角的平分线的性质的教学设计

时间:2024-06-27 19:05:14 诗琳 教学设计 我要投稿
  • 相关推荐

角的平分线的性质的教学设计(通用6篇)

  作为一位优秀的人民教师,编写教学设计是必不可少的,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那要怎么写好教学设计呢?下面是小编整理的角的平分线的性质的教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

角的平分线的性质的教学设计(通用6篇)

  角的平分线的性质的教学设计 1

  【教学目标】

  1、使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题、

  2、通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力、

  3、通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情、

  【教学重点】

  角平分线的性质定理和判定定理的探索与应用、

  【教学难点】

  理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系、

  【教学方法

  启发探究式、

  【教学手段】

  多媒体(投影仪,计算机)、

  【教学过程】

  一、复习引入:

  1、角平分线的定义:

  一条射线把一个角分成两个相等的角,这条射线

  叫这个角的平分线、

  表达方式:

  如图1,∵ OC是∠AOB的平分线,∴ ∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB)、

  2、角平分线的画法:

  你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC)、

  可以用尺规作图,可以用折纸的方法,可以用TI图形计算器、

  3、创设探究角平分线性质的情境:

  用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30、学生可能拼出的图形是:

  (拼法1)(拼法2)(拼法3)

  选择第三种拼法(如图2)提出问题:

  (1)P是∠DOE平分线上一点,PD、PE与∠DOE

  的边有怎样的位置关系?

  (2)点P到∠DOE两边的距离可以用哪些线段来表示?

  (3)PD、PE有怎样的数量关系?(投影)

  二、探究新知:

  (一)探索并证明角平分线的性质定理:

  1、实验与猜想:

  引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离、通过度量、观察并比较,猜想它们有怎样的`数量关系?

  用TI图形计算器实验的结果:

  (教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系)、

  引导学生用语言阐述自己的观点,得出猜想:

  命题1在角平分线上的点,到这个角的两边的距离相等、

  2、证明与应用:

  (学生写在笔记本上)

  已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E、

  求证:PD=PE、(投影)

  证明:∵ OC是∠AOB的平分线,∴ ∠1=∠2、

  ∵ PD⊥OA于D,PE⊥OB于E,∴ ∠ODP=∠OEP=90、

  又∵ OP=OP,∴ △ODP≌△OEP(AAS)、

  ∴ PD=PE

  三、作业设计

  反思:

  一、重视情境创设,让学生经历求知过程。本节课引入问题教学的模式,其目的是引导学生积极参与课堂,积极投入到解题思路的探索过程中,通过合作学习引导学生深层次参与,倡导同学们要学会用大脑去思考,用耳朵去倾听,用眼睛去观察,用双手去操作,使学生言语与行动逐步起到自觉调控的作用,促进思维的“内化”,从而发展学生的独立思考能力。

  二、不足之处的反思:通过看自己的录像课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。

  角的平分线的性质的教学设计 2

  一、教学目标

  【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

  【过程与方法】在探究作角的平分线的方法及角的平分线的.性质的过程中,进一步发展学生的推理证明意识和能力。

  【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣。有合作交流的意识。动手操作的能力与探索精神,获得解决问题的成功体验。

  二、教学重难点

  【重点】角的平分线的性质的证明及应用。

  【难点】角的平分线的性质的探究。

  三、教学过程

  (一)导入新课

  1、复习角平分线的画法

  2、利用PPT创设情景:

  如图是小明制作的风筝,他根据AB=AD,BC=DC。不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?

  (二)生成新知

  探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演。教师纠正答案)

  如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开。观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论。

  ∴△PDO≌△PEO(AAS)

  ∴PD=PE。

  (三)深化新知

  思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)

  (四)应用新知

  1、例题:解决导入中PPT的问题

  2、练一练:下面四个图中,点P都在∠AOB的平分线上,则图形_____中PD=PE。

  (五)小结作业

  小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

  作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

  角的平分线的性质的教学设计 3

  教学目标

  1、应用三角形全等的知识,解释角平分线的原理、

  2、会用尺规作一个已知角的平分线、

  教学重点

  利用尺规作已知角的平分线、

  教学难点

  角的平分线的作图方法的.提炼、

  教学过程

  Ⅰ、提出问题,创设情境

  问题1:三角形中有哪些重要线段、

  问题2:你能作出这些线段吗?

  Ⅱ、导入新课

  在学直角三角形全等的条件时有这样一个题:

  在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB、MC与NC交于C点、

  求证:∠MOC=∠NOC、

  通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线、

  受这个题的启示,我们能不能这样做:

  在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了、

  思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)

  议一议:图中是一个平分角的仪器,其中AB=AD,BC=DC、将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线、你能说明它的道理吗?

  要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB、

  ∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了、

  看看条件够不够、 所以△ABC≌△ADC(SSS)

  角的平分线的性质的教学设计 4

  一、教学目标:

  (一)掌握的知识与技能:

  1、经历折纸。画图等操作过程认识三角形的高。中线。角平分线,结合图形,会用几何语言表述。

  2、会用工具准确地画出三角形的高。中线与角平分线。

  (二)经历的教学思考:

  经历折纸、画图、观察、思考、交流等活动,发展空间观念和表达能力

  (三)培养的情感态度和价值观:

  通过数学活动,让学生体验和理解三角形中的特殊线段,结合图形认识三角形的高。中线。角平分线所揭示的数量关系,学会发现问题,解决问题。

  二、教学重难点:

  1、重点:

  (1)了解三角形的高、中线。角平分线的概念,会用工具准确画出三角形高。中线。角平分线。

  (2)了解三角形的三条高,三条中线与三条角平分线分别交于一点。

  2、难点:

  (1)三角形平分线与角平分线的区别,三角形的高与垂线的区别。

  (2)钝角三角形高的画法。

  (3)不同的三角形三条高的`位置关系。

  三、教学方法:

  自主探究,合作交流

  四、教学工具:

  三角形纸片,三角板,直尺

  五、教学过程:

  1、各组组长检查预习作业完成情况。

  2、师生问好。

  3、情境导入:【大屏幕显示】白雪公主有一块三角形的煎饼,她打算把煎饼分成面积相等的七块给小矮人,想了很久也不知道怎么分,你能帮助她吗?

  4、展示本课学习目标【大屏幕显示】

  5、学生自学课本p65—66内容后,完成导学案。(小组共同完成,组长组织)教师巡视全班。(导学案附后)

  6、通过题目检查学生自学情况。【大屏幕显示】(学生抢答)

  7、将学生在自学过程中的疑难问题适当加以点拨。

  8、学生完成课堂练习,完成后交给组长评分。(课堂练习附后)

  9、共同完成拓展练习。

  10、共同完成课前设疑的问题。现在你能帮助白雪公主了吗?

  11、课堂小结:由学生总结,互相补充。

  12、布置课下作业。

  角的平分线的性质的教学设计 5

  一、教学目标

  1、了解推理。证明的格式,掌握平行线判定公理和第一个判定定理。

  2、会用判定公理及第一个判定定理进行简单的推理论证。

  3、通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力。

  二、学法引导

  1、教师教法:启发式引导发现法。

  2、学生学法:独立思考,主动发现。

  三、重点、难点及解决办法

  (一)重点

  在观察实验的基础上进行公理的概括与定理的推导。

  (二)难点

  判定定理的形成过程中逻辑推理及书写格式。

  (三)解决办法

  1、通过观察实验,巧妙设问,解决重点。

  2、通过引导正确思维,严格展示推理书写格式,明确方法来解决难点。疑点。

  四、课时安排

  l课时

  五、教具学具准备

  三角板。投影胶片。投影仪。计算机。

  六、师生互动活动设计

  1、通过两组题,复习旧知,引入新知。

  2、通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固。

  3、通过教师提问,学生回答完成归纳小结。

  七、教学建议

  1、教材分析

  (1)知识结构:

  由平行线的画法,引出公理(同位角相等,两直线平行)。由公理推出:内错角相等,两直线平行。同旁内角互补,两条直线平行,这两个定理。

  (2)重点。难点分析:

  本节的重点是:公理及两个判定定理。一般的定义与第一个判定定理是等价的都可以做判定的方法。但平行线的`定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学习好平行线的性质打下了基础。

  本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。

  2、教学建议

  在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜想—实践检验—明确条件和结论。”

  教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线。在此过程中,注意角的变化情况。事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行。

  公理后,有些同学可能会意识到“内错角相等,两直线也会平行”。教师可组织学生按所给图形进行讨论。如何利用已知和几何的公理。定理来证明这个显然成立的事实。也可多叫几个同学进行重复。逐步使学生欣赏到数学证明的严谨性。另一个定理的发现与证明过程也与此类似。

  角的平分线的性质的教学设计 6

  【教学目标】

  1、使学生知道三角形的角平分线和中线的定义,并能熟练地画出这两种线段

  2、能应用三角形的角平分线和中线的性质解决简单的数学问题

  能力目标:培养学生形成观察辨别、全面分析、归纳概括等数学方法,培养学生的思维方法和良好的思维品质。

  情感目标:通过提问、讨论等多种教学活动,树立自信、自强、自主感,激发学习数学的兴趣,增强学好数学的信心。

  【教学重点、难点】

  教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。

  【教学过程】

  一、 合作交流,探讨结论

  请同学回答下面的问题

  在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?

  在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条角平分线的特点。(三条线都在三角形的内部,三条线相交于一点)

  任意画一个ABC,用刻度尺画BC的中点D,连结A D

  引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。(让学的中线的形状也是线段生理解三角形)

  请同学回答问题:在一个三角形中有几条中线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?

  在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条中线的'特点。(三条线都在三角形的内部,三条线相交于一点)

  三角形的角平分线、中线用几何语言表达方式:如图 在?ABC中,∠BAD=∠CAD,AD是?ABC的角平分线;在?ABC中,D是BC的中点(或B D= DC),AD是?ABC中BC边上的中线。

  三、应用概念,解决问题

  范例1如图AE是?ABC的角平分线,已知∠B=450 ∠C=600

  求下列角的大小 ∠BAE ; ∠AEB

  首先让学生仔细观察图形,分析已知条件,教师作好引导

  四、 巩固练习

  请学生课内练习1、2教师分析总结

  五、 拓展与应用

  让学生在熟悉概念的基础上,做更灵活的计算与应用

  1、在ABC中,角平分线B D与C E交于点F,已知∠A=550 求∠EFD的度数

  2、在ABC中,A D是BC边上的中线,已知AB=7AC=5,求?AB D和?AC D的周长的差

  六、 学生总结

  让学生回顾本节课的主要内容

  七、 作业布置

  课后请同学做好书本中的作业1——4。

【角的平分线的性质的教学设计】相关文章:

角的平分线的性质的教学设计09-28

角的平分线的性质教学反思04-09

角平分线的性质教学反思02-04

《角平分线的性质2》教学反思(精选10篇)11-06

角平分线教学反思04-05

角平分线教学反思04-05

角平分线教学反思(精选16篇)07-17

角平分线教学反思范文(精选11篇)10-16

等式的性质教学设计04-04