六年级数学下册教案

时间:2024-06-04 17:25:40 教案 我要投稿

六年级数学下册教案

  作为一位优秀的人民教师,通常会被要求编写教案,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的六年级数学下册教案,欢迎阅读与收藏。

六年级数学下册教案

六年级数学下册教案1

  教学目标:

  通过数学学习活动,使学生学会运用数学的思维方式支解决日常生活中的一些问题,增强应用数学的意识,发展学生的实践能力和创新精神。

  重点难点:

  知道如何寄信最经济 设计邮票的价值

  教具学具:

  各类邮票的图片资料

  教学过程:

  一、复习回顾,揭示课题

  1. 观察邮票。

  实物投影出示课文中的邮票。

  问:你寄过信吗?见过这些邮票吗?

  2. 说一说。

  (1) 上面这些都是普通邮票,你还见过哪些邮票?

  (2) 你知道它们各有什么作用吗?

  交流后,使学生明白普通邮票票面值种类齐全,可适用于各种邮政业务。

  3. 揭示课题。

  师:今天,我们就一起来探究邮票中的数学问题。

  板书课题:邮票中的数学问题。

  二、新知学习,组织活动

  1. 出示邮政相关的费用。

  业务种类 计费

  单位 资费标准/元

  本埠资费 外埠资费

  信函 首重100g内,每重20g

  (不足20 g按20 g计算) 0.80 1.20

  续重101~20xx g每重100 g

  (不足100 g按100 g计算) 1.20 2.00

  问:从表中你得到哪些信息?

  如

  (1) 不到20 g的信函,寄给本埠的'朋友只要贴0.80元的邮票。

  (2) 不到20 g的信函,寄给外埠的朋友要贴1.20元的邮票。

  2. 一封45g的信,寄往外地,怎样贴邮票?

  (1) 学生观察表中数据,计算出所需邮资。

  (2) 说一说你是怎么算的。

  想:每重20g,邮资1.20元,40 g的信函,邮资是2.40元。不足20 g按20 g计算,所以45 g的信函,寄往外地所需邮资是3.60元。

  3. 如果邮寄不超过100g的信函,最多只能贴3张邮票,只用80分和1.2元的邮票能满足需要吗?如果不能,请你再设计一张邮票,看看多少面值的邮票能满足需要。

  (1) 不超过100g的信函,需要多少资费?

  ①学生说一说各种可能的资费。

  ②引导列表描述。

  1~20、21~40、41~60、61~80、81~100

  本埠

  外埠

  (2) 只用80分和1.2元两种面值可支付的资费是多少?

  一张:80分 1.2元

  两张:80分2=1.6元 1.22=2.4元 0.8+1.2=2.0元

  三张:0.83=2.4元

  1.23=3.6元

  0.82+1.2=2.8元

  1.22+0.8=3.2元

  (3) 你认为可以设计一张多少面值的邮票?

  ①学生自行设计各种面值的邮票。

  ②看看多少面值的邮票能满足需要。

  4. 如果想最多只用4种面值的邮票,就能支付所有不超过400g的信函的资费,除了80分和1.2元两种面值,你认为还需要增加什么面值的邮票?

  (1) 先看看从101~400g的信函,有哪些可能的资费。

  101~200、201~300、301~400

  本埠

  外埠

  (2) 你想设计什么面值的邮票?

  ① 自行设计。

  ② 与同学交流。

  (3) 你见到你设计的这种面值的邮票吗?

  三、巩固提高

  小结 邮票是有益的爱好,可以扩展我们的视野,培养高尚的情操。

六年级数学下册教案2

  教材分析:

  本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

  学生分析:

  在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

  学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

  教学目标:

  1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、通过活动培养学生利用小组合作,探究解决问题的能力。

  3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的.广泛应用。

  教学重点:运用圆的有关知识计算。

  教学难点:

  结合具体问题,让学生独立思考,提高解决简单问题的能力。

  关键:体会数学知识在体育中的应用。

  教学过程:

  一、汇报调查,引入课题(8分钟)

  1、汇报调查情况

  课前,我让大家调查运动场的情况,你们得到了哪些信息?

  2、课件显示如下情境图:

  师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

  师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

  3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

  二、结合实例、探究问题(24分钟)

  实例一:

  课件显示:

  淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

  (1)笑笑所走路线的半径为10米,她走过的路程是()米。

  (2)淘气所走的路线半径为()米,他走过的路程为()米。

  (3)两人走过的路相差()米。

  1、理解题意

  根据这幅情境图,你能获得哪些信息?指名回答。

  2、小组讨论

  先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

  3、全班交流

  抽生汇报,教师板书。

  实例2:

  课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

  1、观察跑道由哪几部分组成?

  2、在跑道上跑一圈的长度可以看成是哪几部分的和?

  (板书:跑道一圈长度=圆周长+2个直道长度)

  (二)简化研究问题:

  1、85.96米是指哪部分的长度?一条直道吗?

  2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

  3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

  (三)寻求解决方法:

  1、左右两个半圆形的弯道合起来是一个什么?

  2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

  3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

  (四)、动手解决问题:

  1、计算圆的周长要知道什么?(直径)

  2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

  3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

  引导学生将3.14159换成进行计算

  汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

  4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

  师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

  三、巩固练习、实践应用(3分钟)

  400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

  四、拓展延伸、自我评价(5分钟)

  1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

  2、课后自学课本第45页你知道吗?

  五、全课小结:

  谈一谈,这节课你有什么收获?

  六、布置作业

六年级数学下册教案3

  教学内容:

  课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

  教学目标:

  1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

  2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

  3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

  教学重点:

  掌握百分数在实际生活中的应用。

  教学难点:

  渗透生活即数学的教学思想。

  课前准备:

  课件

  教学过程:

  一、认识、了解纳税

  教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的'义务。

  税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

  提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

  二、教学新课

  1、教学例7。

  出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

  指名学生读题后全班学生再次读题。

  提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

  学生尝试练习。

  学生可能有下面两种方法:

  方法1:引导学生将百分数化成分数来计算。

  方法2:引导学生将百分数化成小数来计算。

  集体订正,教师板书算式。说说这题你是根据什么来列式的?

  强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额

  2、做“试一试”。

  提问:这道题先求什么?再求什么?

  生:先求5000元的20%是多少?再求实际获得的奖金。

  学生板演与齐练同时进行,集体订正。

  3、完成练一练后全班交流。

  三、反馈练习

  只列式不计算。

  1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

  2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

  3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

  四、课堂总结

  提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

  五、布置作业

  练习十六第1—3题。

六年级数学下册教案4

全册教材分析

  教学内容:

  理解百分数的意义,体会百分数与分数、小数的联系和区别,在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;初步认识众数与中位数的意义。

  教学目标:

  知识与技能目标

  1.让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。

  2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。

  3.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。

  4.让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息理解,提高综合应用数学知识和方法能力。

  数学思考方面

  1.让学生在应用百分数解决相关问题的过程中,进一步培养分析、综合和简单推理的能力,提高用方程表示数量关系的能力,发展抽象思维,增强数感。

  2.让学生在认识圆柱和圆锥特征的过程中,丰富对现实空间的感知,进一步增强空间

  观念;在推导圆柱和圆锥的体积公式以及探索圆柱侧面积和表面积的计算方法的过程中,经历观察、猜想、实验、分析、验证和概括等活动,进一步培养合情推理与初步的演绎推理能力,发展形象思维。

  3.让学生在认识图形的放大和缩小、探索并理解比例的意义和性质,以及理解比例尺的意义和应用比例尺解决问题的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题意识和能力。

  4.让学生在根据方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理地继续表达的能力,不断增强空间观念。

  5.让学生在探索并理解成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

  6.让学生在认识扇形统计图以及众数、中位数的过程中,进一步感受数据的意义和价值,感受不同统计量的联系和区别,发展统计观念。

  7.让学生在系统复习的过程中,进一步体会知识间的联系和综合,加深对基本数学原理和方法的理解,培养比较、分析、综合、概括的能力,发展思维的整体性、灵活性和深刻性。

  解决问题方面

  1.让学生联系已有的知识和生活经验发现并提出一些数学问题,并主动用百分数、方程、正比例和反比例、圆柱和圆锥的体积公式、圆柱侧面积和表面积的计算方法、图形的放大和缩小、比例尺等数学知识和方法解决问题,进一步发展数学应用意识。

  2.让学生在解决有关百分数、圆柱和圆锥体积计算、圆柱侧面积和表面积计算等实际问题的过程中,感受借助计算器解决问题的价值,进一步掌握分析和解决问题的基本方法,体会解决问题方法飞多样性。

  3.让学生能用比例、比例尺、正比例和反比例等知识解决简单实际问题的过程中,体会数形结合的思想对于解决问题的价值,进一步积累和丰富解决问题的有效策略。

  4.让学生在用方向和距离描述物体的位置,用扇形统计图和相关统计量解释数据信息、解答简单问题的过程中,进一步体会合作交流的重要性,提高合作交流的能力。

  5.让学生在用转化的策略解决简单实际问题的过程中,进一步增强解决问题的策略意识和反思意识,培养根据所需解决问题的特点合理选择相应策略的自觉性和能力。

  6、让学生在系统复习的过程中,进一步提高综合应用数学知识和方法解释日常生活现象、解释简单实际问题的水平,进一步用不同方式、从不同角度探索解决问题方法的'能力,发展创新意识和实践能力。

  情感态度方面

  1.进一步感受数学思考的确定性和数学结论的严谨性,获得一些成功的体验,锻炼克服困难的意志。

  2.进一步培养认真细心的学习习惯,培养发现错误及时订正的良好习惯。

  3.进一步感受数学价值,感受数学与生活的密切联系,不断增强学数学、用数学的自觉性。

  4.进一步了解有关数学知识的背景,体会数学的广泛应用,培养实事求是的科学态度和对社会的责任感。

  5.进一步感受自己在数学知识和方法等方面的收获与进步,发展对数学的积极情感,进一步增强学好数学的信心。

  教学重、难点

  教学重点:百分数的应用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。

  教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。

  全册课时安排:全册共安排72课时的教学内容,其中30课时的总复习。

  百分数的应用 11课时圆柱和圆锥11课时 比例7课时 确定位置4课时 正比例和反比例 4课时 解决问题的策略2课时 统计3课时 总复习 30课时

  第一单元 百分数的应用

  教学内容:

  六年级(上册)“认识百分数”这个单元里,初步教学百分数的意义,用百分数描述部分与整体或两个同类数量间的倍数关系;教学了百分数与分数、小数的相互改写,解决简单的求一个数是另一个数的百分之几的问题。本单元在此基础上编排,通过应用百分数解决实际问题,进一步理解百分数的意义,体会百分数的广泛应用。

  日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。

  全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。

  例1、练习一,求一个数比另一个数多百分之几(或少百分之几)。这一段是接着六年级(上册)求简单的百分率编排的。

  例2、例3、练习二,根据国家规定的税率和利率,计算应纳税金额和可得利息金额。这一段应用百分数的乘法解决实际问题。

  例4、练习三,解决有关折扣的问题,包括设计折扣和根据折扣求现价或原价的问题。这一段里有列方程解题,也有列算式解题,列方程求原价是重点。

  例5、例6练习四,列方程解决稍复杂的百分数问题或分数问题。在六年级(上册)“分数四则混合运算”里只教学稍复杂的求一个数的百分之几是多少的问题,已知一个数的百分之几是多少,求这个数的问题安排在本单元,由百分数问题带出。

  “整理与练习”综合全单元的知识内容,进一步应用百分数解决实际问题。 教学目标:

  1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。

  2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。

  3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。

  课时安排:百分数的应用 11课时

  求一个数比另一个数多(少)百分之几的实际问题 2课时

  纳税问题 1课时

  利息问题 1课时

  打折问题 2课时

  列方程解决稍复杂的百分数应用题3课时

  整理与练习 2课时

六年级数学下册教案5

  教学目标

  1.在具体情境中认识怎样用字母表示南、西、东等方向,初步掌握根据方向和距离确定物体位置的方法,能根据方向和实际距离在平面图上确定物体的位置。

  2.在掌握根据方向和距离在平面图上确定物体的位置的过程中,进一步培养画图能力、计算能力,发展空间观念。

  3.积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发同学们的兴趣。

  教学重点

  根据方向和实际距离在平面图上确定物体的位置。

  教学难点

  明确在平面图上表示物体位置的具体过程和方法。

  教学关键

  重视不同数学知识的综合应用,感受数学知识的内在联系,不断提高解决实际问题的能力。

  教学过程

  一、复习

  1.出示以灯塔为中心的平面图。

  (1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

  相机指出:东——E西——W南——S

  (2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

  2.如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

  二、新课教学

  1.出示教材中例2的平面图。

  谈话:这是一幅以灯塔为中心的平面图,你能从图中了解哪些信息?

  介绍:我们已经知道在平面图上常用N表示方向北,另外还常用E表示方向东,用S表示方向南,用W表示方向西。

  提问:你能在平面图上指出东、西、南、北以及北偏东、北偏西、南偏东、南偏西等方向吗?请你在平面图上指一指。

  题目还告诉我们“灯塔北偏东40?方向20千米处是清凉岛”,这句话有哪几层意思?

  (一是告诉了清凉岛相对于灯塔的方向,二是告诉了灯塔到清凉岛的实际距离)你能根据题中的已知数据指出清凉岛的大致位置吗?

  怎样在平面图上准确地表示出清凉岛的位置呢?在小组里说说自己的想法。

  2.在班内交流。教师帮助学生明确在平面图上确定物体位置的具体步骤。

  (1)在平面图上确定北偏东40?的方向。

  根据“北偏东”的含义,以表示灯塔的点为顶点,正北方向为角的一条边,用量角器偏东40?画出角的另一条边,并在图中标出角的度数。

  (2)应用比例尺的知识计算出灯塔到清凉岛的图上距离。

  根据“图上距离1厘米表示实际距离5千米”计算出灯塔到清凉岛的图上距离。

  (3)根据计算出的图上距离在所画射线上确定清凉岛的位置。

  提醒:①根据计算出的图上距离,找到清凉岛的位置,用圆点表示,并在旁边标注“清凉岛”。

  ②标注出实际距离,把射线多余的部分擦掉。

  3.同桌互相说一说刚才指出清凉岛的.大致位置与准确位置相差远不远。

  4.试一试

  (1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?

  (2)各自独立完成。

  (3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

  三、组织练习

  1.完成“试一试”。

  (1)让学生尝试做题。

  (2)组织展示、交流。

  (3)提问:你是怎样确定南偏西30?方向的?是怎样计算出灯塔到红枫岛的图上距离的?在图上表示红枫岛位置时你又是怎样做的?

  2.完成“练一练”。

  (1)学生独立完成,在小组内交流。

  (2)在班内交流。并提问:你能完整地描述出熊猫馆和孔雀园的位置吗?它们到猴山的距离你是怎样算出来的?

  (3)指名说一说在图中表示蛇馆位置的具体步骤。

  3.完成练习十二第3题。

  谈话:这道题内容比较多,要仔细读题弄清题意,明确题目要求。提问:图中以机场所在地点为端点,向四周画了许多条射线,每相邻的两条射线的夹角是多少度?你是怎么知道的?“每相邻两个圆之间的距离是10千米”这句话是什么意思?指着图说一说。

  (2)提问:飞机A在屏幕上的位置是怎样确定的?

  (3)让学生各自在图上表示出飞机B、C、D、E的位置,再展示部分学生的答案,共同评议、校正。

  4.完成练习十二第4题。

  (1)让学生在图中指出各场所的大体位置。

  (2)让学生按给出的条件在图中画一画,算一算,确定每个单位在平面图中的位置。

  (3)在小组里互相检查、评议。

  5.完成练习十二第5题。

  (1)学生独立做题。

  (2)指名说一说1号、2号运动员落地的实际位置。

  (3)同桌互相检查3号运动员落地的图上位置画得对不对。

  四、小结

  提问:这节课我们学到了什么知识?你哪些方面表现较好?

  五、作业

  练习十二第4题和第5题。

  板书设计

  根据方向和距离确定物体的位置

  北—— N东—— E南—— S西—— W

六年级数学下册教案6

  一、方向与位置

  2.学生自主完成第(2)题,然后重点交流不同的方法。

  师:同学们根据平面图上的比例尺和角度能够准确描述出物体的位置。如果给出比例尺和现实生活中的实际距离和角度,你能画出平面图吗?现在,请同学们看试一试的题和图,谁来说一说线段比例尺表示什么?

  师:看一看书上的`第4个问题,再观察一下我们画出的平面图,你认为用文字描述旗杆、大门、图书馆、水房的位置和用平面图表示,哪种方式更好,为什么?

  课题:用数对确定位置

  教学内容:冀教版《数学》六年级下册第5、6页。

  6.师生共同总结关于数对的知识。

  四、尝试练习

  1.提出“试一试”的问题。先让学生说一说数对表示的含义,再说一说方格图中纵向、横向数字表示的含义。

  2.学生尝试完成确定各点的位置。

  五、课堂练习

  1.先让学生观察图,了解座位是怎样摆放的,再找出该坐哪个座位。最后,说一说他的座位可以用哪个数对表示。

  2.用数对表示位置的变式练习。先指导学生理解题意再由学生独立完成。

  六、知识拓展

  介绍地球仪上数对的应用。激发学生课后收集资料的兴趣。。

  让学生介绍自己在教室里的具体位置,唤起学生已有的知识和经验,调动学生参与的兴趣。

六年级数学下册教案7

  教学目标

  会综合应用学过的统计知识,能从统计图中准确统计信息,能够解释统计结果。

  能根据统计图提供的信息,作出正确的判断或简单预测。

  学情分析

  学生已学过一些统计知识,教师可以组织学生选择一个全班感兴趣的问题展开讨论,让学生收集数据,用统计图表展示数据,并作出决策。

  重点、难点:培养学生的统计意识;从统计图中获信息,并能作出决策。

  课时安排:2课时

  教学内容:教材第68页例1,练习十一第一题。

  教学目标:

  体会数据在现实生活中的作用。

  理解扇形统计图的特点,能从扇形统计图中获取有用的信息,并作出相关决策。

  理解统计图中各个数据的具体含义,培养学生仔细观察的习惯。

  教学重点、难点:从扇形统计图中获信息,并能正确决策和简单的预测。

  教学媒体:

  教师可以再准备课本以外的扇形统计图

  教学过程

  一、情境导入同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌的吗?今天我们就去彩电市场看看各种彩电的市场占有率吧!(出示教科书第68页例1的扇形统计图)

  二、探究交流、总结规律

  小组探讨、交流。

  根据这幅统计图,你们了解到哪些信息?A牌彩电是市场上最畅销的`彩电吗?根据提出的问题,让学生在小组内交流、讨论。学生可能会产生两种不同的看法:一部分会认为A品牌最畅销,而另一部分则认为A品牌不是最畅销的。

  (学生谈出个人观点后,会出现一些争论,让学生在争论中做出判断.)引导释疑。

  在学生讨论交流的基础上,教师提问:请大家仔细观察,说说统计图里“其它”部分可能包含了哪些信息呢?可让学生分别说说"其它"的具体含义,从而明确“其它”里面可能含有比A牌更畅销的彩电产品。

  小结。

  这幅统计图提供的数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出A牌彩电最畅销的结论。

  引导学生认识到:在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息出发,不要单凭直观感受轻易下结论。

  三、巩固练习

  完成教科书第69页练习十一1.

  补充习题

  四、总结概括

  学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?

  谈你的收获。(本课注意事项:1.根据统计图提供的信息做出正确的判断和决策;2.不要单凭直观感受轻易下结论。)

六年级数学下册教案8

  教学目标:

  1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。

  2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

  3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

  教学重点:

  引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。

  教学准备:

  课前测量数据,多媒体课件。

  教学过程设计:

  一、预习导学

  1、师:同学们,下面我们来看段小视频。

  2、师:同学们,物体的影子是怎么形成的呢?

  3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)

  4、师:那么物体的影子长度和物体的高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)

  二、新课探究

  1、探究两根长度相同的竿的影长。

  (出示视频)学生记录数据。

  师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?

  (生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。

  2、探究两根长度不同的竿的影长。

  (出示视频)学生记录数据

  师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)

  结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。

  3、探究竿长度与影长之间的关系。

  (出示表格)1号2号3号4号竿长/cm

  影长/cm竿长与影长的比值

  要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的'比值是相同的。

  4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。

  (出示视频,学生记录数据,计算)

  三、当堂练习

  1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?

  2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?

  3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?

  四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

  五、课堂总结

六年级数学下册教案9

  一、创设情境,再现知识

  谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

  学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

  这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

  【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

  二、梳理归网,学习内化

  1.回顾知识,自主梳理

  ①自己回顾每个概念的意义,同位交流。

  ②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

  【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

  2.交流展示,引导建构

  ①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

  ②哪些是方程?哪些是等式?

  6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13

  ③你会解这些方程吗?解方程的根据是什么?(等式性质)

  选择几个解一解。(展台展示交流)

  如何判断方程解的.是否正确?在解方程时要注意一些什么?

  ④复习简易方程的解法、步骤及检验方法、书写格式。

  【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。

  3.提炼方法,认知内化

  (1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

  (2)出示第101页第4题及改编题

  20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?

  ①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?

  ②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?

  引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的思考过程变得简单)

  【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。

  三、综合应用,整体提高

  1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

  ①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

  ②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

  2.我是“精选细算“小英才

  课本101页5—8题(学生独立做,集体订正)

  3.智力冲浪

  课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

  【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

  四、总结提升,知情共融。

  这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

六年级数学下册教案10

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。

  2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。

  3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

  重点难点:

  负数与负数的比较。

  教学过程:

  一、复习

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 -20xx六年级数学下册教案01-02 +20xx六年级数学下册教案01-02 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度

  二、新授

  (一)教学例3

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的.大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明-8在-6的左边,所以-8〈-6

  5、再通过让另一学生比较8 〉6,但是-8〈 -6,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  四、全课总结

  1、在数轴上,从左到右的顺序就是数从小到大的顺序。

  2、负数比0小,正数比0大,负数比正数小。

  五、布置作业

  《家庭作业》第2页的练习。

六年级数学下册教案11

  教学内容:

  苏教版义务教育课程标准实验教科书第60-61页

  教材分析:

  在本节课之前,学生们已经基本掌握了用方向和距离描述、画出相关物体位置和描述简单的行走路线方法。实际测量是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  实际测量的主要内容包括:用工具测量两点间的距离,步测和目测。

  在用工具测量两点间的距离的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;步测和目测的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

  教学目标:

  ⑴使学生会用工具测量两点间的'距离、步测和目测的方法。

  ⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

  ⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

  教学重点:

  掌握用工具测量两点间的距离、步测和目测的方法。

  教学难点:

  掌握用工具测量两点间的距离、步测和目测的方法。

  教学具准备:

  卷尺、标杆、50米跑道。

  教学流程:

  一、揭示课题,明确学习内容。

  ⑴揭示课题。

  板书课题实际测量。让学生说说对课题的理解。

  ⑵了解测量工具。

  让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

  ⑶明确学习内容。

  测量地面上相隔较远的两点间的距离;步测和目测。

  二、了解测量知识,为实践活动作准备。

  ⑴测量相隔较远的两点间的距离。

  理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

  理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

  观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

  掌握测定直线的步骤:测定直线;分段量出;记录计算。

  ⑵学习步测的方法。

  理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

  掌握步测的方法:用步数每一步的距离。

  理解步测的关键:确定平均步长。

  掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

  理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

  ⑶学习目测的方法。

  观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

  目测较短距离:人书本的长和宽;课桌的长和宽等等;

  理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

  三、实践活动。

  ⑴测定直线。

  ⑵确定平均步长。

  ⑶步测篮球场的长和宽。

  ⑷目测教学楼的长度。

六年级数学下册教案12

  【教学目标】

  1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

  2、会在方格纸上用“数对”确定物体的位置。

  3、发展空间观念,初步体会到数形结合的思想。

  4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用“数对”确定位置。

  【教法】

  情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

  【学法】

  积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

  【教学准备】

  多媒体课件

  【教学过程】

  一、谈话导入

  1、师生谈话。

  学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

  这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

  这位同学的座位是在第3排,大家知道这位同学是谁吗?

  2、导入新课。

  今天这节课,我们就一起来学习确定位置的方法。

  板书课题:用数对确定位置

  【设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】

  二、探索新知

  1、教学例1。

  (1)出示例题1教学图。

  让学生观察图,说说张亮同学坐在第几列?第几行。

  (竖排叫做列,横排叫做行)

  (2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

  (3)让学生用数对表示王艳和赵强的位置。

  王艳(3,4)赵强(4,3)

  (4)小结。

  确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

  【设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】

  2、完成第3页的“做一做”。

  课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

  (电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

  【设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】

  3、教学例2。

  (1)认识方格图。

  出示动物园示意图。

  指导学生观察图。

  这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的`起始,也是行的起始。

  (2)用数对表示图中各场馆的位置。

  提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

  【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】

  你们能用数对表示其他场馆所在的位置吗?

  【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】

  (3)根据数对标位置

  在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

  【设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】

  三、巩固运用

  1、小游戏:看谁反应最快。

  老师说出一组数对,相应的同学要在3秒内起立。

  2、做一做。(课件出示)

  【设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】

  四、课堂总结

  这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

  五、板书设计

  用数对确定位置

  竖排叫做列从左往右

  横排叫做行从前到后

  张亮坐在第2列第3行(2,3)

  (列,行)

六年级数学下册教案13

  教学目标:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、进一步提高学生解决问题的能力。

  教学重、难点:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、理解圆柱体积公式的推导过程。

  教学准备:圆柱切割组合模具、小黑板。

  教学过程:

  一、创设情境,生成问题

  1、什么是体积?( 物体所占空间的大小叫做物体的体积。)

  2、长方体的体积该怎样计算?归纳到底面积乘高上来。

  3、圆的面积怎样计算?

  二、探索交流,解决问题

  1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体 图形来计算它的体积?

  (启发学生思考。)

  2、把圆柱的.底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

  3、思考:

  (1)圆柱切开后可以拼成一个什么形体?(长方体)

  (2)通过实验你发现了什么?

  小组讨论:实验前后,什么变了?什么没变?

  讨论后,整理出来,再进行汇报。

  (拼成的近似长方体体积大小没变,形状变了,拼成的近似长方

  体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

  4、推导圆柱体积公式

  小组讨论:怎样计算圆柱的体积?

  学生汇报讨论结果。

  长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

  师:圆柱的体积怎样计算?用字母公式,怎样表示?

  板书: V=Sh

  5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

  三、巩固应用练习。

  1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,

  这个水桶的容积是多少升?

  说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

  2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

  先求底面半径再求底面积,最后求体积。

  已知底面周长对解决问题有什么帮助吗?必须先求出什么? 四:课堂小结:

  通过这节课你学会了哪些知识,有什么收获?五:课后作业:

  教材第9页,练一练第1、3、4、题

六年级数学下册教案14

  教学目标:

  1.通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

  2.通过图形的放缩,结合具体情境,感受图形的相似。

  教学重点:

  图形的缩小与放大。

  教学难点:

  图形放缩的原理。

  教学过程:

  一、 揭示课题

  1.谈话引入:小红一家外出旅游,照了许多照片,小红把几张照片放大后,挂在家里,把几张照片缩小后,放在夹子里。你知道相片放大缩小的原理吗:

  2.板书课题:图形的放缩。

  二、 探索新知

  1.教学例题

  (1)出示例题。

  ①认真观察图形。

  ②说一说:谁画得像?

  ③你是怎么想的?说出你的思维过程。

  ④教师引导学生得出正确的看法:笑笑和淘气画得最象。

  (2)讨论:

  师:你知道他们是怎样画的?

  ①学生独立思考,探究他们的画法。

  ②教师巡视课堂,帮助有困难的学生,引导他们观察图形的长与宽的长度变化情况

  ③同学之间交流、讨论。

  ④反馈讨论结果。

  (3)小结。

  ①由学生说说有什么体会。

  ②教师小结:只有长与宽都按相同的.比来画,画得才象。

  3. 完成课本画一画。

  三、 探索活动

  活动(1)

  1. 说一说点A(2,0)中,2和0分别表示什么?

  (1) 学生尝试说说自己的理解。

  (2) 教师明确说明,2表示列,0表示行。

  2. 分别说说B(4,0),C(6,2),D(6,6)各数对中的数字所表示的意义。

  3. 把表示点E、F、G、H、I、J的数对填入相应的空格。

  活动(2)

  (1) X表示什么?Y表示什么?

  (2) 2X表示什么?2Y表示什么?

  活动(3)

  1.学生独立描点。

  2.展示学生的作品。

  3. 观察比较,说说哪只猫长得象乐乐。

  4.你知道为什么?

  四、 课堂小结

  说一说把图形放大或缩小的关键是什么。

六年级数学下册教案15

  教学内容:

  求稍微复杂的“求一个数是另一个数百分之几”的应用题(课本第90页的例2及“做一做”)。

  教材分析:

  这部分内容是求一个数是另一个数的百分之几问题的发展,是在求比一个数多(少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学目标:

  1、知识与技能

  掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

  2、过程与方法

  通过学习,培养学生利用已有的基础知识,来探索解决新问题。

  3、情感、态度与价值观

  提高学生迁移类推和分析、解决问题的能力。

  教学重点:

  掌握解决此类问题的方法。

  教学难点:

  理解题中的数量关系。

  导学过程

  一、巩固复习

  1、把下面各数化成百分数。

  0.63 1.08 7 0.044

  2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)

  (1)某种菜籽的出油率是36%。

  (2)实际用电量占计划用电量的80%。

  (3)李家今年荔枝产量是去年的`120%。

  二、授新课

  1、根据数学信息提出问题:

  出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

  (1)计划造林是实际造林的百分之几?

  (2)实际造林是计划造林的百分之几?

  (3)实际造林比计划造林增加百分之几?

  (4)计划造林比实际造林少百分之几?

  2、让学生先解决前两个问提。

  解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

  3、学生自主解决“实际造林比计划增加了百分之几”的问题。

  (1)分析数量关系,让学生自己尝试着用线段图表示出来。

  (2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

  (3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

  方法一:(14-12)÷12=2÷12≈0.167=16.7%

  提问:14-12表示什么?再除以12表示什么?

  方法二:14÷12≈1.167=116.7%

  116.7%-100%=16.7%

  提问:14÷12表示什么?再减去100%表示什么?

  (4)小结解题方法:

  像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。)

  (5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?

  学生列出算式:(14-12)÷14

  (再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

  三、巩固练习

  1、独立完成课本第90页“做一做”的题目。

  2、练习二十二第1、2题。

  四、布置作业

  练习二十二第3、4题。

【六年级数学下册教案】相关文章:

数学六年级下册教案02-24

数学六年级下册教学教案01-06

六年级数学下册教案10-22

苏教版六年级数学下册教案03-08

六年级下册数学教案01-04

人教版六年级数学下册教案02-20

六年级下册数学教案03-13

小学六年级数学下册教案10-21

六年级下册数学教案01-24

六年级数学下册教案优秀02-02