解释;

  3、进一步提高运用动量守恒定律分析和解决实际问题的能力

  三、德育目标

  1、通过实验,分析得到什么是反冲运动,培养学生善于从实验中总结规律和热心科学研究的兴趣、勇于探索的品质。

  2、通过介绍我国成功地研制和发射长征系列火箭的事实,结合我国古代对于火箭的发明和我国的现代火箭技术已跨入世界先进先烈,激发学生热爱社会主义的情感。

  教学重点

  1、知道什么是反冲。

  2、应用动量守恒定律正确处理喷气式飞机、火箭一类问题。

  教学难点

  如何应用动量守恒定律分析、解决反冲运动。

  教学方法

  1、通过观察演示实验,总结归纳得到什么是反冲运动。

  2、结合实例运用动量守恒定律解释反冲运动。

  教学用具

  反冲小车、玻璃棒、气球、酒精、反冲塑料瓶等

  课时安排

  1课时

  教学步骤

  导入新课

  [演示]拿一个气球,给它充足气,然后松手,观察现象。

  [学生描述现象]释放气球后,气球内的气体向后喷出,气球向相反的方向飞出。

  [教师]在日常生活中,类似于气球这样的运动很多,本节课我们就来研究这种。

  新课教学

  (一)反冲运动 火箭

  1、教师分析气球所做的运动

  给气球内吹足气,捏紧出气孔,此时气球和其中的气体作为一个整体处于静止状态。松开出气孔时,气球中的气体向后喷出,气体具有能量,此时气体和气球之间产生相互作用,气球就向前冲出。

  2、学生举例:你能举出哪些物体的运动类似于气球所作的运动?

  学生:节日燃放的礼花。喷气式飞机。反击式水轮机。火箭等做的运动。

  3、同学们概括一下上述运动的特点,教师结合学生的叙述总结得到:

  某个物体向某一方向高速喷射出大量的液体,气体或弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动

  4、分析气球。火箭等所做的反冲运动,得到:

  在反冲现象中,系统所受的合外力一般不为零;

  但是反冲运动中如果属于内力远大于外力的情况,可以认为反冲运动中系统动量守恒。

  (二)学生课堂用自己的装置演示反冲运动。

  1、学生做准备:拿出自己的在课下所做的反冲运动演示装置。

  2、学生代表介绍实验装置,并演示。

  学生甲:

  装置:在玻璃板上放一辆小车,小车上用透明胶带粘中一块浸有酒精的棉花。

  实验做法:点燃浸有酒精的棉花,管中的酒精蒸气将橡皮塞冲出,同时看到小车沿相反方向运动。

  学生乙:

  装置:二个空摩丝瓶,在它们的底部用大号缝衣针各钻一个小洞,这样做成二个简易的火箭筒,在铁支架的立柱端装上顶轴,在放置臂的两侧各装一只箭筒,再把旋转系统放在顶轴上,往火箭筒内各注入约4 mL的酒精,并在火箭筒下方的棉球上注入少量酒精。点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃,这时可以看到火箭旋转起来。

  学生丙:用可乐瓶做一个水火箭,方法是用一段吸管和透明胶带在瓶上固定一个导向管,瓶口塞一橡皮塞,在橡皮塞上钻一孔,在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管,在瓶中先注入约1/3体积的水,用橡皮塞把瓶口塞严,将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的'上框上,另一端拴在板凳腿上,要使线拉直,将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去。

  过渡引言:同学们通过自己设计的实验装置得到并演示了什么是反冲运动,那么反冲运动在实际生活中有什么应用呢?下边我们来探讨这个问题。

  (三)反冲运动的应用和防止

  1、学生阅读课文有关内容。

  2、学生回答反冲运动应用和防止的实例。

  学生:反冲有广泛的应用:灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是反冲的重要应用。

  学生:用枪射击时,要用肩部抵住枪身,这是防止或减少反冲影响的实例。

  3、用多媒体展示学生所举例子。

  4、要求学生结合多媒体展示的物理情景对几个物理过程中反

  冲的应用和防止做出解释说明:

  ①对于灌溉喷水器,

  当水从弯管的喷嘴喷出时,弯管因反冲而旋转,可以自动地改变喷水的方向。

  ②对于反击式水轮机:当水从转轮的叶片中流出时,转轴由于反冲而旋转带动发电机发电。

  ③对于喷气式飞机和火箭,它们靠尾部喷出气流的反冲作用而获得很大的速度。

  ④用枪射击时,子弹向前飞去枪身向后发生反冲,枪身的反冲会影响射击的准确性,所以用步枪时我们要把枪身抵在肩部,以减少反冲的影响。

  教师:通过我们对几个实例的分析,明确了反冲既有有利的一面,同时也有不利的一面,在看待事物时我们要学会用一分为二的观点。

  我们知道:反冲现象的一个重要应用是火箭,下边我们一认识火箭:

  (四)火箭:

  1、演示:把一个废旧白炽灯泡敲碎取出里面的一根细玻璃管,往细玻璃管装由火柴刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热。

  现象:当管内的药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反方向飞去。教师讲述:上述装置就是火箭的原理模型。

  2、多媒体演示古代火箭,现代火箭的用途及多级火箭的工作过程,同时学生边看边阅读课文。

  3、用实物投影仪出示阅读思考题:

  ①介绍一下我国古代的火箭。

  ②现代的火箭与古代火箭有什么相同和不同之处?

  ③现代火箭主要用途是什么?

  ④现代火箭为什么要采用多级结构?

  4、学生解答上述问题:

  ①我国古代的火箭是这样的:

  在箭上扎一个火药筒,火药筒的前端是封闭的,火药点燃后生成的燃气以很大速度向后喷出,火箭由于反冲而向前运动。

  ②现代火箭与古代火箭原理相同,都是利用反冲现象来工作的。

  但现代火箭较古代火箭结构复杂得多,现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧产生的高温高压燃气从尾喷管迅速喷出,火箭就向前飞去。

  ③现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利用火箭作为运载工具。

  ④在现代技术条件下,一级火箭的最终速度还达不到发射人造卫星所需要的速度,发射卫星时要使用多级火箭。

  用CAI课件展示多级火箭的工作过程:

  多级火箭由章单级火箭组成,发射时先点燃第一级火箭,燃料用完工以后,空壳自动脱落,然后下一级火箭开始工作。

  教师介绍:多级火箭能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的温度,可用来完成洲际导弹,人造卫星、宇宙飞船等的发射工作,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。

  那么火箭在燃料燃尽时所能获得的最终速度与什么有关系呢?

  5、出示下列问题:

  火箭发射前的总质量为M、燃料燃尽后的质量为m,火箭燃气的喷射速度为v1,燃料燃尽后火箭的飞行速度v为多大?

  [学生分析并解答]:

  解:在火箭发射过程中,由于内力远大于外力,所以动量守恒。

  发射前的总动量为0,发射后的总动量为(M-m)v-mv1(以火箭的速度方向为正方向)则:(M-m)v-mv1=0

  师生分析得到:燃料燃尽时火箭获得的最终速度由喷气速度及质量比M/m决定。

  巩固训练 水平方向射击的大炮,炮身重450 kg,炮弹射击速度是450 m/s,射击后炮身后退的距离是45 cm,则炮受地面的平均阻力是多大?

  小结

  1、当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量而向相反方向运动,这种向相反方向的运动,通常叫做反冲运动。

  2、对于反冲运动,所遵循的规律是动是守恒定律,在具体的计算中必须严格按动量守恒定律的解题步骤来进行。

  3、反冲运动不仅存在于宏观低速物体间,也存在于微观高速物体。

  高中物理教学设计 10

  一、教学任务分析

  匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。

  学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。

  从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。

  通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。

  通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。

  通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣。

  二、教学目标

  1、知识与技能

  (1)知道物体做曲线运动的条件。

  (2)知道圆周运动;理解匀速圆周运动。

  (3)理解线速度和角速度。

  (4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。

  2、过程与方法

  (1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。

  (2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。

  3、态度、情感与价值观

  (1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。

  (2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。

  三、教学重点难点

  重点:

  (1)匀速圆周运动概念。

  (2)用线速度、角速度描述圆周运动的快慢。

  难点:理解线速度方向是圆弧上各点的切线方向。

  四、教学资源

  1、器材:壁挂式钟,回力玩具小车,边缘带孔的旋转圆盘,玻璃板,建筑用黄沙,乒乓球,斜面,刻度尺,带有细绳连接的'小球。

  2、课件:flash课件——演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;——演示同样时间内,两个运动半径所转过角度不同的匀速圆周运动。

  3、录像:三环过山车运动过程。

  五、教学设计思路

  本设计包括物体做曲线运动的条件、匀速圆周运动、线速度与角速度三部分内容。

  本设计的基本思路是:以录像和实验为基础,通过分析得出物体做曲线运动的条件;通过观察对比归纳出匀速圆周的特征;以情景激疑认识对匀速圆周运动快慢的不同描述,引入线速度与角速度概念;通过讨论、释疑、活动、交流等方式,巩固所学知识,运用所学知识解决实际问题。

  本设计要突出的重点是:匀速圆周运动概念和线速度、角速度概念。方法是:通过对钟表指针和过山车两类圆周运动的观察对比,归纳出匀速圆周运动的特征;设置地月对话的情景,引入对匀速圆周运动快慢的描述;再通过多媒体动画辅助,并与匀速直线运动进行类比得出匀速圆周运动的概念和线速度、角速度的概念。

  本设计要突破的难点是:线速度的方向。方法是:通过观察做圆周运动的小球沿切线飞出,以及由旋转转盘边缘飞出的红墨水在纸上的径迹分布这两个演示实验,直观显示得出。

  本设计强调以视频、实验、动画为线索,注重刺激学生的感官,强调学生的体验和感受,化抽象思维为形象思维,概念和规律的教学体现“建模”、“类比”等物理方法,学生的活动以讨论、交流、实验探究为主,涉及的问题联系生活实际,贴近学生生活,强调对学习价值和意义的感悟。

  完成本设计的内容约需2课时。

  六、教学流程

  1、教学流程图

  2、流程图说明

  情境I录像,演示,设问1

  播放录像:三环过山车,让学生看到物体的运动有直线和曲线。

  演示:让学生向正在做直线运动的乒乓球用力吹气,体验球在什么情况下将做曲线运动。

  设问1:物体在什么情况下将做曲线运动?

  情境II观察、对比,设问2

  观察、对比钟表指针和过山车这两类圆周运动。

  设问2:以上两类圆周运动有什么不同?钟表指针所做的圆周运动有什么共同特征?建立匀速圆周运动的概念。

  情境III演示,动画

  情景:月、地快慢之争。

  多媒体动画:演示同样时间内两个运动所经过的弧长不同的匀速圆周运动,比较得出线速度表

  表达式。

  演示1:用细绳捆着小球在水平面内做圆周运动,突然松开绳的一端,看到小球沿着圆弧切线方向运动。

  演示2:通过实物投影演示旋转的转盘边缘飞出的红墨水在纸上的径迹分布,显示线速度的方向。

  情景:变换教室内电风扇的变速档,看到圆周运动转动快慢的不同情况,引入角速度概念。

  多媒体动画:演示同样时间内两个运动半径所转过角度不同的匀速圆周运动,比较得出角速度表达式。

  活动讨论、实验、交流、小结。

  识别:请同学们说说生活中有哪些圆周运动可以看作是匀速圆周运动。了解学生对匀速圆周运动的理解以及是否具有建模能力。

  观察分析:磁带、涂改修正带、自行车链条等传动设备中,两轮轴边缘各点的线速度有何关系。了解对线速度概念的理解情况。

  算一算:计算壁挂钟的时针、分针、秒针针尖的线速度大小和它们角速度的倍数关系。了解能否通过实际测量获取有用数据,灵活运用线速度的公式和角速度公式解决实际问题。

  小实验:提供回力玩具小车,玻璃板,建筑用黄沙,通过对实验的观察说明汽车车轮的挡泥板应安装在什么位置合适,了解对线速度方向的掌握情况。

  释疑:评判地球与月亮之争。

  小结:幻灯片小结。

  3、教学主要环节本设计可分为四个主要的教学环节:

  第一环节,通过播放录像和演示,归纳物体做曲线运动的条件。

  第二环节,通过观察对比,建立理想模型,归纳匀速圆周运动特征,类比匀速直线运动得出匀速圆周运动概念。

  第三环节,以情景激疑引入用线速度、角速度描述圆周运动,借助多媒体动画,类比匀速直线运动得出线速度、角速度定义和公式。

  第四环节,以学生活动为中心,针对几个实际问题开展讨论、探究、交流,深化对本节课知识的理解和应用。

  七、教案示例

  第一环节物体做曲线运动的条件

  [创设情景]播放录像:森林公园三环过山车的运动。

  [提出问题]

  1、请同学们说说过山车都做了哪些不同性质的运动? (匀速直线运动、匀加速直线运动、匀减速直线运动、曲线运动、圆周运动等)

  2、什么条件下物体将做曲线运动?

  [演示]让乒乓球从斜面上滚下到达水平桌面上做直线运动,请一个同学向着与球运动不一致的方向用力吹球,观察球的运动轨迹有何变化?

  [结论]当物体受到的合力与速度方向不在一条直线上时,物体就做曲线运动。

  [引言]运动轨迹是圆的曲线运动叫做圆周运动,下面我们就从圆周运动开始学习如何对曲线运动进行研究。

  第二环节匀速圆周运动的概念

  [观察讨论]钟表的时针、分针、秒针的圆周运动有什么共同的特征?它们与过山车的圆周运动有什么不同?

  (钟表的时针、分针、秒针的圆周运动,它们的共同特征是匀速转动的,而过山车的圆周运动列车的速度大小是不断变化的)

  [提出问题]怎样给匀速圆周运动下定义呢?(引导学生类比匀速直线运动定义匀速圆周运动)

  [结论]质点在任何相同时间内,所通过的弧长都相等的圆周运动叫做匀速圆周运动。

  匀速圆周运动是最基本最简单的圆周运动,它是一种理想化的物理模型。

  [引言]我们如何对圆周运动进行研究呢?

  第三环节线速度、角速度概念

  [创设情景]地、月快慢之争

  地球:我绕太阳运动1秒走29.79千米,你绕我1秒才走1.02千米,你太慢了!

  月亮:你一年才绕一圈,我28天就绕一圈,你才慢呢!

  [提出问题]怎样定义描述圆周运动快慢的物理量?(引导学生与匀速直线运动的速度类比)多媒体动画:演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;

  [结论]线速度定义:质点经过的圆弧长度s与所用时间t的比值,叫做圆周运动的线速度。

  公式:单位:m/s(米/秒)

  [问题]速度是矢量,圆周运动的线速度方向是怎样的?

  [演示] 1、用一端连有细线的小球,将线的一端套在钉子上,钉子竖直立在桌面上,给球初速让球在水平桌面上做圆周运动,突然向上抽出钉子,看到球沿圆周的切线方向运动;

  2、通过投影仪观察旋转圆盘边缘红墨水飞出的情景以及落在纸面上的径迹分布;

  [结论]线速度方向:沿圆弧的切线方向

  线速度表示圆周运动的瞬时速度,它是矢量;圆周运动的线速度方向是不断改变的,所以匀速圆周运动是变速运动,匀速圆周运动中的“匀速”是“匀速率”的意思。

  [情景]打开教室内的电风扇,变换不同的档观察它转动的快慢。(引导学生认识要引入与线速度不同的、描述圆周运动转动快慢的物理量)

  高中物理教学设计 11

  教学目标

  知识目标

  1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解;

  2、使学生了解并掌握万有引力定律;

  3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).

  能力目标

  1、使学生能应用万有引力定律解决实际问题;

  2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.

  情感目标

  1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的让学生在应用万有引力定律的过程中应多观察、多思考.

  教学建议

  万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.

  教学目的:

  1、了解万有引力定律得出的思路和过程;

  2、理解万有引力定律的含义并会推导万有引力定律;

  3、掌握万有引力定律,能解决简单的万有引力问题;

  教学难点:

  万有引力定律的应用

  教学重点:

  万有引力定律

  教具:

  展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.

  教学过程

  (一)新课教学(20分钟)

  1、引言

  展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:

  十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.

  伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:

  (1)牛顿是怎样研究、确立《万有引力定律》的呢

  (2)《万有引力定律》是如何反映物体间相互作用规律的

  以上两个问题就是这节课要研究的重点.

  2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法.

  苹果在地面上加速下落:(由于受重力的原因):

  月亮绕地球作圆周运动:(由于受地球引力的`原因);

  行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)

  牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.

  3、引入课题.

  板书:第二节、万有引力定律

  (1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)

  (2)万有引力定律:宇宙间的一切物体都是相互吸引的两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书)

  式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).

  (二)应用(例题及课堂练习)

  学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起(请学生带着这个疑问解题)

  例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少

  解:由万有引力定律得:

  代入数据得:

  通过计算这个力太小,在许多问题的计算中可忽略

  例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度.

  求:

  (1)地球表面一质量为10kg物体受到的万有引力

  (2)地球表面一质量为10kg物体受到的重力

  (3)比较万有引力和重力

  解:(1)由万有引力定律得:

  (2)代入数据得:

  (3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.

  (三)课堂练习:

  教师请学生作课本中的练习,教师引导学生审题,并提示使用万有引力定律公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.

  (四)小结:

  1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么它不足以影响物体的运动,故常常可忽略不计.

  2、应用万有引力定律公式解题,值选,式中所涉其它各量必须取国际单位制.

  (五)布置作业(3分钟):教师可根据学生的情况布置作业.

  探究活动

  组织学生编写相关小论文,通过对资料的收集,了解万有引力定律的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.

  1、万有引力定律发现的历史过程.

  2、第谷在发现万有引力定律上的贡献.

  高中物理教学设计 12

  教学目标

  1、知识与技能

  (1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;

  (2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;

  (3)了解万有引力定律在天文学上有重要应用。

  2、过程与方法:

  (1)培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法;

  (2)培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法;

  (3)培养学生归纳总结建立模型的能力与方法。

  3、情感态度与价值观:

  (1)培养学生认真严禁的科学态度和大胆探究的心理品质;

  (2)体会物理学规律的简洁性和普适性,领略物理学的优美。

  教学重难点

  教学重点

  地球质量的计算、太阳等中心天体质量的计算。

  教学难点

  根据已有条件求中心天体的质量。

  教学工具

  多媒体、板书

  教学过程

  一、计算天体的质量

  1、基本知识

  (1)地球质量的计算

  ①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即

  ②结论:

  只要知道g、R的值,就可计算出地球的质量。

  (2)太阳质量的计算

  ①依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即

  ②结论:

  只要知道卫星绕行星运动的周期T和半径r,就可以计算出行星的质量。

  2、思考判断

  (1)地球表面的物体,重力就是物体所受的万有引力。(×)

  (2)绕行星匀速转动的卫星,万有引力提供向心力。(√)

  (3)利用地球绕太阳转动,可求地球的质量。(×)

  3、探究交流

  若已知月球绕地球转动的周期T和半径r,由此可以求出地球的质量吗?能否求出月球的质量呢?

  【提示】能求出地球的质量。利用

  为中心天体的质量。做圆周运动的月球的质量m在等式中已消掉,所以根据月球的周期T、公转半径r,无法计算月球的质量。

  二、发现未知天体

  1、基本知识

  (1)海王星的发现

  英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道。1846年9月23日,德国的加勒在勒维耶预言的位置附近发现了这颗行星——海王星。

  (2)其他天体的发现

  近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体。

  2、思考判断

  (1)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性。(√)

  (2)科学家在观测双星系统时,同样可以用万有引力定律来分析。(√)

  3、探究交流

  航天员翟志刚走出“神舟七号”飞船进行舱外活动时,要分析其运动状态,牛顿定律还适用吗?

  【提示】适用。牛顿将牛顿定律与万有引力定律综合,成功分析了天体运动问题。牛顿定律对物体在地面上的运动以及天体的运动都是适用的。

  三、天体质量和密度的计算

  【问题导思】

  1、求天体质量的思路是什么?

  2、有了天体的'质量,求密度还需什么物理量?

  3、求天体质量常有哪些方法?

  1、求天体质量的思路

  绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量。

  2、计算天体的质量

  下面以地球质量的计算为例,介绍几种计算天体质量的方法:

  (1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力,即

  (2)若已知月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

  (3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

  (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得

  解得地球质量为

  3、计算天体的密度

  若天体的半径为R,则天体的密度ρ

  误区警示

  1、计算天体质量的方法不仅适用于地球,也适用于其他任何星体。注意方法的拓展应用。明确计算出的是中心天体的质量。

  2、要注意R、r的区分。R指中心天体的半径,r指行星或卫星的轨道半径。以地球为例,若绕近地轨道运行,则有R=r.

  例:要计算地球的质量,除已知的一些常数外还需知道某些数据,现给出下列各组数据,可以计算出地球质量的有哪些?()

  A.已知地球半径R

  B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v

  C.已知卫星绕地球做匀速圆周运动的线速度v和周期T

  D.已知地球公转的周期T′及运转半径r′

  【答案】ABC

  归纳总结:求解天体质量的技巧

  天体的质量计算是依据物体绕中心天体做匀速圆周运动,万有引力充当向心力,列出有关方程求解的,因此解题时首先应明确其轨道半径,再根据其他已知条件列出相应的方程。

  四、分析天体运动问题的思路

  【问题导思】

  1、常用来描述天体运动的物理量有哪些?

  2、分析天体运动的主要思路是什么?

  3、描述天体的运动问题,有哪些主要的公式?

  1、解决天体运动问题的基本思路

  一般行星或卫星的运动可看做匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:

  2、四个重要结论

  设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动

  以上结论可总结为“越远越慢,越远越小”。

  误区警示

  1、由以上分析可知,卫星的an、v、ω、T与行星或卫星的质量无关,仅由被环绕的天体的质量M和轨道半径r决定。

  2、应用万有引力定律求解时还要注意挖掘题目中的隐含条件,如地球的公转周期是365天,自转一周是24小时,其表面的重力加速度约为9.8m/s2.

  例:)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的480(1),母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的()

  【答案】B

  归纳总结:解决天体运动的关键点

  解决该类问题要紧扣两点:一是紧扣一个物理模型:就是将天体(或卫星)的运动看成是匀速圆周运动;二是紧扣一个物体做圆周运动的动力学特征,即天体(或卫星)的向心力由万有引力提供。还要记住一个结论:在向心加速度、线速度、角速度和周期四个物理量中,只有周期的值随着轨道半径的变大而增大,其余的三个都随轨道半径的变大而减小

  五、双星问题的分析方法

  例:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)

  归纳总结:双星系统的特点

  1、双星绕它们共同的圆心做匀速圆周运动,它们之间的距离保持不变;

  2、两星之间的万有引力提供各自需要的向心力;

  3、双星系统中每颗星的角速度相等;

  4、两星的轨道半径之和等于两星间的距离。

  高中物理教学设计 13

  教学目的

  1.了解组成物质的分子具有动能及势能,并且了解分子平均动能和分子势能都与哪些因素有关。

  2.理解物体的内能以及物体内能由物体的状态所决定。

  教学重点

  物体的内能是一个重要的概念,是本章教学的一个重点。学生只有正确理解物体的内能才能理解做功和热传递及物体内能的变化关系。

  教学难点

  分子势能。

  教学过程

  一、复习提问

  什么样的能是势能?弹性势能的大小与弹簧的形变关系怎样?

  二、新课教学

  1.分子动能。

  (1)组成物质的分子总在不停地运动着,所以运动着的分子具有动能,叫做分子动能。

  (2)启发性提问:根据你对布朗运动实验的观察,分子运动有什么样的特点?

  应答:分子运动是杂乱无章的,在同一时刻,同一物体内的分子运动方向不相同,分子的运动速率也不相同。

  教师分析分子速率分布特点——在同一时刻有的分子速率大,有的分子速率小,从大量分子总体来看,速率很大和速率很小的分子是少数,大多数分子是中等大小的速率。

  教帅进一步指出:由于分子速率不同,所以每个分子的动能也不同。对于热现象的研究来说,每个分子的动能是毫无意义的,而有意义的是物体内所有分子动能的平均值,此平均值叫做分子的平均动能。

  (3)要学生讨论研究。

  用分子动理论的观点,分析冷、热水的区别。

  讨论结论应是:组成冷、热水的大量分子的速率各不相同,则其动能也各不相同,但就冷水总体来说分子的平均动能小于热水的分子平均动能。

  教师指出:由此可见,温度是物体分子平均动能的标志。

  2.分子势能。

  (1)根据复习提问的回答(地面上的物体与地球之间有相互作用力;发生了形变的弹簧各部分间存在着相互作用力,因此在它们的相对位置发生变化时,它们之间便具有势能)说明分子间也存在着相互作用力,所以分子也具有由它们相对位置所决定的能,称之为分子势能。

  (2)分子势能与分子间距离的关系。

  提问:分子力与分子间距离有什么关系?

  应答:当r=r0时,F=0,r<r0时,F为斥力,r>r0时,F为引力。

  教师指出:由于分子间既有引力又有斥力,好象弹簧形变有伸长或压缩两种情况,因此分子势能与分子间距离也分两种情况。

  ①当r>r0时,F为引力,分子势能随着r的增大而增加。此种情况与弹簧被拉长弹性势能的增加很相似。

  ②当r< p="">

  小结:分子势能随着分子间距离变化而变化,而组成物体的大量分子间距离若增大(减小)则宏观表现为物体体积增大(减小)。可见分子势能跟物体体积有关。

  (3)物体的内能。

  教师指出:物体里所有的分子动能和势能的总和叫做物体的内能。由此可知一切物体都具有内能。

  ①物体的内能是由它的状态决定的(状态是指温度、体积、物态等)。

  提问:对于质量相等、温度都是100℃的水和水蒸气来说它们的内能相同吗?

  应答,质量相等意味着它们的分子数相同,温度相等意味着它们的平均动能相同,但由于水蒸气分子间平均距离比水分子间平均距离大得多,分子势能也大得多,因而质量相等的水蒸气的内能比水大。

  ②物体的状态发生变化时,物体的内能也随着变化。

  举例说明:当水沸腾时,水的温度保持不变,所供给的大量能用于把分子拉开,增大了分子势能,因而增大了物体的内能,当水汽凝结时,分子动能没有明显变化,但分子靠得更紧密了,分子势能便减小了,因此物体的内能减小了。

  ③物体的内能是不同于机械能的另一种形式的能。

  a.静止在地面上的物体以地球为参照物,物体的机械能等于0,但物体内部的分子仍然在不停地运动着和相互作用着,物体的内能永远不能为0。

  b.物体在具有一定的内能时,也可以具有一定的机械能。如飞行的子弹。

  C.不能把物体的机械能和物体的内能混淆。只要物体的温度、体积、物态不变,不论物体的机械能怎样变化其内能仍保持不变。反之,尽管物体的内能在变化,它的机械能可以保持不变。

  (4)学生讨论题:

  ①静止在光滑水平地面上的木箱具有什么能?若木箱沿光滑水平地面加速运动,木箱具有什么能?此时木箱的内能与静止时相比较变化了没有?

  ②质量相等而温度不相等的两杯水,哪一杯水具有较大的内能?温度相同而质量不等的两杯水,哪一杯水具有较大的内能?

  最后总结一下本课要点。

  1.了解内能的概念,能简单描述温度和内能的关系。

  2.知道做功和热传递都可以改变物体的内能。

  3.了解热量的概念,知道热量的单位是焦耳。

  重点目标

  1.内能、热量概念的建立.

  2.改变物体内能的途径.难点目标内能、热量概念的建立.

  导入示标凉爽的秋夜,仰望星空时,会突然发现一颗流星在夜色中划过,并留下一条美丽的弧线.流星是怎样形成的呢?

  目标三导学做思一:物体的内能

  问题1:组成物质的.分子在不停地做热运动,分子应具有什么能?物体的分子之间有引力和斥力,且分子之间有间隔,分子应具有什么能?什么叫物体的内能?你能说出它的单位吗?机械能和内能有什么区别吗?

  小结:物体内所有分子由于热运动而具有的动能,以及分子之间势能的总和叫做物体的内能.它的单位是焦耳,简称焦,符号为J.机械能是宏观的,能看得到的,内能是微观的,是看不到的

  问题2:把红墨水滴入装满水的烧杯里,过一段时间,整杯水变为红色,这种现象说明了什么?当红墨水分别滴入热水和冷水中时,发现热水变色比冷水快,这又说明了什么?

  小结:温度高的物体分子运动剧烈,内能大.所以物体的内能与温度有关.

  问题3:小明说:“炽热的铁水温度很高,具有内能;冰冷的冰块温度很低,不具有内能.”小刚说:“炽热的铁水温度高,内能大;冰冷的冰山温度低,内能小.”你认为他们的说法正确吗?说出理由.

  小结:一切物体都具有内能.物体的内能还与质量有关.

  问题3:处理例1和变式练习1

  例1:【解析】物体内所有分子热运动的动能与分子势能的总和叫做物体的内能温度越高,物体内能越大温度相同的同种物质,分子个数越多,分子热运动的动能与分子势物体内能越大

  问题1:如右图所示,在一个配有活塞的厚玻璃筒里放一小团硝化棉,把活塞迅速往下压,你能观察到什么现象(棉花燃烧),该实验说明了什么?你再将一根铁丝反复弯折数十次,用手接触弯折处,有什么感觉,该实验又说明了什么?

  小结:做功可以改变物体的内能.

  问题2:做饭时,铁锅为什么能烫手?放在阳光下的被子,为什么能被晒得暖乎乎?

  小结:热传递也可以改变物体的内能.

  问题3:处理例2和变式练习2

  例2:【解析】来回拉绳子,绳子与管壁之间克服摩擦做功,使管内的酒精内能增大,温度升高;当把塞子冲出时,管内的酒精蒸气对塞子做功,将内能转化成机械能.正确的答案为A选项.

  答案:A

  变式练习

  让学生进一步理解改变内能的途径有做功和热传递两种方法,选项ABD是做功改变物体的内能,选项C是通过热传递的方式改变物体的内能.

  答案:C

  学做思三:热量

  问题1:什么叫热量?它的单位是什么?它用什么字母表示?

  小结:物体通过热传递方式所改变的内能称为热量,它的单位是J,它用字母Q表示.

  问题2:在热传递现象中,高温物体和低温物体的温度、内能和热量如何变化?

  小结:在热传递过程中,高温物体放出热量,温度降低,内能减小;低温物体吸收热量,温度升高,内能增大.所以热传递过程中传递的是热量,改变了物体的内能,表现在物体温度的变化.

  高中物理教学设计 14

  一、教学目标

  【知识与技能】

  1、知道常见的形变,了解物体的弹性;

  2、知道弹力产生的条件;

  3、知道压力、支持力、绳的拉力都是弹力,能在力的示意图中画出它们的方向。

  【过程与方法】

  通过探究弹力的存在,能提高在实际问题中确定弹力方向的能力,体会假设推理法解决问题的巧妙。

  【情感态度与价值观】

  观察和了解形变的有趣现象,感受自然界的奥秘,感受学习物理的乐趣,建立把物理学习与生活实践结合起来的习惯。

  二、教学重难点

  【重点】

  弹力产生的条件及弹力方向的判定

  【难点】

  接触的物体是否发生形变及弹力方向的确定

  三、教学过程

  环节一:导入新课

  教学一开始前,给每个学生小组分发弹簧和尺子,让每个小组试着把玩这些物件,如用力拉或压弹簧,用力弯动尺子等。在操作过程中思考被拉或压的弹簧,弯动的尺子的有什么共同点是什么?大家可否试着举出生活中其他的一些诸如这个弹簧和尺子的例子?

  物体的形状都发生了改变。由此引入物体的形态发生了变化是源于物体都受到了力的作用,这种力就是今天要学习的弹力。

  环节二:新课讲授

  (一)弹性形变和弹力

  概念:物体在力的作用下形状或体积的改变叫做形变。

  提问:刚才举的那些例子都很容易观察到,如果一本书放在桌面上,书和桌面发生形变了没有?

  学生会产生疑惑分歧,但教师此时可以不用详解,而是做现场演示实验1,让学生观察用手挤压时XX形变(双手握住注满红墨水的烧瓶,用力挤压底部。上插玻璃管中的红墨水液面上升。)

  为了让学生有更直观深刻的印象,也会用视频播放演示实验2:桌面微小形变的激光演示(在一个大桌上放两个平面镜M和N,让一束光依次被这两面镜子反射,最后射在刻度尺上形成一个光点。用力压桌面,观察刻度尺上光点位置的变化。)

  学生观察后思考:通过上面的实验,我们观察到什么样的实验现象?我们用了什么样的方法?那书放在桌面上,书和桌面发生形变了没有?

  分析得出:通过微观放大的方法观察,我们发现原来不容易观察的瓶子和桌面也发生了形变。

  归纳:由此我们可以想到一切物体都可以发生形变,形变分为很多种类,有些物体在形变后能够恢复原状,这种形变叫做弹性形变。

  提问:发生弹性形变的物体是不是在所有的情况下都可以恢复原状呢?请举例说明?

  学生能举出有时弹簧拉得过长就恢复不了原状。指出:如果形变过大,超过一定的限度,撤去作用力后物体不能完全恢复原来的'形状,这个限度叫做弹性限度。

  根据前面的铺垫,总结弹力的概念:发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。例举蹦床的例子说明。

  (二)几种弹力的方向

  教师在黑板上画出书与桌面之间的相互作用力,与学生一起分析之间的相互作用关系,指出书对桌面的压力和桌面对书的支持力都是弹力。

  举出实例:给出吊灯图片,做出分析。以灯为研究受力对象,链子指向链子收缩的方向吊住吊灯,链子发生形变。链子被拉长,就要企图恢复形变。这里施力物体——链子,受力物体——灯。这时候链子对灯的拉力的方向是——竖直向上,指向链子收缩的方向。

  做出总结:弹力方向——施力物体形变恢复的方向;与施力物体形变方向相反。压力和支持力的方向总是垂直于接触面指向受力物体,绳的拉力总是沿着绳子指向绳收缩的方向。

  环节三:巩固提高

  给出如下三个图片,要求学生画出弹力的示意图。

  归纳总结:

  三种接触情况下弹力的方向:

  (1)面面接触,垂直于接触面指向被支持的物体

  (2)点面接触,垂直于接触面指向被支持的物体

  (3)点点接触,垂直于接触点的切面指向被支持物体。

  环节四:小结作业

  小结:师生归纳弹力的相关知识点。

  作业:预习后面胡克定律,了解弹力大小的特点。

  高中物理教学设计 15

  教材分析

  三相电流在生产和生活中有广泛的应用,学生应对它有一定的了解。但这里只对学生可能接触较多的知识做些介绍,而不涉及太多实际应用中的具体问题。三相交变电流在生产生活实际中应用广泛,所以其基本常识应让每个学生了解。

  1、在介绍三相交变电流的产生时,除课本中提供的插图外,教师可以再找一些图片或模型,使学生明白,三个相同的线圈同时在同一磁场中转动,产生三相交变电流,它们依次落后1/3周期。三相交变电流就是三个相同的交变电流,它们具有相同的最大值、周期、频率。每一个交变电流是一个单相电。

  2、要让学生知道,三个线圈相互独立,每一个都可以相当于一个独立的电源单独供电。由于三个线圈平面依次相差120o角。它们达到最大值(或零)的时间就依次相差1/3周期。用挂图配合三相电机的模型演示,效果很好。

  让三个线圈通过星形连接或三角形连接后对外供电,一方面比用三个交变电流单独供电大大节省了线路的材料,另一方面,可同时提供两种不同电压值的交变电流。教师应组织学生观察生活实际中的交变电流的连接方式,理解课本中所介绍的三相电的.连接。

  教学设计方案

  三相交变电流

  教学目的

  1、知道三相交变电流的产生及特点。

  2、知道星形接法、三角形接法和相电压、线电压知识。

  教具:演示用交流发电机

  教学过程:

  一、引入新课

  本章前面学习了一个线圈在磁场中转动,电路中产生交变电流的变化规律。如果三组互成120°角的线圈在磁场中转动,三组线圈产生三个交变电流。这就是我们今天要学习的三相交变电流。

  板书:第六节三相交变电流

  二、进行新课

  演示单相交流发电机模型:只有一个线圈在磁场中转动,电路中只产生一个交变电动势,这样的发电机叫单相交流发电机。它发出的电流叫单相交变电流。

  演示:三相交流发电机模型,提出研究三相交变电流的产生。

  板书:

  一、三相交变电流的产生

  1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流。

  2、三相交变电流的特点:最大值和周期是相同的。

  板书:三组线圈到达最大值(或零值)的时间依次落后1/3周期

  我们还可以用图像描述三相交变电流

  板书:三相交变电流的图像

  三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?

  板书:

  二、星形连接和三角形连接

  1、星形连接

  说明:在实际应用中,三相发电机和负载并不用6条导线连接,而是把线圈末端和负载之间用一条导线连接,这就是我们要学习的星形连接

  ①把线圈末端和负载之间用一条导线连接的方法叫星形连接(符号Y)

  ②端线、火线和中性线、零线。

  从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线。从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线。

  ③相电压和线电压

  端线和中性线之间的电压叫做相电压。

  两条端线之间的电压叫做线电压。

  我国日常电路中,相电压是220V、线电压是380V。

  2、三角形连接

  ①把发电机的三个线圈始端和末端依次相连的方式叫三角板连接(符号△)。

  ②相电压和线电压。

  两条端线之间的电压就是其中一个线圈的相电压,所以三角形连接中相电压等于线电压。

  高中物理教学设计 16

  一、教学目标

  1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此规律有初步理解。

  2、介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。

  3、通过牛顿发现万有引力定律的思考过程和卡文迪许扭秤的设计方法,渗透科学发现与科学实验的方法论教育。

  二、重点、难点分析

  1、万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。

  2、由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。

  三、教具

  卡文迪许扭秤模型。

  四、教学过程

  (一)引入新课

  1、引课:前面我们已经学习了有关圆周运动的知识,我们知道做圆周运动的物体都需要一个向心力,而向心力是一种效果力,是由物体所受实际力的合力或分力来提供的。另外我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?(学生一般会回答:地球对月球有引力。)

  我们再来看一个实验:我把一个粉笔头由静止释放,粉笔头会下落到地面。

  实验:粉笔头自由下落。

  同学们想过没有,粉笔头为什么是向下运动,而不是向其他方向运动呢?同学可能会说,重力的方向是竖直向下的,那么重力又是怎么产生的呢?地球对粉笔头的引力与地球对月球的引力是不是一种力呢?(学生一般会回答:是。)这个问题也是300多年前牛顿苦思冥想的问题,牛顿的结论也是:yes。

  既然地球对粉笔头的引力与地球对月球有引力是一种力,那么这种力是由什么因素决定的,是只有地球对物体有这种力呢,还是所有物体间都存在这种力呢?这就是我们今天要研究的万有引力定律。

  板书:万有引力定律

  (二)教学过程

  1、万有引力定律的推导

  首先让我们回到牛顿的年代,从他的角度进行一下思考吧。当时“日心说”已在科学界基本否认了“地心说”,如果认为只有地球对物体存在引力,即地球是一个特殊物体,则势必会退回“地球是宇宙中心”的说法,而认为物体间普遍存在着引力,可这种引力在生活中又难以观察到,原因是什么呢?(学生可能会答出:一般物体间,这种引力很小。如不能答出,教师可诱导。)所以要研究这种引力,只能从这种引力表现比较明显的物体——天体的问题入手。当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第

  其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。

  而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它

  用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。如果改

  其中G为一个常数,叫做万有引力恒量。(视学生情况,可强调与物体重力只是用同一字母表示,并非同一个含义。)

  应该说明的是,牛顿得出这个规律,是在与胡克等人的探讨中得到的。

  2、万有引力定律的理解

  下面我们对万有引力定律做进一步的说明:

  (1)万有引力存在于任何两个物体之间。虽然我们推导万有引力定律是从太阳对行星的引力导出的,但刚才我们已经分析过,太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是:

  板书:任何两个物体都是相互吸引的,引力的大小跟两个物体的质

  其中m1、m2分别表示两个物体的质量,r为它们间的'距离。

  (2)万有引力定律中的距离r,其含义是两个质点间的距离。两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。

  (3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。从这一产生原因可以看出:万有引力不同于我们初中所学习过的电荷间的引力及磁极间的引力,也不同于我们以后要学习的分子间的引力。

  3、万有引力恒量的测定

  牛顿发现了万有引力定律,但万有引力恒量G这个常数是多少,连他本人也不知道。按说只要测出两个物体的质量,测出两个物体间的距离,再测出物体间的引力,代入万有引力定律,就可以测出这个恒量。但因为一般物体的质量太小了,它们间的引力无法测出,而天体的质量太大了,又无法测出质量。所以,万有引力定律发现了100多年,万有引力恒量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个恒量。

  这是一个卡文迪许扭秤的模型。(教师出示模型,并拆装讲解)这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

  卡文迪许测定的G值为6.754×10—11,现在公认的G值为6.67×10—11。需要注意的是,这个万有引力恒量是有单位的:它的单位应该是乘以两个质量的单位千克,再除以距离的单位米的平方后,得到力的单位牛顿,故应为Nm2/kg2。

  板书:G=6.67×10—11Nm2/kg2

  由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10—7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。

  五、课堂小结

  本节课我们学习了万有引力定律,了解了任何两个有质量的物体之间都存在着一种引力,这个引力正比于两个物体质量的乘积,反比于两个物体间的距离。其大小的决定式为:

  其中G为万有引力恒量:G=6.67×10—11Nm2/kg2

  另外,我们还了解了科学家分析物体、解决问题的方法和技巧,希望对我们今后分析问题、解决问题能够有所借鉴。

  六、说明

  1、设计思路:本节课由于内容限制,以教师讲授为主。为能够吸引学生,引课时设计了一些学生习以为常的但又没有细致思考过的问题。讲授过程中以物理学史为主线,让学生以科学家的角度分析、思考问题。力争抓住这节课的有利时机,渗透“没有绝对特殊的物体”这一引起物理学几次革命性突破的辩证唯物主义观点。

  2、卡文迪许扭秤模型为自制教具,可仿课本插图用金属杆等焊制,外面可用有机玻璃制成外壳,并可拆卸。

  高中物理教学设计 17

  教学目标:

  (1)理解简谐振动的判断,掌握全过程的特点;

  (2)理解简谐振动方程的物理含义与应用;

  能力目标:

  (1)培养对周期性物理现象观察、分析;

  (2)训练对物理情景的理解记忆;

  教学过程:

  (一)、简谐振动的周期性:周期性的往复运动

  (1)一次全振动过程:基本单元

  平衡位置O:周期性的往复运动的对称中心位置

  振幅A:振动过程振子距离平衡位置的最大距离

  (2)全振动过程描述:

  周期T:完成基本运动单元所需时间

  T=2π

  频率f:1秒内完成基本运动单元的次数

  T=

  位移S:以平衡位置O为位移0点,在全振动过程中始终从平衡位置O点指向振子所在位置

  速度V:物体运动方向

  (二)、简谐振动的判断:振动过程所受回复力为线性回复力

  (F=-KX)K:简谐常量

  X:振动位移

  简谐振动过程机械能守恒:KA2=KX2+mV2=mVo2

  (三)、简谐振动方程:

  等效投影:匀速圆周运动(角速度ω=π)

  位移方程:X=Asinωt

  速度方程:V=Vocosωt

  加速度:a=sinωt

  线性回复力:F=KAsinωt

  上述简谐振动物理参量方程反映振动过程的规律性

  简谐振动物理参量随时间变化关系为正余弦图形

  课堂思考题:

  (1)简谐振动与一般周期性运动的区别与联系是什么?

  (2)如何准确描述周期性简谐振动?

  (3)你知道的物理等效性观点应用还有哪些?

  (四)、典型问题:

  (1)简谐振动全过程的特点理解类

  例题1、一弹簧振子,在振动过程中每次通过同一位置时,保持相同的物理量有()

  A速度B加速度C动量D动能

  例题2、一弹簧振子作简谐振动,周期为T,()

  A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍;

  B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反;

  C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动加速度一定相等;

  D.若Δt=T/2,则在t时刻和(t+Δt)时刻弹簧的长度一定相等

  同步练习

  练习1、一平台沿竖直方向作简谐运动,一物体置于振动平台上随台一起运动.当振动平台处于什么位置时,物体对台面的正压力最小

  A.当振动平台运动到最低点

  B.当振动平台运动到最高点时

  C.当振动平台向下运动过振动中心点时

  D.当振动平台向上运动过振动中心点时

  练习2、水平方向做简谐振动的`弹簧振子其周期为T,则:

  A、若在时间Δt内,弹力对振子做功为零,则Δt一定是的整数倍

  B、若在时间Δt内,弹力对振子做功为零,则Δt可能小于

  C、若在时间Δt内,弹力对振子冲量为零,则Δt一定是T的整数倍

  D、若在时间Δt内,弹力对振子冲量为零,则Δt可能小于

  练习3、一个弹簧悬挂一个小球,当弹簧伸长使小球在位置时处于平衡状态,现在将小球向下拉动一段距离后释放,小球在竖直方向上做简谐振动,则:

  A、小球运动到位置O时,回复力为零;

  B、当弹簧恢复到原长时,小球的速度最大;

  C、当小球运动到最高点时,弹簧一定被压缩;

  D、在运动过程中,弹簧的最大弹力大于小球的重力;

  (2)简谐振动的判断证明

  例题、在弹簧下端悬挂一个重物,弹簧的劲度为k,重物的质量为m。重物在平衡位置时,弹簧的弹力与重力平衡,重物停在平衡位置,让重物在竖直方向上离开平衡位置,放开手,重物以平衡位置为中心上下振动,请分析说明是否为简谐振动,振动的周期与何因素有关?

  解析:当重物在平衡位置时,假设弹簧此时伸长了x0,

  根据胡克定律:F=kx由平衡关系得:mg=kx0

  确定平衡位置为位移的起点,当重物振动到任意位置时,此时弹簧的形变量x也是重物该时刻的位移,此时弹力F1=kx

  由受力分析,根据牛顿第二定律F=Ma得:F1–mg=ma

  由振动过程中回复力概念得:F回=F1–mg

  联立(1)、(3)得:F回=kx-kx0=k(x-x0)

  由此可得振动过程所受回复力是线性回复力即回复力大小与重物运动位移大小成正比,其方向相反,所以是简谐振动。

  由(2)得:a=-(x-x0),结合圆周运动投影关系式:a=-ω2(x-x0)得:ω2=

  由ω=π得:T=2π此式说明该振动过程的周期只与重物质量的平方根成正比、跟弹簧的劲度的平方根成反比,跟振动幅度无关。

  同步练习:

  用密度计测量液体的密度,密度计竖直地浮在液体中。如果用手轻轻向下压密度计后,放开手,它将沿竖直方向上下振动起来。试讨论密度计的振动是简谐振动吗?其振动的周期与哪些因素有关?

  (3)简谐振动方程推导与应用

  例题:做简谐振动的小球,速度的最大值vm=0.1m/s,振幅A=0.2m。若从小球具有正方向的速度最大值开始计时,求:(1)振动的周期(2)加速度的最大值(3)振动的表达式

  解:根据简谐振动过程机械能守恒得:KA2=mVm2

  =Vm2/A2=0.25由T=2π=4π

  a=-A=0.05(m/s2)由ω=π=0.5由t=0,速度最大,位移为0则

  Acosφ=0v=-ωAsinφ则φ=-π/2即有x=0.2cos(0.5t–0.5π)

  高中物理教学设计 18

  教学目标

  知识与技能

  1.知道时间和时刻的区别和联系.

  2.理解位移的概念,了解路程与位移的区别.

  3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.

  4.能用数轴或一维直线坐标表示时刻和时间、位置和位移.

  5.知道时刻与位置、时间与位移的对应关系.

  过程与方法

  1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.

  2.会用坐标表示时刻与时间、位置和位移及相关方向

  3.会用矢量表示和计算质点位移,用标量表示路程.

  情感态度与价值观

  1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.

  2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.

  3.养成良好的思考表述习惯和科学的价值观.

  4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.

  教学重难点

  教学重点

  1.时间和时刻的概念以及它们之间的区别和联系

  2.位移的概念以及它与路程的区别.

  教学难点

  1.帮助学生正确认识生活中的时间与时刻.

  2.理解位移的概念,会用有向线段表示位移.

  教学工具

  教学课件

  多媒体课件

  教学过程

  [引入新课]

  师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念?

  生:质点、参考系、坐标系.

  师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况?

  生:不能.

  师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念?

  一部分学生可能预习过教材,大声回答,一部分学生可能忙着翻书去找.

  师指导学生快速阅读教材第一段,并粗看这节课的黑体字标题,提出问题:要描述物体的机械运动,本节课还将从哪几个方面去描述?

  生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了进一步描述物体的运动而引入的,要研究物体的运动还要学好这些基本概念.

  引言:宇宙万物都在时间和空间中存在和运动.我们每天按时上课、下课、用餐、休息。从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长.对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题--§1.2时间和位移.

  [新课教学]

  一、时刻和时间间隔

  [讨论与交流]

  指导学生仔细阅读“时刻和时间间隔”一部分,然后用课件投影展示本校作息时间表.

  师:同时提出问题;

  1.结合教材,你能列举出哪些关于时间和时刻的说法?

  2.观察教材第14页图1.2-1,如何用数轴表示时间?

  学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每

  组选出代表,发表见解,提出问题.

  生:我们开始上课的“时间”:8:00就是指的时刻;下课的“时间”:8:45也是指的时刻.这样每个活动开始和结束的那一瞬间就是指时刻.

  生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔.

  师:根据以上讨论与交流,能否说出时刻与时间的概念.

  教师帮助总结并回答学生的提问.

  师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间.

  让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论.

  教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况.

  (展示问题)根据下列“列车时刻表”中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间?

  T15站名T16

  18:19北京西14:58

  00:35 00:41郑州08:42 08:36

  05:49 05:57武昌03:28 03:20

  09:15 09:21长沙23:59 23:5l

  16:25广州16:52

  参考答案:6小时59分、15小时50分、22小时零6分.

  (教师总结)

  师:平常所说的“时间”,有时指时刻,有时指时间间隔,如有人问你:“你们什么时间上课啊?”这里的时间是指时间间隔吗?

  生:不是,实际上这里的时间就是指的时刻.

  师:我们可以用数轴形象地表示出时刻和时间间隔.

  教师课件投放教材图1.2-1所显示的问题,将其做成F1ash动画.

  学生分组讨论,然后说说怎样用时间轴表示时间和时刻.

  生:时刻:在时间坐标轴上用一点来表示时刻.时间:两个时刻的间隔表示一段时间.一段时间在时间坐标轴上用一线段表示.

  师:为了用具体数字说明时间,必须选择某一时刻作为计时起点,计时起点的选择是人为的单位秒(s).

  师:下图1-2-1给出了时间轴,请你说出第3秒,前3秒,第3秒初第3秒末,第n秒的意义.

  答:

  1.学习了时间与时刻,蓝仔、红孩、紫珠和黑柱发表了如下一些说法,正确的是…( )

  A.蓝仔说,下午2点上课,2点是我们上课的时刻

  B.红孩说,下午2点上课,2点是我们上课的时间

  C.紫珠说,下午2点上课,2点45分下课,上课的时刻是45分钟

  D.黑柱说,2点45分下课,2点45分是我们下课的时间

  答案:A

  2.关于时刻和时间,下列说法中正确的是…………………………………( )

  A.时刻表示时间较短,时间表示时间较长B.时刻对应位置,时间对应位移

  C.作息时间表上的数字表示时刻D.1 min内有60个时刻

  答案:BC

  解析:紧扣时间和时刻的定义及位置、位移与时刻、时间的关系,可知B、C正确,A错.一段时间内有无数个时刻,因而D错.

  以下提供几个课堂讨论与交流的例子,仅供参考.

  [讨论与交流]:我国在2003年10月成功地进行了首次载人航天飞行.10月15日09时0分,“神舟”五号飞船点火,经9小时40分50秒至15日18时40分50秒,我国宇航员杨利伟在太空中层示中国国旗和联合国旗,再经11小时42分10秒至16日06时23分,飞船在内蒙古中部地区成为着陆.在上面给出的时间或时刻中,哪些指的是时间,哪些又指的是时刻?

  参考答案:这里的“10月15日09时0分”、“15日18时40分50秒”和“16日06时23分”,分别是指这次航天飞行点火、展示国旗和着陆的时刻,而“9小时40分50秒”和“11小时62分10秒”分别指的是从点火到展示国旗和从展示国旗到着陆所用的时间.

  二、路程和位移

  (情景展示)中国西部的塔克拉玛干沙漠是我国的沙漠,在沙漠中,远眺不见边际,抬头不见飞鸟.沙漠中布满了100~200m高的沙丘.像大海的巨浪,人们把它称为“死亡之海”.

  许多穿越这个沙漠的勇士常常迷路,甚至因此而丧生.归结他们失败的原因都是因为在沙漠中搞不清这样三个问题:我在哪里?我要去哪里?选哪条路线?而这三个问题涉及三个描述物体运动的物理量:位置、位移、路程.

  师:(投影中国地图)让学生思考:从北京到重庆,观察地图,你有哪些不同的选择?这些选择有何相同或不同之处?

  生:从北京到重庆,可以乘汽车,也可以乘火车或飞机,还可以中途改变交通工具.选择的路线不同,运动轨迹不同,但就位置变动而言,都是从北京来到了重庆.

  师:根据上面的学习,你能给出位移及路程的定义吗?

  生:位移:从物体运动的起点指向运动的终点的有向线段.位移是表示物体位置变化的物理量.国际单位为米(m).

  路程:路程是质点实际运动轨迹的长度.(板)

  在坐标系中,我们也可以用数学的方法表示出位移.

  实例:质点从A点运动到B点,我们可以用有方向的线段来表示位移,从初始位置A向末位置B画有向线段,展示教材图1.2-3.

  [讨论与交流]

  请看下面的一段对话,找出里面的.哪些语言描述了位置,哪些语言描述了位置的变动.哪些是指路程,哪些是指位移.

  甲:同学,请问红孩去哪里了?

  乙:他去图书室了,五分钟前还在这儿.

  甲:图书室在哪儿?

  乙指着东北的方向说:在那个方位.

  甲:我还是不知道怎么走过去,有最近的路可去吗?

  乙:你可以从这儿向东到孔子像前再往北走,就能看见了.

  丙加入进来,说道;也可以先向北走,再向东,因为那边有好风景可看.

  甲:最近要多远?

  乙:大概要三百米吧.

  丙开玩笑说;不用,你如果能从索道直线到达也就是一百米.

  乙:别骗人了,哪有索道啊!

  丙:我是开玩笑的,那只好辛苦你了,要走曲线.

  甲:谢谢你们两位,我去找他了.

  学生分组讨论后,选代表回答问题.

  生1:乙手指的方向--东北,就是甲在找红孩的过程中发生的位移的方向.

  生2:里面的三百米是指路程,一百米的直线距离是指位移的大小.

  生3:他们谈话的位置和图书室是两个位置,也就是甲在找红孩过程中的初末位置.

  请你举出生活中更常见的例子说明路程和位移.(围绕跑道跑一圈的位移和路程)

  [讨论与思考]

  1.(用课件展示中国地图)在地图上查找上海到乌鲁木齐的铁路.请根据地图中的比例尺估算一下,坐火车从上海到乌鲁木齐的位移和经过的路程分别是多少?

  阅读下面的对话:

  甲:请问到市图书馆怎么走?

  乙:从你所在的市中心向南走400 m到一个十字路口,再向东走300m就到了.

  甲:谢谢!

  乙:不用客气.

  请在图1-2-3上把甲要经过的路程和位移表示出来.

  师:请你归纳一下:位移和路程有什么不同?

  生1:位移是矢量,有向线段的长度表示其大小,有向线段的方向表示位移的方向.

  生2:质点的位移与运动路径无关,只与初位置、末位置有关.

  生3:位移与路程不同,路程是质点运动轨迹的长度,路程只有大小没有方向,是标量.

  教师提出问题

  师:位移的大小有没有等于路程的时候?

  学生讨论后回答,并交流自己的看法.

  生:在直线运动中,位移的大小就等于路程。

  教师适时点拨,画一往复直线运动给学生讨论.

  生:在单方向的直线运动中,位移的大小就等于路程.

  教师总结

  师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小.

  [课堂训练]

  下列关于位移和路程的说法中,正确的是………………( )

  A位移大小和路程不一定相等,所以位移才不等于路程

  B位移的大小等于路程,方向由起点指向终点

  C位移描述物体相对位置的变化,路程描述路径的长短

  D位移描述直线运动,路程描述曲线运动

  答案:C

  解析:A选项表述的因果关系没有意义,故A错.位移的方向可以用从初位置指末位置的有向线段来表示,但位移的大小并不等于路程,往往是位移的大小小于等于路程,故选项B错.位移和路程是两个不同的物理量,位移描述物体位置的变化,路程描述物体运动路径的长短,所以选项C正确.位移的大小和路程不一定相等,只有当物体做单向直线运动时,位移的大小才等于路程.无论是位移还是路程都既可以描述直线运动,也可以描述曲线运动,故选项D也是错误的

  三、矢量和标量

  师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听.

  学生讨论后回答

  生:温度、质量、体积、长度、时间、路程.

  对于讨论中学生可能提出这样的问题,像电流、压强这两个学生学过的物理量,它们是有方向的,但它们仍然是标量.这在以后的学习中会更进一步加深对矢量和标量的认识.

  学生阅读课文后,说说矢量和标量的算法有什么不同.

  生:两个标量相加遵从算术加法的法则.

  [讨论与思考]

  一位同学从操场中心A出发,向北走了40 m,到达C点,然后又向东走了30 m,到达B点.用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移).三个位移的大小各是多少?你能通过这个实例总结出矢量相加的法则吗?

  解析:画图如图1-2-4所示.矢量相加的法则是平行四边形法则.

  [讨论与思考]

  气球升到离地面80m高空时,从气球上掉下一物体,物体又上升了10 m高后才开始下落,规定向上方向为正方向.讨论并回答下列问题,体会矢量的表示方向.

  (1)物体从离开气球开始到落到地面时的位移大小是多少米?方向如何?

  (2)表示物体的位移有几种方式?其他矢量是否都能这样表示?注意体会“+”“-”号在表示方向上的作用.

  解析:(1)一80m,方向竖直向下;(2)到现在有三种:语言表述法,如“位移的大小为80m,方向竖直向下”;矢量图法;“+”“一”号法,如“规定竖直向上为正方向,则物体的位移为一80m”.

  [课堂训练]

  (播放1 500m比赛的录像片断)

  在标准的运动场上将要进行1 500米赛跑,上午9时20分50秒,发令枪响,某运动员从跑道上最内圈的起跑点出发,绕运动场跑了3圈多,到达终点,成绩是4分38秒.请根据上面的信息讨论以下问题,并注意题中有关时间、时刻、路程、位置变化的准确含义.

  (1)该运动员从起跑点到达终点所花的时间是多少?(4分38秒)起跑和到达的时刻分别是多少?(上午9时20分50秒、上午9时25分28秒)

  (2)该运动员跑过的路程是多少?(1 500米)他的位置变化如何?(起跑点到终点的连线)

  四、直线运动的位置和位移

  提出问题:我们怎样用数学的方法描述直线运动的位置和位移?

  如果物体做的是直线运动,运动中的某一时刻对应的是物体处在某一位置,如果是一段时间,对应的是这段时间内物体的位移.

  如图1-2-6所示,物体在时刻t1处于“位置”x1,在时刻t2运动到“位置”x2

  那么(x2- x1)就是物体的“位移”,记为Δx =x2- x1

  可见,要描述直线运动的位置和位移,只需建立一维坐标系,用坐标表示位置,用位置坐标的变化量表示物体位移.

  在一维坐标系中,用正、负表示运动物体位移的方向.如图1-2-7所示汽车A的位移为负值,B的位移则为正值.表明汽车B的位移方向为x轴正向,汽车A的位移方向为x轴负向.

  课后小结

  时间和时刻这两个概念是同学们很容易混淆的,同学们要掌握时间坐标轴.在时间轴上,用点表示时刻,用线段表示一段时间间隔.位移和路程是两个不同的物理量,位移是用来表示质点变动的,它的大小等于运动物体初、末位置间的距离,它的方向是从初位置指向末位置,是矢量;而路程是物体实际运动路径的长度,是标量.只有物体做单向直线运动时,其位移大小才和路程相等,除此以外,物体的位移的大小总是小于路程.找位移的办法是从初位置到末位置间画有向线段.有向线段的方向就是位移的方向,有向线段的长度就是位移的大小.时刻对应位置,时间对应位移.在位置坐标轴上,用点来表示位置,用有向线段来表示位移.

  本节课用到的数学知识和方法:用数轴来表示时间轴和位移轴,在时间轴上,点表示时刻,线段表示时间间隔.要选计时起点(零时刻),计时起点前的时刻为负,计时起点后的时刻为正;在位移轴上,点表示某一时刻的位置,线段表示某段时间内的位移.要选位置参考点(位置零点),直线运动中,可选某一单一方向作为正方向,朝正方向离开参考点的位置都为正,朝负方向离开参考点的位置都为负.位移方向与规定方向相同时为正,相反时为负.标量遵从算术加法的法则,矢量遵从三角形定则(或平行四边形定则,以后会学到,不让学生知道).

  课后习题

  教材第16页问题与练习。

  高中物理教学设计 19

  教学目标:

  一、知识目标:

  1、知道什么是单位制,什么是基本单位,什么是导出单位;

  2、知道力学中的三个基本单位。

  二、能力目标:

  培养学生在计算中采用国际单位,从而使运算过程的书写简化;

  三、德育目标:

  使学生理解建立单位制的重要性,了解单位制的基本思想。

  教学重点:

  1、什么是基本单位,什么是导出单位;

  2、力学中的三个基本单位。

  教学难点:

  统一单位后,计算过程的正确书写。

  教学方法:

  讲练法,归纳法

  教学用具:

  投影仪、投影片

  教学步骤:

  一、导入新课

  前边我们已经学过许多物理量,它们的公式各不相同,并且我们知道,有的是通过有关的公式找到它们之间的联系的:那么各个物理量的单位之间有什么区别?它们又是如何构成单位制的呢?本节课我们就来共同学习这个问题。

  二、新课教学:

  (一)用投影片出示本节课的学习目标:

  1、知道什么是单位制,知道力学中的三个基本单位;

  2、认识单位制在物理计算中的作用。

  (二)学习目标完成过程:

  1、基本单位和导出单位:

  (1)举例:

  a:对于公式,如果位移s的单位用米,时间t的单位用秒;我们既可用公式得到v、s、t之间的数量关系,又能够确定它们单位之间的关系,即可得到速度的单位是米每秒。

  b:用公式F=ma时,当质量用千克做单位,加速度用米每二次方秒做单位,求出的力的单位就是千克米每二次方秒,也就是牛,并且我们也能得到力、质量、加速度之间的数量关系。

  (2)总结推广:

  物理公式在确定物理量的数量的同时,也确定了物理量的单位关系。

  (3)基本单位和导出单位:

  a:在物理学中,我们选定几个物理量的单位作为基本单位;

  b:据物理公式中这个物理量和其他物理量之间的关系,推导出其他物理量的单位,叫导出单位;

  c:举例说明:

  1)我们选定位移的单位米,时间的单位秒,就可以利用推导得到速度的单位米每秒。

  2)再结合公式,就可以推导出加速度的单位:米每二次方秒。

  3)如果再选定质量的单位千克,利用公式F=ma就可以推导出力的单位是牛。

  (4)基本单位和到单位一起构成了单位制。

  (5)学生阅读课文,归纳得到力学中的三个基本单位。

  a:长度的单位——米;

  b:时间的单位——秒;

  c:质量的单位——千克。

  (6)巩固训练:

  现有下列物理量或单位,按下面的要求填空:A:质量;B:N;C:m/s2D:密度;E:m/s;F:kg;G:cm;H:s;I:长度;J:时间。

  1)属于物理量的是。

  2)在国际单位制中作为基本单位的物理量有;

  3)在国际单位制中属于基本单位的有,属于导出单位的有。

  2、例题教学:

  (1)用投影片出示例题:

  一个原来静止的物体,质量是7千克,在14牛的恒力作用下:

  a:5秒末的速度是多大?

  b:5秒内通过的路程是多大?

  (2)分析:

  本题中,物体的受力情况是已知的,需要明确物体的运动情况,物体的初速度v0=0,在恒力的作用下产生恒定的加速度,所以它作初速度为零的匀加速直线运动,已知物体的质量m和所受的力F,据牛顿第二定律F=ma求出加速度a,即可用运动学共识求解得到最终结果。

  (3)学生在胶片上书写解题过程,选取有代表性的过程进行评析:

  已知:m=7kg,F=14N,t=5s

  求:vt和S

  解:

  vt=at=2m/s2×5s=10m/s

  s=at2=×2m/s2×25s2=25m

  (4)评析:刚才这位同学在解答过程中,题中各已知量的单位都是用国际单位表示的,计算的结果也是用国际单位表示的,做的很好。

  引申:既然如此,我们在统一各已知量的单位后,就不必一一写出各物理的单位,只在数字后面写出正确单位就可以了。

  (5)用投影片出示简化后的解题过程:

  (6)巩固训练:

  质量m=200g的物体,测得它的加速度为a=20cm/s2,则关于它所受的合力的大小及单位,下列运算既正确又符合一般运算要求的是。

  A:F=20020=400N;B:F=0.20.2=0.04N:

  C:F=0.20.2=0.04;D:F=0.2kg0.2m/s2=0.04N

  三、小结

  通过本节课的学习,我们知道了什么是导出单位,什么是基本单位,什么是单位制,以及统一单位后,解题过程的正确书写方法。

  四、作业:

  一个物体在光滑的水平面上受到一个恒力的.作用,在0.3秒的时间内,速度从0.2m/s增加到0.4m/s;这个物体受到另一个恒力的作用时,在相同的时间内,速度从0.5m/s增加到0.8m/s,第二个力和第一个力之比是多大?

  五、板书设计:

  五:力学单位制高一物理上学期知识点整理:力学部分

  高一物理上学期知识点整理:力学部分

  第一章..定义:力是物体之间的相互作用。

  理解要点:

  (1)力具有物质性:力不能离开物体而存在。

  说明:①对某一物体而言,可能有一个或多个施力物体。

  ②并非先有施力物体,后有受力物体

  (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

  说明:①相互作用的物体可以直接接触,也可以不接触。

  ②力的大小用测力计测量。

  (3)力具有矢量性:力不仅有大小,也有方向。

  (4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

  (5)力的种类:

  ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

  ②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

  说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

  重力

  定义:由于受到地球的吸引而使物体受到的力叫重力。

  说明:①地球附近的物体都受到重力作用。

  ②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

  ③重力的施力物体是地球。

  ④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

  (1)重力的大小:G=mg

  说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

  ②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

  ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

  (2)重力的方向:竖直向下(即垂直于水平面)

  说明:①在两极与在赤道上的物体,所受重力的方向指向地心。

  ②重力的方向不受其它作用力的影响,与运动状态也没有关系。

  (3)重心:物体所受重力的作用点。

  重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

  ②质量分布不均匀的物体的重心与物体的形状、质量分布有关。

  ③薄板形物体的重心,可用悬挂法确定。

  说明:①物体的重心可在物体上,也可在物体外。

  ②重心的位置与物体所处的位置及放置状态和运动状态无关。

  ③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。

  弹力

  (1)形变:物体的形状或体积的改变,叫做形变。

  说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。

  ②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

  (2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。

  说明:①弹力产生的条件:接触;弹性形变。

  ②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。

  ③弹力必须产生在同时形变的两物体间。

  ④弹力与弹性形变同时产生同时消失。

  (3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

  几种典型的产生弹力的理想模型:

  ①轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。

  ②点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。

  ③平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

  (4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。

  摩擦力

  (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:①摩擦力的产生是由于物体表面不光滑造成的。

  ②摩擦力具有相互性。

  ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。

  ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

  说明:①“与相对运动方向相反”不能等同于“与运动方向相反”

  ②滑动摩擦力可能起动力作用,也可能起阻力作用。

  ⅲ滑动摩擦力的大小:F=μFN

  说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

  ②μ与接触面的材料、接触面的粗糙程度有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

  ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

  (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

  说明:静摩擦力的作用具有相互性。

  ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。

  ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

  说明:①运动的物体可以受到静摩擦力的作用。

  ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

  ③静摩擦力可以是阻力也可以是动力。

  ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。

  说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

  ②最大静摩擦力大小决定于正压力与最大静摩擦因数(选学)Fm=μsFN。

  ⅳ效果:总是阻碍物体间的相对运动的趋势。

  对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:

  1.根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。

  2.把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

  3.对物体受力分析时,应注意一下几点:

  (1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

  (2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。

  (3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

  力的合成

  求几个共点力的合力,叫做力的合成。

  (1)力是矢量,其合成与分解都遵循平行四边形定则。

  (2)一条直线上两力合成,在规定正方向后,可利用代数运算。

  (3)互成角度共点力互成的分析

  ①两个力合力的取值范围是|F1-F2|≤F≤F1+F2

  ②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。

  ③同时作用在同一物体上的共点力才能合成(同时性和同体性)。

  ④合力可能比分力大,也可能比分力小,也可能等于某一个分力。

  力的分解

  求一个已知力的分力叫做力的分解。

  (1)力的分解是力的合成的逆运算,同样遵循平行四边形定则。

  (2)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解。

  要得到唯一确定的解应附加一些条件:

  ①已知合力和两分力的方向,可求得两分力的大小。

  ②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。

  ③已知合力、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小:

  若F1=Fsinθ或F1≥F有一组解

  若F>F1>Fsinθ有两组解

  若F<Fsinθ无解

  (3)在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。

  (4)力分解的解题思路

  力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题。因此其解题思路可表示为:

  必须注意:把一个力分解成两个力,仅是一种等效替代关系,不能认为在这两个分力方向上有两个施力物体。

  矢量与标量

  既要由大小,又要由方向来确定的物理量叫矢量;

  只有大小没有方向的物理量叫标量

  矢量由平行四边形定则运算;标量用代数方法运算。

  一条直线上的矢量在规定了正方向后,可用正负号表示其方向。

  思维升华——规律方法思路

  一、物体受力分析的基本思路和方法

  物体的受力情况不同,物体可处于不同的运动状态,要研究物体的运动,必须分析物体的受力情况,正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。

  分析物体的受力情况,主要是根据力的概念,从物体的运动状态及其与周围物体的接触情况来考虑。具体的方法是:

  1.确定研究对象,找出所有施力物体

  确定所研究的物体,找出周围对它施力的物体,得出研究对象的受力情况。

  (1)如果所研究的物体为A,与A接触的物体有B、C、D……就应该找出“B对A”、“C对A”、“D对A”、的作用力等,不能把“A对B”、“A对C”等的作用力也作为A的受力;

  (2)不能把作用在其它物体上的力,错误的认为可通过“力的传递”而作用在研究的对象上;

  (3)物体受到的每个力的作用,都要找到施力物体;

  (4)分析出物体的受力情况后,要检查能否使研究对象处于题目所给出的运动状态(静止或加速等),否则会发生多力或漏力现象。

  2.按步骤分析物体受力

  为了防止出现多力或漏力现象,分析物体受力情况通常按如下步骤进行:

  (1)先分析物体受重力。

  (2)其研究对象与周围物体有接触,则分析弹力或摩擦力,依次对每个接触面(点)分析,若有挤压则有弹力,若还有相对运动或相对运动趋势,则有摩擦力。

  (3)其它外力,如是否有牵引力、电场力、磁场力等。

  3.画出物体力的示意图

  (1)在作物体受力示意图时,物体所受的某个力和这个力的分力,不能重复的列为物体的受力,力的合成与分解过程是合力与分力的等效替代过程,合力和分力不能同时认为是物体所受的力。

  (2)作物体是力的示意图时,要用字母代号标出物体所受的每一个力。

  二、力的正交分解法

  在处理力的合成和分解的复杂问题上的一种简便的方法:正交分解法。

  正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。

  力的正交分解法步骤如下:

  (1)正确选定直角坐标系。通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。

  (2)分别将各个力投影到坐标轴上。分别求x轴和y轴上各力的投影合力Fx和Fy,其中:

  Fx=F1x+F2x+F3x+……;Fy=F1y+F2y+F3y+……

  注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。第2章的高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量

  1、加速度a与速度V的关系符合下式:V==at,t为时间变量,我们有

  a==V/t

  表明,加速度a,就是速度V在单位时间内的平均变化率。

  2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)

  数学知识指出,k是特定直线y=kx的斜率,直线斜率有如下性质:

  (1)不同直线(彼此不平行)的斜率,数值不等

  (2)同一直线上斜率的数值,处处相等(与y和x的数值无关)

  (3)直线斜率的数值,可以通过y和x的数值来求算:

  k==y/x

  (4)虽然k==y/x,但是,y==0,x==0,k不为零。

  仿此,(1)不同运动的加速度,数值不等

  (2)同一运动的加速度数值,处处相等(与V和t的数值无关)

  (3)运动的加速度数值,可以通过V和t的数值来求算:

  ==V/t

  (4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。

  .变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?

  变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。

  加速度在与速度方向在同一条直线上时才改变速度的大小,有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。

  刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)

  15米/秒加速度是5米/二次方秒那么停止需要3秒钟

  3秒通过的路程是s=15*3-1/2*5*3^2=22.5

  反应时间是0.8秒s=0.8*15=12

  总的距离就是22.5+12=34.5

  原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。

  要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。

  速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。

  加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。

  对比上面速度与加速度的概念,你就会容易理解一点的。