分式的加减说课稿

时间:2025-04-02 14:35:04 赛赛 说课稿 我要投稿

分式的加减说课稿(精选5篇)

  作为一无名无私奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是小编整理的分式的加减说课稿,欢迎阅读,希望大家能够喜欢。

分式的加减说课稿(精选5篇)

  分式的加减说课稿 1

  一、说教材

  (1)本课在在教材中的地位和作用

  《分式的加减法》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的.加减法》第二课时以及《分式方程》的学习做好必备的知识储备。

  (2)教学目标

  ①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;

  ②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;

  ③情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

  (3)重点、难点

  ①重点:掌握分式的加减运算

  ②难点:异分母的分式加减运算

  二、说教法

  本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。

  三、说学法

  根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。

  四、说教学过程

  (一)创设情境,导入新知

  第一环节:提出问题

  问题一:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他浸入3000字文稿比手抄用多少时间?

  问题二:从甲地到乙地有两条路,每条路都是3km,其中第一条路是平路,第二条路有1km的上坡路,2km的下坡路。小丽在上坡路的骑车速度为Vkm/h,在平路上的骑车速度为2Vkm/h,在下坡路的骑车速度为3Vkm/h,那么:

  (1)当走第一条路时,她从甲地到乙地需多长时间?

  (2)当走第二条路时,她从甲地到乙地需多长时间?

  (3)她走哪条路花费的时间少?少用多长时间?

  老师活动:组织学生分组讨论,再共同研究

  学生活动:小组讨论、探究、发言

  设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。

  第二环节:

  同分母分工相加减

  想一想:

  (1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3……

  (2)猜一猜,同分母的分式应该如何加减?如:b/a+c/a=……

  老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则

  学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。

  在学生通过交流得到猜想的基础上出示做一做:

  做一做:(1)1/a+2/a=_____________

  (2)x2/(x—2)–4/(x—2)=___________

  (3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________

  教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法则:同分母的分式相加减,分母不变,把分子相加减

  老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则

  学生活动:通过个体练习,领悟规律,再小组交流,形成法则

  设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则

  (二)主动探究,拓展延伸

  第三环节:异分母的分式相加减

  想一想:

  (1)异分母的分数如何相加减?如:1/2+2/3=……

  (2)你认为异分母的分式应该如何加减?如:1/a+2/b=………

  老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法。

  学生活动:参与交流、讨论、归纳异分母分式加减的方法。

  设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同分母分式的方法,培养学生的转化思想,为下节课做好准备。

  (三)例题教学

  第四环节:解决问题

  (1)回到开始提出的两个问题:

  问题一:3000/a—1000/a=2000/a

  问题二:1/v+2/3v–3/2v=1/6v

  (2)例题1:计算(课本P81页)

  老师活动:出示习题,巡视、引导、纠正

  学生活动:自主完成

  设计意图:进一步提高学生对异分母分式的加减运算能力

  (四)随堂练习

  第五环节:巩固深化

  课本P81随堂练习1、2

  老师活动:巡视、引导

  学生活动:个体练习、板演

  设计意图:检验学生是否掌握异分母分式的加减运算方法

  (五)课堂小结

  第六环节:提高认识

  (1)同分母分式加减法则

  (2)简单异分母分式的加减

  老师活动:引导

  学生活动:归纳总结

  设计意图:锻炼学生及时总结的良好习惯和归纳能力

  分式的加减说课稿 2

  今天我说课的课题是《分式的加减》,下面我将从教材、教学目标、教学方法、教学过程这几个方面具体阐述我对这节课的理解和设计、首先,我对本节教材进行简要分析。

  一、说教材

  本节内容是江苏教育出版社的义务教育数学课程标准实验教科书《数学》八年级下册第八章第三节第一课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。

  本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。

  基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。

  二、说目标

  根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准制定如下:

  知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

  为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。

  三、说教学方法

  教法选择与手段:本课我主要以"复习旧知,导入新知,例题讲解,拓展延伸"为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。

  学法指导:根据学生的认知水平,我设计了"观察思考、猜想归纳、例题学习和巩固提高"四个层次的学法。

  最后,我来具体谈一谈本节课的教学过程。

  四、说教学过程

  在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。

  第一环节:观察导入

  观察:从下面的两种运算中,你能发现什么?

  (1)(2), ; .

  问题:我们学过的分数的加减运算可以分为同分母分数的加减和异分母分数的加减,具体的运算法则是什么?

  老师活动:提出问题,促进思考。

  学生活动:思考问题、发言回答。

  设计意图:通过观察两组运算,可以让学生自主总结分数的加减运算法则,这为引入分式的加减运算作铺垫,由已知到未知,有由浅入深,让学生更容易接受新知识。

  与分数的加减运算法则相似,分式的加减也分为同分母分式相加减和异分母分式相加减,

  类比猜测:

  (1)同分母的分式如何加减?

  如,怎样计算:b/a+c/a=? ;b/a-c/a=?

  (2)异分母的分式如何加减?

  如,怎样计算:b/a+c/d=? ;b/a-c/d=?

  老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则、学生活动:思考、讨论、交流,进行类比,而后发表意见,说明自己的推测。

  设计意图:通过问题引发学生思考,让他们在探索问题的过程中体验学习的乐趣,由学生的类比猜想的结论,给出本节课学习的重点:分式的

  加减运算法则。并给以定义:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,后加减。

  第二环节:例题示范

  例一:计算(1)

  (2)

  老师活动:讲解两个例题,演示分式的加减的步骤,教会学生法则的运用,同时也强调计算过程的注意点(结果要化为最简)。

  学生活动:通过例题示范,领悟规律,学会法则的运用。

  设计意图:通过例题向学生展示同分母分式相加减和异分母分式相加减两种运算的主要步骤,给出分数的加减运算的具体过程,同时突出法则重点,步骤是关键。例题示范让学生不仅熟悉了分式的加减法则,也了解了分式加减的具体运算步骤。

  第三环节:习题巩固

  我将板书四个习题让学生自主解答,这四个题包含了同分母分式的加减和异分母分式的加减,具体题目如下:

  练习:计算 (1)

  (2)

  (3)

  (4)

  设计意图:本环节围绕分式的'加减法则在计算中的应用这一难点设计,设置的习题也紧紧围绕教学重点和难点展开,让学生在计算习题的过程中掌握分式的加减运算,及时巩固已学的知识,学以致用,同时让学生抓住运算步骤之一关键,体验问题解决的方法。

  第四环节:归纳总结

  今天学习了分式的加减,通过本节的学习,你有什么收获?还有哪些问题?

  提示:

  (1)同分母分式的加减法则;

  (2)异分母分式的加减法则;

  (3)计算分式的加减的一般解题步骤。

  设计意图:我将用提问的方法引导学生回答问题,强调分式的加减运算的法则是本节课的重点;让学生总结计算分式的加减的一般解题步骤,突出这是本节课的教学难点。通过问题式的小结,让学生再次归纳总结本节课的重点,弥补教学中的不足。同时也锻炼学生及时总结的良好习惯和归纳能力。

  第五环节:分层作业

  必做题:第45页,习题8.3第1题。

  选做题:第45页,习题8.3第2、3题。

  设计意图:根据新课标精神,"人人学数学;人人学有用的数学;不同的人学不同的数学。"在作业时给出有梯度的练习,以满足不同层次学生学习的需要。而且通过选作题的探究,让学生体会分式加减运算在解决现实问题中的应用,为下节课分式的加减的第二课时奠定基础。

  各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。

  本说课一定存在诸多不足,恳请各位老师提出宝贵意见。谢谢!

  分式的加减说课稿 3

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算。

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法。

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力。

  解决问题

  一、会进行同分母和异分母分式的加减运算。

  二、会解决与分式的加减有关的简单实际问题。

  三、能进行分式的加、剪、乘、除、乘方的混合运算。

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点。

  重点

  分式的.加减法。

  难点

  异分母分式的加减法及简单的分式混合运算。

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1、问题一:比较电脑与手抄的录入时间。

  2、问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3、这里用到了分式的加减,提出本节课的主题。

  教师通过课件展示问题。学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情。

  [活动2]

  1、提出小学数学中一道简单的分数加法题目。

  2、用课件引导学生用类比法,归纳总结同分母分式加法法则。

  3、教师使用课件展示[例1]

  4、教师通过课件出两个小练习。

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则。

  学生在教师的引导下,探索同分母分式加减的运算方法。

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的。注意事项。

  由两个学生板书自主完成练习,教师巡视指导学生练习。

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识。

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心。

  让学生进一步体会同分母分式的加减运算。

  分式的加减说课稿 4

  教学目标

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点

  分式通分的理解和掌握。

  教学难点

  分式通分中最简公分母的确定。

  教学工具:

  投影仪

  教学方法:

  启发式、讨论式

  教学过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2、通分的依据:分式的基本性质。

  3、通分的关键:确定几个分式的最简公分母。

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为: 然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。取这些因式的`积就是最简公分母。

  例2 通分:

  设问:对于分母为多项式的分式通分如何找最简公分母?

  前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。

  解:∵ 最简公分母是2x(x+1)(x-1),

  小结:当分母是多项式时,应先分解因式。

  解:

  将分母分解因式:x2-4=(x+2)(x-2)。4-2x=-2(x-2)。

  ∴最简公分母为2(x+2)(x-2)。

  由学生归纳一般分式通分:

  通分的关键是确定几个分式的最简公分母,其步骤如下:

  1.将各个分式的分母分解因式;

  2.取各分母系数的最小公倍数;

  3.凡出现的字母或含有字母的因式为底的幂的因式都要取;

  4.相同字母或含字母的因式的幂的因式取指数最大的;

  5.将上述取得的式子都乘起来,就得到了最简公分母;

  6. 原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母。

  练习:教材P.79中1、2、3。

  (三)课堂小结

  1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  分式的加减说课稿 5

  〖教学目标〗

  1、掌握同分母的分式加减法法则。

  2、能运用法则进行同分母分式的加减运算。

  3、能将分母绝对值相等的分式转化为同分母分式,并进行运算。

  4、培养学生的观察能力,运算能力,理解能力。

  〖教学重点与难点〗

  教学重点:同分母分式加减运算。

  教学难点:例2涉及两个分式的分母要作适当转化后,才能运用同分母分式的加减法则,过程较为复杂。

  〖教学过程〗

  一、创设情景,引入新课

  (1) (口答) 下列分数中,哪几个分数是同分母分数?

  23,110 ,-1712 ,-323,510, 512

  (2)(口答)计算下列各式,并说出所根据的法则:

  310 + 510, 712 –1712, 323 + 13

  这一法则能否推广到分式运算中呢?

  (3)(试一试)计算:①1a + 3a ②x-1x+1 – xx+1

  并分别取a=3,x=4检验你的计算方法是否正确?

  板书课题 分式的加减(1)

  二、新课教学

  1.同分母分式加减法则:

  ac + bc = a+bc ac – bc = a-bc

  (小黑板)下面进行基础题组练习:计算

  ①3a + 12a – 15a ②ax2 + bx2 – cx2

  ③1m – –3m ④yx–y – xx–y

  2.例1计算:

  ⑴a+3ba+b + a–ba+b ⑵2xy2+1(x–y)2 – 1+2x2y(y–x)2

  对题组及例题的训练,指出注意问题:(1)用法则时找“同分母”,如有绝对值相等的分母如何化为同分母?x–y与 y–x一样吗?那(x–y)2与(y–x)2一样吗?(2)“分式相加减”是指分子的“整体”相加减,分子是多项式时,要充分发挥分数线的括号功能,尤其对减式的`分子要加上括号再去括号计算,(3)计算的结果必须化简。

  巩固练习课本P177 作业题A组 123

  3。例2先化简,再求值: x2–1x2–2x + x–12x–x2 ,其中x=3.

  问题:

  ①先观察算式,判断两个分式是否同分母?

  ②怎样将它们化成同分母呢?

  ③回顾前面学过的分式的符号法则。

  ④最后分子、分母含有公因式应该予以约简。

  学生口述,教师强调书写格式。

  巩固练习:P177课内练习2、作业题4

  三、小结:

  1、同分母分式相加减,分母不变,分子相加减;当分母是互为相反数时,通过变号转化;

  2、当分式的分子为多项式时,减式的分子可先加括号再化简;

  3、分式加减的结果应化为最简分式或整式。

《分式的加减说课稿(精选5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【分式的加减说课稿】相关文章:

《分式的加减法》说课稿范文07-16

分式的加减教案09-10

分式的加减教学反思09-22

分式说课稿10-27

分式复习说课稿10-10

关于《分式的加减》的教案设计07-31

《从分数到分式》说课稿11-07

分式方程的说课稿11-04

《分式的加减》教学反思(通用16篇)03-20

分式的加减说课稿(精选5篇)

  作为一无名无私奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是小编整理的分式的加减说课稿,欢迎阅读,希望大家能够喜欢。

分式的加减说课稿(精选5篇)

  分式的加减说课稿 1

  一、说教材

  (1)本课在在教材中的地位和作用

  《分式的加减法》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的.加减法》第二课时以及《分式方程》的学习做好必备的知识储备。

  (2)教学目标

  ①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;

  ②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;

  ③情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

  (3)重点、难点

  ①重点:掌握分式的加减运算

  ②难点:异分母的分式加减运算

  二、说教法

  本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。

  三、说学法

  根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。

  四、说教学过程

  (一)创设情境,导入新知

  第一环节:提出问题

  问题一:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他浸入3000字文稿比手抄用多少时间?

  问题二:从甲地到乙地有两条路,每条路都是3km,其中第一条路是平路,第二条路有1km的上坡路,2km的下坡路。小丽在上坡路的骑车速度为Vkm/h,在平路上的骑车速度为2Vkm/h,在下坡路的骑车速度为3Vkm/h,那么:

  (1)当走第一条路时,她从甲地到乙地需多长时间?

  (2)当走第二条路时,她从甲地到乙地需多长时间?

  (3)她走哪条路花费的时间少?少用多长时间?

  老师活动:组织学生分组讨论,再共同研究

  学生活动:小组讨论、探究、发言

  设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。

  第二环节:

  同分母分工相加减

  想一想:

  (1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3……

  (2)猜一猜,同分母的分式应该如何加减?如:b/a+c/a=……

  老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则

  学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。

  在学生通过交流得到猜想的基础上出示做一做:

  做一做:(1)1/a+2/a=_____________

  (2)x2/(x—2)–4/(x—2)=___________

  (3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________

  教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法则:同分母的分式相加减,分母不变,把分子相加减

  老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则

  学生活动:通过个体练习,领悟规律,再小组交流,形成法则

  设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则

  (二)主动探究,拓展延伸

  第三环节:异分母的分式相加减

  想一想:

  (1)异分母的分数如何相加减?如:1/2+2/3=……

  (2)你认为异分母的分式应该如何加减?如:1/a+2/b=………

  老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法。

  学生活动:参与交流、讨论、归纳异分母分式加减的方法。

  设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同分母分式的方法,培养学生的转化思想,为下节课做好准备。

  (三)例题教学

  第四环节:解决问题

  (1)回到开始提出的两个问题:

  问题一:3000/a—1000/a=2000/a

  问题二:1/v+2/3v–3/2v=1/6v

  (2)例题1:计算(课本P81页)

  老师活动:出示习题,巡视、引导、纠正

  学生活动:自主完成

  设计意图:进一步提高学生对异分母分式的加减运算能力

  (四)随堂练习

  第五环节:巩固深化

  课本P81随堂练习1、2

  老师活动:巡视、引导

  学生活动:个体练习、板演

  设计意图:检验学生是否掌握异分母分式的加减运算方法

  (五)课堂小结

  第六环节:提高认识

  (1)同分母分式加减法则

  (2)简单异分母分式的加减

  老师活动:引导

  学生活动:归纳总结

  设计意图:锻炼学生及时总结的良好习惯和归纳能力

  分式的加减说课稿 2

  今天我说课的课题是《分式的加减》,下面我将从教材、教学目标、教学方法、教学过程这几个方面具体阐述我对这节课的理解和设计、首先,我对本节教材进行简要分析。

  一、说教材

  本节内容是江苏教育出版社的义务教育数学课程标准实验教科书《数学》八年级下册第八章第三节第一课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。

  本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。

  基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。

  二、说目标

  根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准制定如下:

  知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

  为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。

  三、说教学方法

  教法选择与手段:本课我主要以"复习旧知,导入新知,例题讲解,拓展延伸"为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。

  学法指导:根据学生的认知水平,我设计了"观察思考、猜想归纳、例题学习和巩固提高"四个层次的学法。

  最后,我来具体谈一谈本节课的教学过程。

  四、说教学过程

  在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。

  第一环节:观察导入

  观察:从下面的两种运算中,你能发现什么?

  (1)(2), ; .

  问题:我们学过的分数的加减运算可以分为同分母分数的加减和异分母分数的加减,具体的运算法则是什么?

  老师活动:提出问题,促进思考。

  学生活动:思考问题、发言回答。

  设计意图:通过观察两组运算,可以让学生自主总结分数的加减运算法则,这为引入分式的加减运算作铺垫,由已知到未知,有由浅入深,让学生更容易接受新知识。

  与分数的加减运算法则相似,分式的加减也分为同分母分式相加减和异分母分式相加减,

  类比猜测:

  (1)同分母的分式如何加减?

  如,怎样计算:b/a+c/a=? ;b/a-c/a=?

  (2)异分母的分式如何加减?

  如,怎样计算:b/a+c/d=? ;b/a-c/d=?

  老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则、学生活动:思考、讨论、交流,进行类比,而后发表意见,说明自己的推测。

  设计意图:通过问题引发学生思考,让他们在探索问题的过程中体验学习的乐趣,由学生的类比猜想的结论,给出本节课学习的重点:分式的

  加减运算法则。并给以定义:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,后加减。

  第二环节:例题示范

  例一:计算(1)

  (2)

  老师活动:讲解两个例题,演示分式的加减的步骤,教会学生法则的运用,同时也强调计算过程的注意点(结果要化为最简)。

  学生活动:通过例题示范,领悟规律,学会法则的运用。

  设计意图:通过例题向学生展示同分母分式相加减和异分母分式相加减两种运算的主要步骤,给出分数的加减运算的具体过程,同时突出法则重点,步骤是关键。例题示范让学生不仅熟悉了分式的加减法则,也了解了分式加减的具体运算步骤。

  第三环节:习题巩固

  我将板书四个习题让学生自主解答,这四个题包含了同分母分式的加减和异分母分式的加减,具体题目如下:

  练习:计算 (1)

  (2)

  (3)

  (4)

  设计意图:本环节围绕分式的'加减法则在计算中的应用这一难点设计,设置的习题也紧紧围绕教学重点和难点展开,让学生在计算习题的过程中掌握分式的加减运算,及时巩固已学的知识,学以致用,同时让学生抓住运算步骤之一关键,体验问题解决的方法。

  第四环节:归纳总结

  今天学习了分式的加减,通过本节的学习,你有什么收获?还有哪些问题?

  提示:

  (1)同分母分式的加减法则;

  (2)异分母分式的加减法则;

  (3)计算分式的加减的一般解题步骤。

  设计意图:我将用提问的方法引导学生回答问题,强调分式的加减运算的法则是本节课的重点;让学生总结计算分式的加减的一般解题步骤,突出这是本节课的教学难点。通过问题式的小结,让学生再次归纳总结本节课的重点,弥补教学中的不足。同时也锻炼学生及时总结的良好习惯和归纳能力。

  第五环节:分层作业

  必做题:第45页,习题8.3第1题。

  选做题:第45页,习题8.3第2、3题。

  设计意图:根据新课标精神,"人人学数学;人人学有用的数学;不同的人学不同的数学。"在作业时给出有梯度的练习,以满足不同层次学生学习的需要。而且通过选作题的探究,让学生体会分式加减运算在解决现实问题中的应用,为下节课分式的加减的第二课时奠定基础。

  各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。

  本说课一定存在诸多不足,恳请各位老师提出宝贵意见。谢谢!

  分式的加减说课稿 3

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算。

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法。

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力。

  解决问题

  一、会进行同分母和异分母分式的加减运算。

  二、会解决与分式的加减有关的简单实际问题。

  三、能进行分式的加、剪、乘、除、乘方的混合运算。

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点。

  重点

  分式的.加减法。

  难点

  异分母分式的加减法及简单的分式混合运算。

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1、问题一:比较电脑与手抄的录入时间。

  2、问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3、这里用到了分式的加减,提出本节课的主题。

  教师通过课件展示问题。学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情。

  [活动2]

  1、提出小学数学中一道简单的分数加法题目。

  2、用课件引导学生用类比法,归纳总结同分母分式加法法则。

  3、教师使用课件展示[例1]

  4、教师通过课件出两个小练习。

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则。

  学生在教师的引导下,探索同分母分式加减的运算方法。

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的。注意事项。

  由两个学生板书自主完成练习,教师巡视指导学生练习。

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识。

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心。

  让学生进一步体会同分母分式的加减运算。

  分式的加减说课稿 4

  教学目标

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点

  分式通分的理解和掌握。

  教学难点

  分式通分中最简公分母的确定。

  教学工具:

  投影仪

  教学方法:

  启发式、讨论式

  教学过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2、通分的依据:分式的基本性质。

  3、通分的关键:确定几个分式的最简公分母。

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为: 然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。取这些因式的`积就是最简公分母。

  例2 通分:

  设问:对于分母为多项式的分式通分如何找最简公分母?

  前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。

  解:∵ 最简公分母是2x(x+1)(x-1),

  小结:当分母是多项式时,应先分解因式。

  解:

  将分母分解因式:x2-4=(x+2)(x-2)。4-2x=-2(x-2)。

  ∴最简公分母为2(x+2)(x-2)。

  由学生归纳一般分式通分:

  通分的关键是确定几个分式的最简公分母,其步骤如下:

  1.将各个分式的分母分解因式;

  2.取各分母系数的最小公倍数;

  3.凡出现的字母或含有字母的因式为底的幂的因式都要取;

  4.相同字母或含字母的因式的幂的因式取指数最大的;

  5.将上述取得的式子都乘起来,就得到了最简公分母;

  6. 原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母。

  练习:教材P.79中1、2、3。

  (三)课堂小结

  1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  分式的加减说课稿 5

  〖教学目标〗

  1、掌握同分母的分式加减法法则。

  2、能运用法则进行同分母分式的加减运算。

  3、能将分母绝对值相等的分式转化为同分母分式,并进行运算。

  4、培养学生的观察能力,运算能力,理解能力。

  〖教学重点与难点〗

  教学重点:同分母分式加减运算。

  教学难点:例2涉及两个分式的分母要作适当转化后,才能运用同分母分式的加减法则,过程较为复杂。

  〖教学过程〗

  一、创设情景,引入新课

  (1) (口答) 下列分数中,哪几个分数是同分母分数?

  23,110 ,-1712 ,-323,510, 512

  (2)(口答)计算下列各式,并说出所根据的法则:

  310 + 510, 712 –1712, 323 + 13

  这一法则能否推广到分式运算中呢?

  (3)(试一试)计算:①1a + 3a ②x-1x+1 – xx+1

  并分别取a=3,x=4检验你的计算方法是否正确?

  板书课题 分式的加减(1)

  二、新课教学

  1.同分母分式加减法则:

  ac + bc = a+bc ac – bc = a-bc

  (小黑板)下面进行基础题组练习:计算

  ①3a + 12a – 15a ②ax2 + bx2 – cx2

  ③1m – –3m ④yx–y – xx–y

  2.例1计算:

  ⑴a+3ba+b + a–ba+b ⑵2xy2+1(x–y)2 – 1+2x2y(y–x)2

  对题组及例题的训练,指出注意问题:(1)用法则时找“同分母”,如有绝对值相等的分母如何化为同分母?x–y与 y–x一样吗?那(x–y)2与(y–x)2一样吗?(2)“分式相加减”是指分子的“整体”相加减,分子是多项式时,要充分发挥分数线的括号功能,尤其对减式的`分子要加上括号再去括号计算,(3)计算的结果必须化简。

  巩固练习课本P177 作业题A组 123

  3。例2先化简,再求值: x2–1x2–2x + x–12x–x2 ,其中x=3.

  问题:

  ①先观察算式,判断两个分式是否同分母?

  ②怎样将它们化成同分母呢?

  ③回顾前面学过的分式的符号法则。

  ④最后分子、分母含有公因式应该予以约简。

  学生口述,教师强调书写格式。

  巩固练习:P177课内练习2、作业题4

  三、小结:

  1、同分母分式相加减,分母不变,分子相加减;当分母是互为相反数时,通过变号转化;

  2、当分式的分子为多项式时,减式的分子可先加括号再化简;

  3、分式加减的结果应化为最简分式或整式。