《用比例解决问题》说课稿

时间:2025-04-10 16:20:18 诗琳 说课稿 我要投稿

《用比例解决问题》说课稿(精选12篇)

  作为一名专为他人授业解惑的人民教师,编写说课稿是必不可少的,编写说课稿是提高业务素质的有效途径。写说课稿需要注意哪些格式呢?以下是小编为大家整理的《用比例解决问题》说课稿,仅供参考,欢迎大家阅读。

《用比例解决问题》说课稿(精选12篇)

  《用比例解决问题》说课稿 1

  说教学目标:

  1.掌握用正比例的方法解答相关应用题。

  2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

  3.培养学生分析问题、解决问题的能力。

  4.发展学生综合运用知识解决问题的能力。

  说教学重点:

  掌握用正比例的方法解答应用题。

  说教学难点:

  能正确判断两种相关联的量成什么比例,正确列出比例式。

  说教法和学法:

  1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。

  2.学法:理解分析与合作交流相结合。

  说教学准备:

  教学挂图、小黑板

  说教学过程:

  一、联系实际,复习迁移

  1.判断下面每题中的两种量成什么比例?并说明理由。

  (1)单价一定,总价和数量。

  (2)我们班学生做操,每行站的人数和站的行数。

  (3)速度一定,路程和时间。

  (4)每吨水的价钱一定,水费和用水的`吨数。

  2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。

  二、探索新知,培养能力

  1.教学例5

  (1)出示挂图:观察画面,说出题中告诉我们哪些信息?

  (2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?

  (3)提出:你能用以前学过的方法解答?

  (4)学生试着解答,并汇报解法。

  可能出现两种情况:生1:12.8÷8×10生2:10÷8×12.8

  =1.6×10 =1.25×12.8

  =16(元)=16(元)

  (5)激励引新

  师:这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。今天我们就来学习用比例知识解答问题,引出课题,并板书:用比例解决问题

  (6)探讨新知

  提出问题,同桌讨论:题目中有哪两种相关联的量?它们成什么比例关系,为什么?根据这样的比例关系,你能列出等式吗?

  (7)引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  板书:解:设李奶奶家上个月的水费是X元。板书计算过程略

  (8)概括总结:象这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  2.变式练习。

  师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?

  (1)出示条件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?

  (2)让学生用比例的知识解答改编后的题目。

  (3)指名板演,并说一说你是怎么想的?

  (4)比较一下改编后的题和例5有什么联系和区别?

  例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要设需要用的水数为X吨,列出等式是:12.8∶8=19.2∶X

  (5)想一想:怎样用比例解决问题?

  小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。

  三、说巩固练习,形成技能。

  1.小黑板出示:一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  ① “照这样计算”就是说()是一定的。

  ②()和()成()比例。

  ③两次行驶的路程和时间的()相等。

  ④根据这样的比例关系,请你列出方程。

  2.教科书第60页做一做第1题:让学生直接用比例知识解答。做完后,讨论并请同学说一说:你为什么这样列式?

  3.完成练习九第3题。师提醒:同一时间、同一地点的身高和影长成正比例。

  四、说全课总结。

  今天我们学习的是什么应用题,它的解答步骤是怎样的呢?

  五、说课后延伸,深化拓展。

  一条公路全长1500米,一个工程队前3天修了600米,照这样计算,还需要多少天才能把这条公路修好?

  《用比例解决问题》说课稿 2

  一、说教材:

  1、教学内容:

  这部分内容是再教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  成正、反比例的量,在生活实际中应用很广,学生再前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,再原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,再教学上要十分重视从旧知识引申出新知识,再这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

  2、教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的`能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  3、教学重点:用比例知识解决实际问题

  4、教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  第一、情境引入:

  老师请你用一把米尺去测量学校旗杆的高度,你能行吗?给出信息,引入新课内容。

  第二、联系实际,复习迁移

  1、出示课件:数学门诊

  判断下面的说法是否正确,并说明理由。

  2、判断下面两种相关联的量是否成正比例?为什么?

  第三、情境教学新课

  1、学习例5,用正比例意义解决问题。

  (1)、学生提出问题。同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏有哪些数学问题呢?

  小结:水的单价一定,用水吨数与总价成正比例。

  2、教师提出问题。

  看来同学们能正确判断两种量成什么比例关系了。这一节课我们一起运用比例知识来解决一些实际问题。请看屏幕。

  出示例5:

  思考:题中告诉了我们哪些信息?要解决什么问题?你能利用数学知识帮李奶奶算出上个月的水费吗?

  3、解决问题。

  (1)尝试解决。

  (2)根据学生回答教师板书:

  (3)激励引新。

  大家能用我们学过的方法先求出每吨水的价格,再算出10吨水的价钱。请大家再认真想一想,能不能用刚刚学过的知识——比例来解答呢?

  思考:

  ①题目告诉我们哪几个量?

  ②哪种量是固定不变的?哪两个量成什么比例关系?

  ③怎样列含有未知数的等式?)

  学生回答上述问题完成填空。(因为每吨水的价钱一定,所以用水的吨数和水费成正比例。也就是说,两家的水费和用水的吨数的比值相等。可以根据比值相等列出等式。)

  反馈学生解题情况。

  验算:你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  3、变式练习。

  瞧!王大爷又遇到了什么问题呢?出现下面的练习:王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  学生独立用比例的知识解决这个问题。

  第四、学以致用。

  1、用比例解决下列问题。

  1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?

  2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?

  3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)

  提醒:同一时间、同一地点的身高和影长成正比例。

  根据实际情况,可以独立解答,也可以讨论解答。

  4、实践作业。

  1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?

  2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。

  第五、课堂总结。

  说说你的收获。评价自己的表现。

  《用比例解决问题》说课稿 3

  一、教学目标:

  知识与技能:

  1.掌握用正、反比例知识解答含有正、反比例关系问题的步骤和方法。

  2.使学生熟练地判断两种相关联的量是否成正反比例,从而加深对正反比例意义的理解。

  3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的.。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”“变式练习”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  课程标准中指出:数学教学是数学活动的教学,这里强调的是数学活动,因此本节课的教学也是以数学活动贯穿始终的。整节课的数学活动都是以数学思考与合作交流穿插有序的进行,为学生创设一个有效的数学活动氛围。

  (一)、联系生活,习旧引新:

  新课程标准中指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学”,“教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学再现实生活中的应用价值。”遵循这一理念,我以复习导入,说先让学生说说什么是正比例,什么是反比例,接着判断各题成不成比例,成什么比例,然后结合教材中提供的素材 “生活用水、包装图书等信息,”让学生判断题中的相关联的量成什么比例关系,并列出等式,为下面的解决问题打下坚实的基础。

  数学源于生活,生活中处处有数学,类似归一、归总的实际问题生活中素材很多。学生再生活中也有用水收费和包装图书的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生在交流中提取有用的信息,为下面的探究呈现素材。

  (二)、合作探索,领悟解题方法:

  1、感知用比例解决问题的关键。

  (1) 我先组织学生用学过的方法自主解决问题,让学生对题中的数量关系有了初步的认识。

  (2)接着让学生用学过的比例知识分析解答,我出示思考题,小组交流,并试着解决,让一部分学生体会到成功的喜悦,通过集体交流订正,让大家领会到解决问题的方法。

  “什么都可以代替,唯有思维不可代替”,在这当中教师要逐渐打开学生独立思考的闸门,激发学生的求知欲,放手让学生独立思考,大胆实践,自己解答,在此基础上教师在给以指点和总结。所以在学生完成例题后,紧接着进行变式练习,进而总结解题方法,为学生独立解决例6做准备。

  2、再比较中体会知识的实质。教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。再学生充分小组交流的基础上,引导学生形成有价值的发现和体会。

  (三)、巩固应用,提升认识

  1、练习的设计,紧扣例题,让学生再熟悉的比例关系中,进一步掌握用比例解决问题的方法。

  2、数学源于生活又服务与生活,所以我设计的课后作业是让学生利用所学的知识测量计算学校旗杆的高度。

  (四)、课堂小结

  意在让学生对所学的内容进行回顾,深化认识,加深理解。

  《用比例解决问题》说课稿 4

  教学目标

  1:能正确判断问题中数量之间的比例关系。

  2:正确利用比例知识解决问题。

  3:通过策略多样化的训练,培养学生的发散性思维。

  教学重难点

  教学重点:能用正、反比例知识解决实际问题。

  教学难点:正确分析题中的比例关系,列出方程。

  教学工具

  课件

  教学过程

  一、复习铺垫,引入新课。

  师:同学们,我们先来回忆一下有关正、反比例的知识。

  师:判断下面每题中的两种量成什么比例?(课件出示)

  (1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量. (4)每小时耕地的公顷数一定, 耕地的总公顷数和时间. ( 5)全校学生做操,每行站的人数和站的行数. 【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,前面我们学习了比例、正比例、反比例的意义,还学习了解比例。这节课我们就应用比例的知识解决生活中的一些实际问题。板书课题《用比例解决问题》。

  二、探究新知

  1:(一)用正比例的知识解决问题(探究例5)

  过渡语:看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

  师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?

  学生自己解答,然后交流解答方法。

  2:师:像这样的问题也可以用比例的知识来解决。

  出示自学提纲。

  (1)题目中有几个量。

  (2) 谁和谁成什么比例关系?你是怎么判断的?

  (3 )哪个量是固定不变的。

  (4) 根据比例关系,列出等式。

  3:学生交流自学结果,相互补充,呈现一个完整的解答过程。

  师:谁来说说你是怎样用比例知识来解决问题的?

  根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  4、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法。

  5即时练习

  过渡语:同学们帮助李奶奶解决问题,我们一起去看看王大爷家又发生了什么事情呢?

  出示对话情景。

  师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?

  在学生的`交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

  小结:用正比例解决问题的关键是找到不变量,只要两个量的比值一定,就可以用正比例关系解答。

  (二)用反比例的知识解决问题(学习P62例6)

  师:解决了生活中水的问题,下面我们一起看看生活的电中蕴含着什么数学问题。

  1课件出示情境图,了解题目条件与问题。

  生:独立解决,并在小组交流解题思路和计算方法。

  学生汇报解题思路。

  过渡语:像这样的问题也能用比例的方法解决。请同学们仿照正比例的解题方法,并参照课本62页的内容,自学例6.

  生:交流汇报解题思路。

  师:谁来和大家分享一下你们的结果。

  师:(教师手指25x=100×5,x=20。)为什么这样列式?根据是什么?

  生汇报:因为总的用电量一定,所以用电天数和每天的用电量成反比例.也就是说,每天的用电量和天数的乘积相等。

  2.即时练习

  课件出示:现在30天的用电量原来只够用多少天?

  师:会解决吗?

  生:独立解决,交流订正。

  小结:解决这个问题的关键是找到哪两个量的乘积一定。只要两个量的乘积一定,就可以用反比例关系来解答。 3:总结用比例解决问题的几个步骤:

  (1) 梳理相关联的两种量。

  (2) 判断相关联的两种量成什么比例。

  (3) 解比例。

  (4) 用自己熟练的方法来检验。

  三:巩固练习

  1:小明买4支圆珠笔用6元。小刚想买3支同样的圆珠笔,要用多少钱?(要求用比例知识解)

  学生自己独立解决问题并说说原因。

  学情预设:小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。

  2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支。

  第2题,用反比例关系可以解决这个问题。

  设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四:课堂小结

  通过这节课的学习,你有哪些收获?谈谈你的感受。

  板书

  用比例解决问题

  解:设李奶奶家上个月的水费是x元。 解:设原来5天的用电量现在可以用x天。

  X:10=28:8 25x=100×5

  8x=28×10 x=500÷25

  X=35 x=20

  答:李奶奶家上个月的水费是35元。 答:原来5天的用电量现在可以用20天

  《用比例解决问题》说课稿 5

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的'步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

  《用比例解决问题》说课稿 6

  教学目标:

  知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  过程与方法

  1.通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  2.借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  3.通过策略多样化的训练,培养学生的发散性思维。

  情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点:

  教学重点:用比例知识解答比较容易的归一、归总应用题。

  教学难点:掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  教学准备:

  多媒体课件;小组学习记录卡。

  教学方法:

  尝试教学法、引导发现法等。

  教学过程:

  一、铺垫孕伏,建立表象。(课件出示)

  1.判断下面每题中的两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行路程和时间。

  (2)书的总本数一定,每包的本数和包装的包数。

  (3)圆柱的体积一定,圆柱的底面积和高。

  (4)单价一定,总价和数量。单价一定,总价和数量.

  2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  [设计意图]本节课的教学内容是正、反比例的应用,因此通过本环节的教学,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1.出示例5情景图,说一说图意,了解数学事例。

  2.让学生自己解答,然后交流解答方法。

  [设计意图]用以往学过的方法解决问题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1.梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2.因为( )一定,所以( )和( )成( )比例。也就是说,( )和( )的比值相等。

  5.根据这样的关系,你能列出比例吗?

  6.请解比例。

  小组合作探究用比例解题的方法。

  找出题中两种相关联的量,以及对应的数据,完成探究活动。

  设计意图]教师提出小组合作学习的要求,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部分。探究的问题既突出了学习的重点,又把用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。

  (三)形成策略,展示成果

  我们知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或28:8=x:10),比例的解是x=35。(板书解法)

  [设计意图]注重学生在教学活动中的主体性,留给学生充分的时间和空间。先让学生自己解答,再组织、引导学生合作、交流自己发现方法。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力,探究能力。使学生增强学习的自信。

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的.解答是正确的呢?

  启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  [设计意图]“检验反思”有利于培养学生良好的学习习惯,同时提高解决问题的正确率。归纳解题的策略,有助于提高学生解决问题的能力。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  三.应用策略,拓展新知

  1.例6:一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  [设计意图]让学生通过自己的努力获得用反比例的知识解决问题的能力。

  2.学生独立解决做一做的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  [设计意图]再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  [设计意图]通过例题的讲解,学生总结用比例解答应用题关键和解题步骤。

  五、巩固练习,考考自己(课件出示)

  1.独立去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2.仔细去分析,巧妙来选择。

  (1)李师傅5小时做80个零件,照这样计算,16小时可以做多少个零件?这题( ) A.用正比例解B.用反比例解C.不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订2000本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是( )

  A.1800X=2000×40 B.2000X=1800×40 3.争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15=100:X ( )

  (2)一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?这是一道正比例应用题。( )

  4.用边长为15cm的方砖给教室铺地,需要2000块。如果改用边长为25cm的方砖铺地,需要多少块?(用比例解答)

  [设计意图]通过不同层次的练习,循序渐进,围绕所学基础知识设计变式题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:教科书P63、64练习十一第3、8题。

  【板书设计】

  用比例解决问题

  用比例解决问题的“五个步骤”:例5解:设李奶奶家上个月的水费是χ元。

  一找(梳理相关联的两种量) 28:8=χ:10

  二判(判断相关联的两种量成什么比例) 8χ=28×10

  三列(设未知x,根据判断列出比例) χ=280÷8

  四解(解比例) χ=35

  五检(用自己熟练的方法来检验)答:李奶奶家上个月的水费是35元。

  《用比例解决问题》说课稿 7

  教学目标:

  知识技能:

  1、使学生理解和掌握圆锥的特征及各部分名称。

  2、使学生掌握测量圆锥的高的方法。

  3、培养学生的观察能力、操作能力和思维能力,发展学生的空间观念。

  过程方法:创设情景,由学生自己提出问题,通过自主探索,合作交流,学生动口、动手又动脑,主动参与知识的形成过程

  情感态度:培养学生积极参与、勇于探索、敢于创新的自主学习精神,发展学生的思维能力,培养学生学习数学的兴趣

  教学过程:

  一、回顾强化

  课件演示:出示一支圆柱形铅笔。

  教师问:同学们这支铅笔是什么形状的?你能说说它具有什么特征吗?

  学生:是圆柱体。它的特征是:圆柱有三个面,有上下两个底面,是完全相同的两个圆,有一个侧面是曲面,两个底面之间的距离叫做圆柱的高,有无数条高。圆柱侧面展开是长方形。

  二、创设情境,激情导入

  教师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细观察屏幕

  课件:用转笔刀削铅笔,把削成的笔尖部分(圆锥体)垂直切下来。

  老师问:这还是圆柱体吗?被切下来的是什么几何形体呢?

  学生:不是。是圆锥体。

  老师揭示课题:我们把象这样的几何形体叫做圆锥体,简称圆锥,我们所学的圆锥都是直圆锥。今天我们就来学习《圆锥的认识》。板书课题

  三、探究体验。

  1、列举,提出问题。

  同学们想一想,在日常生活和生产劳动中,你都看到过哪些物体的形状是圆锥体的?你也可以把课下收集的圆锥形物体拿出来给大家看。

  生1:冰激凌外壳的形状是圆锥体的。

  生2:有的帽子的形状是圆锥体的。

  生3:漏斗的形状是圆锥体的。

  生4:盖房子用的铅锤的形状是圆锥体的。

  ……

  同学们很善于观察,请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

  生可能提出:

  1、我想知道圆锥的特征。

  2、我想知道圆锥有几条高?它的高指的是什么?

  3、我想知道圆锥的侧面展开是什么形状的?

  4、我想知道圆锥的体积应怎样计算?

  5、我想知道圆锥的表面积该怎样计算?

  2、自主探究、解决问题。

  教师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

  学生:手拿圆锥体模型观察、想。

  教师:把你观察到的,感觉到的告诉给你小组的同学,小组同学共同探讨刚才大家提出的问题

  小组交流、讨论。教师深入小组和学生一起进行探讨。

  教师:哪组愿把你们的研究成果展示给大家。

  学生汇报:(预设展示过程)

  A、圆锥的特征。

  ①我们发现圆锥上面细,下面粗。

  ②圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。

  ③圆锥有一个弯曲光滑的`面,我们可以把它叫做侧面。这个面是曲面。

  ④圆锥有一个圆形的面,我们可以把他叫做底面。

  ⑤我们还发现圆锥的底面朝下立者,尖朝下不立者。

  ⑥圆锥在桌子上滚动时,既不朝前走,也不朝后走,它总是绕着一点画圆。

  B、圆锥的高

  ①我们发现圆锥的高是从圆锥的顶点到底面之间的距离。

  ②圆锥的高是从圆锥的顶点到底面圆心的距离,我们认为圆锥只有一条高。

  ③圆锥的高是圆锥的底面到顶点的线段的长。

  ④我们认为他们说的不准确,圆锥的高是从圆锥的顶点到底面的距离。它应该有无数条高。因为从圆锥的顶点引一条与底面平行的线,这样就可以作出无数条高。

  教师:同学们对于圆锥的高有几种不同的看法,谁的说法是正确呢?请同学们小组进行讨论。

  学生:小组进行讨论。

  教师:哪些同学同意某某的说法。老师也同意这位同学的说法。请同学们仔细看屏幕。(课件演示圆锥的高)

  教师:这条黑色的虚线就是圆锥的高。谁愿意说说圆锥的高指的是什么?

  学生试说圆锥的高:

  圆锥的高是从圆锥的顶点到底面圆心的距离。圆锥只有一条高。因为圆锥只有一个顶点和一个底面圆心。

  教师:请同学们打开书42页看第三自然段最后一句话,谁来读。

  (指名读、齐读高的定义)

  教师:哪一组还有发现。

  C、圆锥的侧面展开。

  我们发现圆锥的侧面展开是扇形。(举起给同学们看,一名同学把展开的图形贴在黑板上)

  教师用课件演示侧面展开的过程。

  教师:通过刚才的学习,我们掌握了圆锥各部分的名称。请同学们拿起圆锥体模型,小组同学互相说说圆锥各部分的名称。

  小组互相说圆锥各部分的名称。

  教师:谁愿意到前面说说圆锥各部分的名称。

  两名学生到前面来说

  3、由实物抽象出几何图

  教师:同学们说得可真好!老师这有三幅圆锥体实物图,请同学们看。(课件展示)圆锥的几何图是什么样的呢?请同学们仔细看(课件展示)画图时看不见的部分应怎样画?(课件演示)

  这就是圆锥的几何图

  学生:用虚线画。

  教师:同学们看黑板这是圆锥的几何图。(教师边说边揭开贴纸)谁能到前面对照圆锥的几何图说说你都学会了有关圆锥的哪些知识?

  学生到前面说

  教师:请同学们闭上眼睛想一想圆锥是什么样子的?

  4、探究测量圆锥高的方法。

  教师:通过刚才的学习我们掌握了圆锥的特征及圆锥各部分的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?先想一想,然后利用课下大家准备的材料,小组同学共同探究圆锥的高的测量方法。

  学生汇报:

  生1:我们小组是这样测量的,先把圆锥底面放平,用直尺水平地放在圆锥的顶点上,用三角板竖直地量出圆锥的高

  生2:我们小组的方法和他们的差不多,只是用小尺竖立在桌面上,然后用三角板通过顶点与直尺垂直。

  生3:我认为这种方法比第一种测量准确。因为三角板这样放在圆锥的顶点上可以与直尺保持垂直,准确地测量出高

  生4:我们是这样测量的,把圆锥的底面朝下倒立在桌面上,把小尺放在圆锥的底面上,然后用三角板垂直地测量出顶点到底面之间的距离。

  生5:我认为这种方法不太好,因为这种方法不能使用于所有的圆锥,比如,一个大的小麦堆,能把它倒过来测量它的高吗?

  生6:我们认为不管用什么方法,都应该注意小尺测量时要从“0”刻度开始。

  四、看书质疑。

  五、课堂练习

  1、在下面的图形中找出哪些是圆锥。

  课本练习十二1题

  2、判断。(打手势)

  (1)圆锥的侧面是曲面。( )

  (2)圆柱侧面展开是长方形,圆锥侧面展开也是长方形。( )

  (3)从圆锥的顶点到底面任意一点的线段叫做圆锥的高。( )

  (4)圆锥的底面是圆形。( )

  3、练习十二2题

  六、课堂小结。

  这节课我们学习了什么?通过这节课的学习你都学会了什么?

  七、作业。

  到室外找一些沙子或土堆成一个圆锥形,想办法测量出它的高,可以两个人进行合作。

  《用比例解决问题》说课稿 8

  学习目标:

  使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

  学习重难点:

  重点:运用正、反比例解决实际问题。

  难点:正确判断两种量成什么比例。

  学习方法:

  尝试教学法、引导发现法等。

  学习过程:

  一、旧知铺垫

  1、下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求:

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  如:

  2、根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  70×4=56×5

  二、探索新知

  1、教学例5

  (1)出示课文情境图,描述例题内容。

  板书:8吨水10吨水

  水费12.8元水费?元

  (2)你想用什么方法解决问题?

  过程要求:

  ①学生独立思考,寻找解决问题的`方式。

  ②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

  ①汇报解决问题的结果。

  引导提问:

  A、题中哪两种量是变化的量?说说变化情况。

  B、题中哪一种量一定?哪两种量成什么比例?

  c、用关系式表示应该怎样写?

  ②板书:解:设李奶奶家上个月的水费是X元

  8X=12.8×10

  X=

  X=16答:略

  (3)与算术解比较。

  ①检验答案是否一样。

  ②比较算理。算述解答时,关键看什么不变?

  板书:先算第吨水多少元?

  12、8÷8=1.6(元)

  每吨水价不变,再算10吨多少元。

  1、6×10=16(元)

  (4)即时练习。

  王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  过程要求:

  ①用比例来解决。

  ②学生独立尝试列式解答。

  ③汇报思维过程与结果。

  想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

  解:设王大爷家上个月用了X吨水。

  12.8X=19.2×8

  X=

  X=12

  或者:

  16X=19.2×10

  X=

  X=12

  1.教学例6。

  (1)出示课文情境图,了解题目条件和问题。

  (2)说一说题中哪一种量一定,哪两种量成什么比例。

  (3)用等式表示两种量的关系。

  每包本数×包数=每包本数×包数

  (4)设末知数为X,并求解。

  (5)如果要捆15包,每包多少本?

  1、完成课文“做一做”。

  2、课堂小结。

  三、巩固练习

  完成练习九第3~5题。

  《用比例解决问题》说课稿 9

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  教师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  学生:我选择底面的;

  学生:我选择高是的;

  学生:我选择介于二者之间的。

  教师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  学生:只要求出冰淇淋的体积就可以了。

  教师:冰淇淋是个什么形状?(圆锥体)

  学生:你会求吗?

  教师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  教师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  学生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  教师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  学生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  教师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  学生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  教师:此种方法是否可行?

  学生进行评价。

  教师:哪个小组还有更好的办法?

  学生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  教师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  教师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  教师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  学生:大约是圆柱的一半。

  学生:……

  教师:到底谁的意见正确呢?

  教师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  教师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  学生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的'体积是等底等高圆锥体积的三倍。

  学生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  教师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  教师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  教师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  教师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米

  (1)你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)找一找这些计算方法有什么共同的特点? V锥=1/3Sh

  (3)准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

  《用比例解决问题》说课稿 10

  设计说明

  本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

  1.合理复习,有效铺垫。

  温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。

  2.巧妙引导,拓展思维。

  《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙复习铺垫,引入新课

  1.复习铺垫。

  课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。

  (2)一辆汽车从甲地开往乙地,行驶的速度和时间。

  提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

  2.引入新课。

  生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

  ⊙合作交流,探究新知

  1.学习例5,用正比例知识解决问题。

  (1)课件出示教材61页例5主题图。

  (2)学生读题思考,并汇报题中的已知条件和所求问题。

  预设

  生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

  生2:所求问题是李奶奶家上个月的水费是多少钱。

  (3)指名完整叙述题意。

  根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

  (4)讨论、交流。

  师:例5的问题可以用什么方法解决?

  预设

  生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

  生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。

  师:为什么可以用正比例知识解答?

  预设

  生:因为用水的'吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

  师:如何运用正比例关系列方程解答?

  预设

  生:解:设李奶奶家上个月的水费是x元。

  =

  8x=28×10

  x=

  x=35

  答:李奶奶家上个月的水费是35元。

  (5)拓展练习。

  王大爷家上个月的水费是42元,上个月用了多少吨水?

  (学生独立完成后汇报交流)

  《用比例解决问题》说课稿 11

  【教材分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的.分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。

  【学情分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

  【教学目标】

  1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

  2、提高学生分析解答应用题的能力,培养探索精神。

  【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

  【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

  【教学过程】备注

  活动一:创设情境,初步感知题意。

  1、教师出示例2的情境图。

  2、让学生结合图叙述题意。

  活动二:动手画图,分析题意。

  1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

  学生动手画线段图,分析。小组交流。

  与教师共同再一次感受如何画线段图。(教师板书)

  重点让学生明确谁是单位1。

  2、让学生说一说是怎样想的?确定解题的思路。

  3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

  4、全班交流,订正。

  5、问:这两种解法有什么区别?有什么联系?

  活动三:教学例3.

  教师出示例3。

  1、引导学生读题,理解题意。

  2、根据这句话应当把什么看单位1?

  3、学生试画出线段图,分析数量关系。

  4、学生自己解答。

  订正时,让学生说说是怎样分析的?与全班交流。

  活动四:巩固练习。

  1、完成21页中的做一做。

  教师要求学生画线段图。

  2、完成练习五中部分练习题。

  订正时,让学生说说分析的思路。

  活动五:课堂小结。

  通过本节课的学习你都有哪些收获?

  《用比例解决问题》说课稿 12

  教学过程:

  一、 复习

  1.一辆汽车行驶的速度不变,行驶的时间和路程。

  2.一辆汽车从甲地开往乙地,行驶的时间和速度。

  看上面的题,回答下面的问题:

  (1)各有哪三种量?

  (2)其中哪一种量是固定不变的?

  (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

  3、这节课,我们就应用比例的知识解决一些实际问题。

  二、新授

  1、教学例5

  (1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

  (2)学生读题后,思考和讨论下面的问题:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的.比例关系,你能列出等式吗?

  (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (4)根据正比例的意义列出方程:

  解:设李奶奶家上个月的水费是元。

  12.8/8=/10

  8= 12.8×10

  =128÷8

  = 16 答:李奶奶家上个月的水费是16元。

  (5)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

  (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

  (3)指名板演,全班评讲。

  4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  三、巩固练习

  1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

  2、完成练习九第5、6、7题。

  四、总结

  用比例知识解决问题的步骤是什么?

《《用比例解决问题》说课稿(精选12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【《用比例解决问题》说课稿】相关文章:

《用比例解决问题》说课稿09-28

《用比例解决问题》说课稿08-31

《用比例解决问题》说课稿3篇07-24

《用比例解决问题》数学说课稿(通用6篇)02-09

《用比例解决问题》教学设计10-14

用比例解决问题的教学反思10-19

《用比例解决问题》教学反思10-13

用比例解决问题教学反思09-06

《用比例解决问题》教学设计范文08-11

《用比例解决问题》说课稿(精选12篇)

  作为一名专为他人授业解惑的人民教师,编写说课稿是必不可少的,编写说课稿是提高业务素质的有效途径。写说课稿需要注意哪些格式呢?以下是小编为大家整理的《用比例解决问题》说课稿,仅供参考,欢迎大家阅读。

《用比例解决问题》说课稿(精选12篇)

  《用比例解决问题》说课稿 1

  说教学目标:

  1.掌握用正比例的方法解答相关应用题。

  2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

  3.培养学生分析问题、解决问题的能力。

  4.发展学生综合运用知识解决问题的能力。

  说教学重点:

  掌握用正比例的方法解答应用题。

  说教学难点:

  能正确判断两种相关联的量成什么比例,正确列出比例式。

  说教法和学法:

  1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。

  2.学法:理解分析与合作交流相结合。

  说教学准备:

  教学挂图、小黑板

  说教学过程:

  一、联系实际,复习迁移

  1.判断下面每题中的两种量成什么比例?并说明理由。

  (1)单价一定,总价和数量。

  (2)我们班学生做操,每行站的人数和站的行数。

  (3)速度一定,路程和时间。

  (4)每吨水的价钱一定,水费和用水的`吨数。

  2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。

  二、探索新知,培养能力

  1.教学例5

  (1)出示挂图:观察画面,说出题中告诉我们哪些信息?

  (2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?

  (3)提出:你能用以前学过的方法解答?

  (4)学生试着解答,并汇报解法。

  可能出现两种情况:生1:12.8÷8×10生2:10÷8×12.8

  =1.6×10 =1.25×12.8

  =16(元)=16(元)

  (5)激励引新

  师:这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。今天我们就来学习用比例知识解答问题,引出课题,并板书:用比例解决问题

  (6)探讨新知

  提出问题,同桌讨论:题目中有哪两种相关联的量?它们成什么比例关系,为什么?根据这样的比例关系,你能列出等式吗?

  (7)引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  板书:解:设李奶奶家上个月的水费是X元。板书计算过程略

  (8)概括总结:象这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  2.变式练习。

  师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?

  (1)出示条件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?

  (2)让学生用比例的知识解答改编后的题目。

  (3)指名板演,并说一说你是怎么想的?

  (4)比较一下改编后的题和例5有什么联系和区别?

  例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要设需要用的水数为X吨,列出等式是:12.8∶8=19.2∶X

  (5)想一想:怎样用比例解决问题?

  小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。

  三、说巩固练习,形成技能。

  1.小黑板出示:一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  ① “照这样计算”就是说()是一定的。

  ②()和()成()比例。

  ③两次行驶的路程和时间的()相等。

  ④根据这样的比例关系,请你列出方程。

  2.教科书第60页做一做第1题:让学生直接用比例知识解答。做完后,讨论并请同学说一说:你为什么这样列式?

  3.完成练习九第3题。师提醒:同一时间、同一地点的身高和影长成正比例。

  四、说全课总结。

  今天我们学习的是什么应用题,它的解答步骤是怎样的呢?

  五、说课后延伸,深化拓展。

  一条公路全长1500米,一个工程队前3天修了600米,照这样计算,还需要多少天才能把这条公路修好?

  《用比例解决问题》说课稿 2

  一、说教材:

  1、教学内容:

  这部分内容是再教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  成正、反比例的量,在生活实际中应用很广,学生再前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,再原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,再教学上要十分重视从旧知识引申出新知识,再这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

  2、教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的`能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  3、教学重点:用比例知识解决实际问题

  4、教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  第一、情境引入:

  老师请你用一把米尺去测量学校旗杆的高度,你能行吗?给出信息,引入新课内容。

  第二、联系实际,复习迁移

  1、出示课件:数学门诊

  判断下面的说法是否正确,并说明理由。

  2、判断下面两种相关联的量是否成正比例?为什么?

  第三、情境教学新课

  1、学习例5,用正比例意义解决问题。

  (1)、学生提出问题。同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏有哪些数学问题呢?

  小结:水的单价一定,用水吨数与总价成正比例。

  2、教师提出问题。

  看来同学们能正确判断两种量成什么比例关系了。这一节课我们一起运用比例知识来解决一些实际问题。请看屏幕。

  出示例5:

  思考:题中告诉了我们哪些信息?要解决什么问题?你能利用数学知识帮李奶奶算出上个月的水费吗?

  3、解决问题。

  (1)尝试解决。

  (2)根据学生回答教师板书:

  (3)激励引新。

  大家能用我们学过的方法先求出每吨水的价格,再算出10吨水的价钱。请大家再认真想一想,能不能用刚刚学过的知识——比例来解答呢?

  思考:

  ①题目告诉我们哪几个量?

  ②哪种量是固定不变的?哪两个量成什么比例关系?

  ③怎样列含有未知数的等式?)

  学生回答上述问题完成填空。(因为每吨水的价钱一定,所以用水的吨数和水费成正比例。也就是说,两家的水费和用水的吨数的比值相等。可以根据比值相等列出等式。)

  反馈学生解题情况。

  验算:你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  3、变式练习。

  瞧!王大爷又遇到了什么问题呢?出现下面的练习:王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  学生独立用比例的知识解决这个问题。

  第四、学以致用。

  1、用比例解决下列问题。

  1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?

  2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?

  3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)

  提醒:同一时间、同一地点的身高和影长成正比例。

  根据实际情况,可以独立解答,也可以讨论解答。

  4、实践作业。

  1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?

  2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。

  第五、课堂总结。

  说说你的收获。评价自己的表现。

  《用比例解决问题》说课稿 3

  一、教学目标:

  知识与技能:

  1.掌握用正、反比例知识解答含有正、反比例关系问题的步骤和方法。

  2.使学生熟练地判断两种相关联的量是否成正反比例,从而加深对正反比例意义的理解。

  3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的.。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”“变式练习”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  课程标准中指出:数学教学是数学活动的教学,这里强调的是数学活动,因此本节课的教学也是以数学活动贯穿始终的。整节课的数学活动都是以数学思考与合作交流穿插有序的进行,为学生创设一个有效的数学活动氛围。

  (一)、联系生活,习旧引新:

  新课程标准中指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学”,“教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学再现实生活中的应用价值。”遵循这一理念,我以复习导入,说先让学生说说什么是正比例,什么是反比例,接着判断各题成不成比例,成什么比例,然后结合教材中提供的素材 “生活用水、包装图书等信息,”让学生判断题中的相关联的量成什么比例关系,并列出等式,为下面的解决问题打下坚实的基础。

  数学源于生活,生活中处处有数学,类似归一、归总的实际问题生活中素材很多。学生再生活中也有用水收费和包装图书的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生在交流中提取有用的信息,为下面的探究呈现素材。

  (二)、合作探索,领悟解题方法:

  1、感知用比例解决问题的关键。

  (1) 我先组织学生用学过的方法自主解决问题,让学生对题中的数量关系有了初步的认识。

  (2)接着让学生用学过的比例知识分析解答,我出示思考题,小组交流,并试着解决,让一部分学生体会到成功的喜悦,通过集体交流订正,让大家领会到解决问题的方法。

  “什么都可以代替,唯有思维不可代替”,在这当中教师要逐渐打开学生独立思考的闸门,激发学生的求知欲,放手让学生独立思考,大胆实践,自己解答,在此基础上教师在给以指点和总结。所以在学生完成例题后,紧接着进行变式练习,进而总结解题方法,为学生独立解决例6做准备。

  2、再比较中体会知识的实质。教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。再学生充分小组交流的基础上,引导学生形成有价值的发现和体会。

  (三)、巩固应用,提升认识

  1、练习的设计,紧扣例题,让学生再熟悉的比例关系中,进一步掌握用比例解决问题的方法。

  2、数学源于生活又服务与生活,所以我设计的课后作业是让学生利用所学的知识测量计算学校旗杆的高度。

  (四)、课堂小结

  意在让学生对所学的内容进行回顾,深化认识,加深理解。

  《用比例解决问题》说课稿 4

  教学目标

  1:能正确判断问题中数量之间的比例关系。

  2:正确利用比例知识解决问题。

  3:通过策略多样化的训练,培养学生的发散性思维。

  教学重难点

  教学重点:能用正、反比例知识解决实际问题。

  教学难点:正确分析题中的比例关系,列出方程。

  教学工具

  课件

  教学过程

  一、复习铺垫,引入新课。

  师:同学们,我们先来回忆一下有关正、反比例的知识。

  师:判断下面每题中的两种量成什么比例?(课件出示)

  (1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量. (4)每小时耕地的公顷数一定, 耕地的总公顷数和时间. ( 5)全校学生做操,每行站的人数和站的行数. 【设计意图】 通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,前面我们学习了比例、正比例、反比例的意义,还学习了解比例。这节课我们就应用比例的知识解决生活中的一些实际问题。板书课题《用比例解决问题》。

  二、探究新知

  1:(一)用正比例的知识解决问题(探究例5)

  过渡语:看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

  师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?

  学生自己解答,然后交流解答方法。

  2:师:像这样的问题也可以用比例的知识来解决。

  出示自学提纲。

  (1)题目中有几个量。

  (2) 谁和谁成什么比例关系?你是怎么判断的?

  (3 )哪个量是固定不变的。

  (4) 根据比例关系,列出等式。

  3:学生交流自学结果,相互补充,呈现一个完整的解答过程。

  师:谁来说说你是怎样用比例知识来解决问题的?

  根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  4、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法。

  5即时练习

  过渡语:同学们帮助李奶奶解决问题,我们一起去看看王大爷家又发生了什么事情呢?

  出示对话情景。

  师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?

  在学生的`交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

  小结:用正比例解决问题的关键是找到不变量,只要两个量的比值一定,就可以用正比例关系解答。

  (二)用反比例的知识解决问题(学习P62例6)

  师:解决了生活中水的问题,下面我们一起看看生活的电中蕴含着什么数学问题。

  1课件出示情境图,了解题目条件与问题。

  生:独立解决,并在小组交流解题思路和计算方法。

  学生汇报解题思路。

  过渡语:像这样的问题也能用比例的方法解决。请同学们仿照正比例的解题方法,并参照课本62页的内容,自学例6.

  生:交流汇报解题思路。

  师:谁来和大家分享一下你们的结果。

  师:(教师手指25x=100×5,x=20。)为什么这样列式?根据是什么?

  生汇报:因为总的用电量一定,所以用电天数和每天的用电量成反比例.也就是说,每天的用电量和天数的乘积相等。

  2.即时练习

  课件出示:现在30天的用电量原来只够用多少天?

  师:会解决吗?

  生:独立解决,交流订正。

  小结:解决这个问题的关键是找到哪两个量的乘积一定。只要两个量的乘积一定,就可以用反比例关系来解答。 3:总结用比例解决问题的几个步骤:

  (1) 梳理相关联的两种量。

  (2) 判断相关联的两种量成什么比例。

  (3) 解比例。

  (4) 用自己熟练的方法来检验。

  三:巩固练习

  1:小明买4支圆珠笔用6元。小刚想买3支同样的圆珠笔,要用多少钱?(要求用比例知识解)

  学生自己独立解决问题并说说原因。

  学情预设:小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。

  2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支。

  第2题,用反比例关系可以解决这个问题。

  设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四:课堂小结

  通过这节课的学习,你有哪些收获?谈谈你的感受。

  板书

  用比例解决问题

  解:设李奶奶家上个月的水费是x元。 解:设原来5天的用电量现在可以用x天。

  X:10=28:8 25x=100×5

  8x=28×10 x=500÷25

  X=35 x=20

  答:李奶奶家上个月的水费是35元。 答:原来5天的用电量现在可以用20天

  《用比例解决问题》说课稿 5

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的'步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

  《用比例解决问题》说课稿 6

  教学目标:

  知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  过程与方法

  1.通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  2.借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  3.通过策略多样化的训练,培养学生的发散性思维。

  情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点:

  教学重点:用比例知识解答比较容易的归一、归总应用题。

  教学难点:掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  教学准备:

  多媒体课件;小组学习记录卡。

  教学方法:

  尝试教学法、引导发现法等。

  教学过程:

  一、铺垫孕伏,建立表象。(课件出示)

  1.判断下面每题中的两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行路程和时间。

  (2)书的总本数一定,每包的本数和包装的包数。

  (3)圆柱的体积一定,圆柱的底面积和高。

  (4)单价一定,总价和数量。单价一定,总价和数量.

  2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  [设计意图]本节课的教学内容是正、反比例的应用,因此通过本环节的教学,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1.出示例5情景图,说一说图意,了解数学事例。

  2.让学生自己解答,然后交流解答方法。

  [设计意图]用以往学过的方法解决问题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1.梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2.因为( )一定,所以( )和( )成( )比例。也就是说,( )和( )的比值相等。

  5.根据这样的关系,你能列出比例吗?

  6.请解比例。

  小组合作探究用比例解题的方法。

  找出题中两种相关联的量,以及对应的数据,完成探究活动。

  设计意图]教师提出小组合作学习的要求,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部分。探究的问题既突出了学习的重点,又把用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。

  (三)形成策略,展示成果

  我们知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或28:8=x:10),比例的解是x=35。(板书解法)

  [设计意图]注重学生在教学活动中的主体性,留给学生充分的时间和空间。先让学生自己解答,再组织、引导学生合作、交流自己发现方法。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力,探究能力。使学生增强学习的自信。

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的.解答是正确的呢?

  启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  [设计意图]“检验反思”有利于培养学生良好的学习习惯,同时提高解决问题的正确率。归纳解题的策略,有助于提高学生解决问题的能力。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  三.应用策略,拓展新知

  1.例6:一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  [设计意图]让学生通过自己的努力获得用反比例的知识解决问题的能力。

  2.学生独立解决做一做的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  [设计意图]再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  [设计意图]通过例题的讲解,学生总结用比例解答应用题关键和解题步骤。

  五、巩固练习,考考自己(课件出示)

  1.独立去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2.仔细去分析,巧妙来选择。

  (1)李师傅5小时做80个零件,照这样计算,16小时可以做多少个零件?这题( ) A.用正比例解B.用反比例解C.不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订2000本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是( )

  A.1800X=2000×40 B.2000X=1800×40 3.争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15=100:X ( )

  (2)一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?这是一道正比例应用题。( )

  4.用边长为15cm的方砖给教室铺地,需要2000块。如果改用边长为25cm的方砖铺地,需要多少块?(用比例解答)

  [设计意图]通过不同层次的练习,循序渐进,围绕所学基础知识设计变式题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:教科书P63、64练习十一第3、8题。

  【板书设计】

  用比例解决问题

  用比例解决问题的“五个步骤”:例5解:设李奶奶家上个月的水费是χ元。

  一找(梳理相关联的两种量) 28:8=χ:10

  二判(判断相关联的两种量成什么比例) 8χ=28×10

  三列(设未知x,根据判断列出比例) χ=280÷8

  四解(解比例) χ=35

  五检(用自己熟练的方法来检验)答:李奶奶家上个月的水费是35元。

  《用比例解决问题》说课稿 7

  教学目标:

  知识技能:

  1、使学生理解和掌握圆锥的特征及各部分名称。

  2、使学生掌握测量圆锥的高的方法。

  3、培养学生的观察能力、操作能力和思维能力,发展学生的空间观念。

  过程方法:创设情景,由学生自己提出问题,通过自主探索,合作交流,学生动口、动手又动脑,主动参与知识的形成过程

  情感态度:培养学生积极参与、勇于探索、敢于创新的自主学习精神,发展学生的思维能力,培养学生学习数学的兴趣

  教学过程:

  一、回顾强化

  课件演示:出示一支圆柱形铅笔。

  教师问:同学们这支铅笔是什么形状的?你能说说它具有什么特征吗?

  学生:是圆柱体。它的特征是:圆柱有三个面,有上下两个底面,是完全相同的两个圆,有一个侧面是曲面,两个底面之间的距离叫做圆柱的高,有无数条高。圆柱侧面展开是长方形。

  二、创设情境,激情导入

  教师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细观察屏幕

  课件:用转笔刀削铅笔,把削成的笔尖部分(圆锥体)垂直切下来。

  老师问:这还是圆柱体吗?被切下来的是什么几何形体呢?

  学生:不是。是圆锥体。

  老师揭示课题:我们把象这样的几何形体叫做圆锥体,简称圆锥,我们所学的圆锥都是直圆锥。今天我们就来学习《圆锥的认识》。板书课题

  三、探究体验。

  1、列举,提出问题。

  同学们想一想,在日常生活和生产劳动中,你都看到过哪些物体的形状是圆锥体的?你也可以把课下收集的圆锥形物体拿出来给大家看。

  生1:冰激凌外壳的形状是圆锥体的。

  生2:有的帽子的形状是圆锥体的。

  生3:漏斗的形状是圆锥体的。

  生4:盖房子用的铅锤的形状是圆锥体的。

  ……

  同学们很善于观察,请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

  生可能提出:

  1、我想知道圆锥的特征。

  2、我想知道圆锥有几条高?它的高指的是什么?

  3、我想知道圆锥的侧面展开是什么形状的?

  4、我想知道圆锥的体积应怎样计算?

  5、我想知道圆锥的表面积该怎样计算?

  2、自主探究、解决问题。

  教师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

  学生:手拿圆锥体模型观察、想。

  教师:把你观察到的,感觉到的告诉给你小组的同学,小组同学共同探讨刚才大家提出的问题

  小组交流、讨论。教师深入小组和学生一起进行探讨。

  教师:哪组愿把你们的研究成果展示给大家。

  学生汇报:(预设展示过程)

  A、圆锥的特征。

  ①我们发现圆锥上面细,下面粗。

  ②圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。

  ③圆锥有一个弯曲光滑的`面,我们可以把它叫做侧面。这个面是曲面。

  ④圆锥有一个圆形的面,我们可以把他叫做底面。

  ⑤我们还发现圆锥的底面朝下立者,尖朝下不立者。

  ⑥圆锥在桌子上滚动时,既不朝前走,也不朝后走,它总是绕着一点画圆。

  B、圆锥的高

  ①我们发现圆锥的高是从圆锥的顶点到底面之间的距离。

  ②圆锥的高是从圆锥的顶点到底面圆心的距离,我们认为圆锥只有一条高。

  ③圆锥的高是圆锥的底面到顶点的线段的长。

  ④我们认为他们说的不准确,圆锥的高是从圆锥的顶点到底面的距离。它应该有无数条高。因为从圆锥的顶点引一条与底面平行的线,这样就可以作出无数条高。

  教师:同学们对于圆锥的高有几种不同的看法,谁的说法是正确呢?请同学们小组进行讨论。

  学生:小组进行讨论。

  教师:哪些同学同意某某的说法。老师也同意这位同学的说法。请同学们仔细看屏幕。(课件演示圆锥的高)

  教师:这条黑色的虚线就是圆锥的高。谁愿意说说圆锥的高指的是什么?

  学生试说圆锥的高:

  圆锥的高是从圆锥的顶点到底面圆心的距离。圆锥只有一条高。因为圆锥只有一个顶点和一个底面圆心。

  教师:请同学们打开书42页看第三自然段最后一句话,谁来读。

  (指名读、齐读高的定义)

  教师:哪一组还有发现。

  C、圆锥的侧面展开。

  我们发现圆锥的侧面展开是扇形。(举起给同学们看,一名同学把展开的图形贴在黑板上)

  教师用课件演示侧面展开的过程。

  教师:通过刚才的学习,我们掌握了圆锥各部分的名称。请同学们拿起圆锥体模型,小组同学互相说说圆锥各部分的名称。

  小组互相说圆锥各部分的名称。

  教师:谁愿意到前面说说圆锥各部分的名称。

  两名学生到前面来说

  3、由实物抽象出几何图

  教师:同学们说得可真好!老师这有三幅圆锥体实物图,请同学们看。(课件展示)圆锥的几何图是什么样的呢?请同学们仔细看(课件展示)画图时看不见的部分应怎样画?(课件演示)

  这就是圆锥的几何图

  学生:用虚线画。

  教师:同学们看黑板这是圆锥的几何图。(教师边说边揭开贴纸)谁能到前面对照圆锥的几何图说说你都学会了有关圆锥的哪些知识?

  学生到前面说

  教师:请同学们闭上眼睛想一想圆锥是什么样子的?

  4、探究测量圆锥高的方法。

  教师:通过刚才的学习我们掌握了圆锥的特征及圆锥各部分的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?先想一想,然后利用课下大家准备的材料,小组同学共同探究圆锥的高的测量方法。

  学生汇报:

  生1:我们小组是这样测量的,先把圆锥底面放平,用直尺水平地放在圆锥的顶点上,用三角板竖直地量出圆锥的高

  生2:我们小组的方法和他们的差不多,只是用小尺竖立在桌面上,然后用三角板通过顶点与直尺垂直。

  生3:我认为这种方法比第一种测量准确。因为三角板这样放在圆锥的顶点上可以与直尺保持垂直,准确地测量出高

  生4:我们是这样测量的,把圆锥的底面朝下倒立在桌面上,把小尺放在圆锥的底面上,然后用三角板垂直地测量出顶点到底面之间的距离。

  生5:我认为这种方法不太好,因为这种方法不能使用于所有的圆锥,比如,一个大的小麦堆,能把它倒过来测量它的高吗?

  生6:我们认为不管用什么方法,都应该注意小尺测量时要从“0”刻度开始。

  四、看书质疑。

  五、课堂练习

  1、在下面的图形中找出哪些是圆锥。

  课本练习十二1题

  2、判断。(打手势)

  (1)圆锥的侧面是曲面。( )

  (2)圆柱侧面展开是长方形,圆锥侧面展开也是长方形。( )

  (3)从圆锥的顶点到底面任意一点的线段叫做圆锥的高。( )

  (4)圆锥的底面是圆形。( )

  3、练习十二2题

  六、课堂小结。

  这节课我们学习了什么?通过这节课的学习你都学会了什么?

  七、作业。

  到室外找一些沙子或土堆成一个圆锥形,想办法测量出它的高,可以两个人进行合作。

  《用比例解决问题》说课稿 8

  学习目标:

  使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

  学习重难点:

  重点:运用正、反比例解决实际问题。

  难点:正确判断两种量成什么比例。

  学习方法:

  尝试教学法、引导发现法等。

  学习过程:

  一、旧知铺垫

  1、下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求:

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  如:

  2、根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  70×4=56×5

  二、探索新知

  1、教学例5

  (1)出示课文情境图,描述例题内容。

  板书:8吨水10吨水

  水费12.8元水费?元

  (2)你想用什么方法解决问题?

  过程要求:

  ①学生独立思考,寻找解决问题的`方式。

  ②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

  ①汇报解决问题的结果。

  引导提问:

  A、题中哪两种量是变化的量?说说变化情况。

  B、题中哪一种量一定?哪两种量成什么比例?

  c、用关系式表示应该怎样写?

  ②板书:解:设李奶奶家上个月的水费是X元

  8X=12.8×10

  X=

  X=16答:略

  (3)与算术解比较。

  ①检验答案是否一样。

  ②比较算理。算述解答时,关键看什么不变?

  板书:先算第吨水多少元?

  12、8÷8=1.6(元)

  每吨水价不变,再算10吨多少元。

  1、6×10=16(元)

  (4)即时练习。

  王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  过程要求:

  ①用比例来解决。

  ②学生独立尝试列式解答。

  ③汇报思维过程与结果。

  想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

  解:设王大爷家上个月用了X吨水。

  12.8X=19.2×8

  X=

  X=12

  或者:

  16X=19.2×10

  X=

  X=12

  1.教学例6。

  (1)出示课文情境图,了解题目条件和问题。

  (2)说一说题中哪一种量一定,哪两种量成什么比例。

  (3)用等式表示两种量的关系。

  每包本数×包数=每包本数×包数

  (4)设末知数为X,并求解。

  (5)如果要捆15包,每包多少本?

  1、完成课文“做一做”。

  2、课堂小结。

  三、巩固练习

  完成练习九第3~5题。

  《用比例解决问题》说课稿 9

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  教师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  学生:我选择底面的;

  学生:我选择高是的;

  学生:我选择介于二者之间的。

  教师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  学生:只要求出冰淇淋的体积就可以了。

  教师:冰淇淋是个什么形状?(圆锥体)

  学生:你会求吗?

  教师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  教师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  学生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  教师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  学生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  教师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  学生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  教师:此种方法是否可行?

  学生进行评价。

  教师:哪个小组还有更好的办法?

  学生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  教师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  教师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  教师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  学生:大约是圆柱的一半。

  学生:……

  教师:到底谁的意见正确呢?

  教师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  教师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  学生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的'体积是等底等高圆锥体积的三倍。

  学生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  教师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  教师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  教师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  教师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米

  (1)你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)找一找这些计算方法有什么共同的特点? V锥=1/3Sh

  (3)准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

  《用比例解决问题》说课稿 10

  设计说明

  本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

  1.合理复习,有效铺垫。

  温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。

  2.巧妙引导,拓展思维。

  《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙复习铺垫,引入新课

  1.复习铺垫。

  课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。

  (2)一辆汽车从甲地开往乙地,行驶的速度和时间。

  提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

  2.引入新课。

  生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

  ⊙合作交流,探究新知

  1.学习例5,用正比例知识解决问题。

  (1)课件出示教材61页例5主题图。

  (2)学生读题思考,并汇报题中的已知条件和所求问题。

  预设

  生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

  生2:所求问题是李奶奶家上个月的水费是多少钱。

  (3)指名完整叙述题意。

  根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

  (4)讨论、交流。

  师:例5的问题可以用什么方法解决?

  预设

  生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

  生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。

  师:为什么可以用正比例知识解答?

  预设

  生:因为用水的'吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

  师:如何运用正比例关系列方程解答?

  预设

  生:解:设李奶奶家上个月的水费是x元。

  =

  8x=28×10

  x=

  x=35

  答:李奶奶家上个月的水费是35元。

  (5)拓展练习。

  王大爷家上个月的水费是42元,上个月用了多少吨水?

  (学生独立完成后汇报交流)

  《用比例解决问题》说课稿 11

  【教材分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的.分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。

  【学情分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

  【教学目标】

  1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

  2、提高学生分析解答应用题的能力,培养探索精神。

  【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

  【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

  【教学过程】备注

  活动一:创设情境,初步感知题意。

  1、教师出示例2的情境图。

  2、让学生结合图叙述题意。

  活动二:动手画图,分析题意。

  1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

  学生动手画线段图,分析。小组交流。

  与教师共同再一次感受如何画线段图。(教师板书)

  重点让学生明确谁是单位1。

  2、让学生说一说是怎样想的?确定解题的思路。

  3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

  4、全班交流,订正。

  5、问:这两种解法有什么区别?有什么联系?

  活动三:教学例3.

  教师出示例3。

  1、引导学生读题,理解题意。

  2、根据这句话应当把什么看单位1?

  3、学生试画出线段图,分析数量关系。

  4、学生自己解答。

  订正时,让学生说说是怎样分析的?与全班交流。

  活动四:巩固练习。

  1、完成21页中的做一做。

  教师要求学生画线段图。

  2、完成练习五中部分练习题。

  订正时,让学生说说分析的思路。

  活动五:课堂小结。

  通过本节课的学习你都有哪些收获?

  《用比例解决问题》说课稿 12

  教学过程:

  一、 复习

  1.一辆汽车行驶的速度不变,行驶的时间和路程。

  2.一辆汽车从甲地开往乙地,行驶的时间和速度。

  看上面的题,回答下面的问题:

  (1)各有哪三种量?

  (2)其中哪一种量是固定不变的?

  (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

  3、这节课,我们就应用比例的知识解决一些实际问题。

  二、新授

  1、教学例5

  (1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

  (2)学生读题后,思考和讨论下面的问题:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的.比例关系,你能列出等式吗?

  (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (4)根据正比例的意义列出方程:

  解:设李奶奶家上个月的水费是元。

  12.8/8=/10

  8= 12.8×10

  =128÷8

  = 16 答:李奶奶家上个月的水费是16元。

  (5)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

  (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

  (3)指名板演,全班评讲。

  4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  三、巩固练习

  1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

  2、完成练习九第5、6、7题。

  四、总结

  用比例知识解决问题的步骤是什么?