- 因式分解教案 推荐度:
- 数学因式分解教案 推荐度:
- 相关推荐
关于因式分解教案(精选14篇)
作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。写教案需要注意哪些格式呢?以下是小编为大家整理的因式分解教案,仅供参考,大家一起来看看吧。

因式分解教案 1
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的.,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
因式分解教案 2
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的',运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
因式分解教案 3
学习目标
1、了解因式分解的意义以及它与正式乘法的关系。
2、能确定多项式各项的公因式,会用提公因式法分解因式。
学习重点:
能用提公因式法分解因式。
学习难点:
确定因式的公因式。
学习关键,
在确定多项式各项公因式时,应抓住各项的公因式来提公因式。
学习过程
一.知识回顾
1、计算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主学习
1、阅读课文P72-73的内容,并回答问题:
(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。
(2)、知识点二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我们来分析一下多项式ma+mb+mc的'特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样
ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。
2、练一练。P73练习第1题。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。
3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:
(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。
例如:8a2b-72abc公因式的数字因数为8。
(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式为__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73练习第2题和第3题
五、达标测试。
1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.课本P77习题8.5第1题
因式分解教案 4
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的.a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
因式分解教案 5
教学目标:
1、学生能够理解因式分解的概念。
2、学生能够应用因式分解解决实际问题。
3、学生能够简化代数式并解决相关的数学题目。
教学准备:
1、白板、黑板或投影仪来展示教学内容。
2、学生练习册或作业本。
教学步骤:
步骤1:引入因式分解概念(10分钟)
学生会发现数学中的代数式经常出现多个项的乘积,比如(a+b)、(a-b)等。引入因式分解的概念,解释代数式可以进行因式分解,从而更好地理解和简化代数式。
步骤2:理解因式分解的重要性(15分钟)
在这一部分,老师可以通过大量的实例,如多项式的乘积、简化分数等,来帮助学生理解因式分解在求解问题和简化计算中的重要性。
步骤3:展示因式分解的步骤(10分钟)
解释因式分解的步骤,例如将代数式进行拆分,找到公因子,应用分配律,最终将代数式简化为乘积的形式。通过在黑板上解决一些示例问题,让学生理解具体的步骤。
步骤4:实际应用案例(20分钟)
给学生一些实际的应用案例,如利用因式分解解决面积和周长的问题,解决一元二次方程的根等。让学生通过解题来巩固他们对因式分解的理解并应用所学知识。
步骤5:团队合作活动(15分钟)
将学生分成小组,给每个小组一个因式分解的问题。要求学生协作解决问题,并在规定时间内完成,然后展示他们的.解决方案。通过这种互动活动,学生可以互相学习并巩固因式分解的知识。
步骤6:总结和扩展(10分钟)
总结因式分解的概念和步骤,并鼓励学生在课后进一步探索因式分解的应用,如解决更复杂的代数问题,求解方程等。鼓励学生发现数学中的因式分解的重要性,并将其扩展到更广泛的数学领域。
扩展活动:
1、请学生自行搜索因式分解的应用实例,并在下节课上进行分享。
2、提供更复杂的代数式让学生进行因式分解,并进行讨论和解释。
3、给学生类似于迷思或解谜的数学问题,让他们运用因式分解的技巧解决问题。
教学评估方式:
1、在课堂上观察学生对因式分解概念的理解程度。
2、让学生解决一些基本的因式分解题目,并批改他们的答案。
3、观察学生在团队合作活动中的表现和解决问题的能力。
结语:
通过这份因式分解英语教案,学生能够在实际例子和互动活动中更好地理解因式分解的概念和步骤,并学会应用因式分解解决数学问题。这样的教学方法将帮助学生培养数学思维能力和解决问题的技巧。通过互动和扩展活动,学生还能够深入探索因式分解在数学中的更多应用,进一步拓宽他们的知识面。
因式分解教案 6
一、教材分析
1、教材的地位与作用
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了同学的自主探究过程,依据原有的学问基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法同学自己对学问内容的探究、熟识与体验,完全有利于同学形成合理的学问结构,提高数学思维力气、利用公式法进行因式分解时,留意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的`乘积。
2、教学目标
(1)会推导乘法公式
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经受观看、探究和做出推断的过程,提高分析问题和解决问题的力气。
3、重点、难点和关键
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
二、本单元教学的方法和策略:
1、留意学问形成的探究过程,让同学在探究过程中领悟学问,在领悟过程中建构体系,从而更好地实现学问体系的更新和学问的正向迁移
2、学问内容的呈现方式力求与同学已有的学问结构相联系,同时兼顾同学的思维水平和心理特征
3、让同学把握基本的数学事实与数学活动阅历,减轻不必要的记忆负担
4、留意从生活中选取素材,给同学供应一些沟通、争辩的空间,让同学从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯
三、课时支配:
2.1平方差公式 1课时
2.2完全平方公式 2课时
2.3用提公因式法进行因式分解 1课时
2.4用公式法进行因式分解 2课时
因式分解教案 7
教学目标
教学知识点
使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。
潜力训练要求。
透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。
情感与价值观要求。
透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
教学重点
1、理解因式分解的好处。
2、识别分解因式与整式乘法的关系。
教学难点透过观察,归纳分解因式与整式乘法的关系。
教学方法观察讨论法
教学过程
Ⅰ、创设问题情境,引入新课
导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、讲授新课
1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
993-99=99×98×100
2、议一议
你能尝试把a3-a化成n个整式的`乘积的形式吗?与同伴交流。
3、做一做
(1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根据上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
下面我们一起来总结一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法与分解因式的联系和区别
ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。
6。例题下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、课堂练习
P40随堂练习
Ⅳ、课时小结
本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
因式分解教案 8
学习目标
1、 学会用公式法因式法分解
2、综合运用提取公式法、公式法分解因式
学习重难点 重点:
完全平方公式分解因式.
难点:综合运用两种公式法因式分解
自学过程设计
完全平方公式:
完全平方公式的逆运用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)
3.下列因式分解正确的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.计算:20062-40102006+20052=___________________.
6.若x+y=1,则 x2+xy+ y2的值是_________________.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________ 预习展示一:
1.判别下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
应用探究:
1、用简便方法计算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y关系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的'形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。
因式分解教案 9
一、案例背景
现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习积极性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。
因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
二、案例分析
教学过程设计
(一)『情境引入』
情境一:如何计算375×2.8+375×4.9+375×2.3你是怎样想的
问题:为什么375×2.8+375×4.9+375×2.3能够写成375×(2.4+4.9+2.3)依据是什么
【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。
(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。
情境二:分析比较
把单项式乘多项式的乘法法则
a(b+c+d)=ab+ac+ad①
反过来,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎样认识①式和②式之间的关系的
(2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗
【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
(2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。
(二)『探究因式分解』
1、认识公因式
(1)、【概念1】:多项式ab+ac+ad各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。
(2)、议一议
下列多项式的各项是否有公因式如果有,试找出公因式。
①多项式a2b+ab2的公因式是ab,……公因式是字母;
②多项式3x2—3y的公因式是3,……公因式是数字系数;
③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。
分析并猜想
确定一个多项式的公因式时,要从和两方面,分别进行思考。
①如何确定公因式的数字系数
②如何确定公因式的字母字母的指数怎样定
练一练:写出下列多项式各项的公因式
(1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。
(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。
(3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。
2、认识因式分解
【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解。
(课本)P71练一练第1题
(1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是
①。ab+ac+d=a(b+c)+d
②。a2—1=(a+1)(a—1)
③。(a+1)(a—1)=a2—1
(2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系从中你得到什么启发
【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。
(2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维潜力和表达、交流潜力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。
(三)『例题研究』
例1:把下列各式分解因式
(1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)
=3a2b(2a—3bc)(提取公因式)
(2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)
=—2m(m2—4m+6)(提取公因式)
【评析】:(1)、因式分解的概念和好处需要学生多层次的感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再透过不同形式的练习增强对概念的理解例。
(2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生透过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。
(3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达潜力。
本题的易错点:
(1)、漏项:提公因式后括号中的.项数应与原多项式的项数一样,这样可检查是否漏项。
(2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“—”号,括到括号里的各项都要变号。
(四)『巩固练习』
练一练:辨别下列因式分解的正误
(1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
(3)a3—a2=a2(a—1)=a3—a2
解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。
(2)错误,分解因式后,括号内的多项式中仍有公因式。
(3)错误,分解因式后,又回到到了整式的乘法。
【评析】:(1)、这些多是学生易错的,本题设置的目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。
(2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1.1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。
(3)、进行多项式分解因式时,务必把每一个因式都分解到不能分解为止。
(4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。
(五)『想一想』:
如何把多项式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2—a)=—(a—2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。
【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
初中因式分解教学反思
1、本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习课堂小结—布置作业六部分,这一流程体现了知识发生、构成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等潜力,发展有条理思考及语言表达潜力;
2、分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生带给丰富搞笑的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程;
3、在提公因式方面,学生对公因式的认识不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:
(1)公因式找错;
(2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中内含多项式时,漏掉系数或字母因数),导致因式分解不彻底;
4、由于在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;
因式分解是一个重点,也是一个难点,以上存在问题在以后的教学中有待进一步加强。
因式分解教案 10
教学目标
①在掌握了解因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.
②在运用公式法进行因式分解的同时培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.
③进一步体验“整体”的思想,培养“换元”的意识.
教学重点与难点
重点:运用完全平方公式法进行因式分解.
难点:观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.
教学准备
要求学生对完全平方公式准确理解.
教学设计
问题:你能将多项式a2+2ab+b2和a2-2ab+b2因式分解吗?这两个多项式有什么特点?
建议:由于受到前面用平方差公式分解因式的影响,学生对于这两个多项式因式分解比较容易想到用完全平方公式,学生容易接受,教师要把重点放在研究公式的特征上来.
注:可采用让学生自主讨论的方式进行教学,引导学生从多项式的项数、每项的特点、整个多项式的特点等几个方面进行研究.然后交流各自的体会.
把多项式向公式的方向变形和转化.
例5分解因式
(1)16x2+24x+9 (2)-x2+4x-42
注:训练学生运用完全平方公式分解因式,要尽可能地让学生说和做,引导学生把多项式与公式进行比较找出不同点,把多项式向公式的`方向转化.
例6分解因式
(1)3ax2+6ax+3a2
(2)(a+b)2-12(a+b)+36
注:学生仔细观察多项式的特点,教师适当提醒和指导,要从公式的形式和特点上进行比较.(可把a+b看作一个整体,设a+b=)
第2小题注意渗透换整体和换元的思想.
巩固练习
教科书第170页的练习题.
小结提高
1.举一个例子说说应用完全平方公式分解因式的多项式应具有怎样的特征.
2.谈谈多项式因式分解的思考方向和分解的步骤.
3.谈谈多项式因式分解的注意点.
注:对这些问题进行回顾和小结能从大的方面把握因式分解的方向和培养观察能力.
布置作业
1.必做题:教科书第171页习题15.4第4题,第5题;
2.选做题:教科书第171页第10题;
因式分解教案 11
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的'探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解教案 12
教学目标:
1、 理解运用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的综合运用。
3、 进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、试总结运用平方差公式因式分解的`条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2 还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
因式分解教案 13
一、教学目标
1.掌握“多──少”、“大──小”两组反义词。
2.理解量词“群、颗、堆”的意思,能正确使用一些量词。
3.正确、流利地朗读课文。
二、教学重难点
认字、写字和正确使用量词。
三、教学过程
(一)复习检查
1.复习生字。
2.朗读课文。
(二)学习课文,整体把握
1.说一说、比一比。
师:同学们都读了课文,请告诉老师,他们在比什么?
生:比大──小。
生:比多──少。
师:谁和谁在比大小,谁和谁在比多少?
生:黄牛和花猫、苹果和枣在比大小。
生:鸭子和鸟、杏子和桃在比多少。
师:黄牛和花猫、鸭子和鸟都是动物这是一类的,它们可以放在一起来比较。苹果和枣、杏子和桃都是水果,可以放在一起比较。
2.认识量词。
课件出示课文:
一(头)黄牛一(只)猫
一(个)苹果一(颗)枣
一(群)鸭子一(只)鸟
一(堆)杏子一(个)桃
师:括号内的字表示量词。在说一些物体时要用上这类的`表示数量的词。
师:在上面的这些图片中(课件出示一些动物图片)你能说一说吗?
生:一头猪。
生:一只兔。
生:一只鸡,一群鸟。
师:对了,多的时候用一(群),还能说一群羊、一群蚂蚁、一群大雁……
师:我们再来看这些可以用什么量词,你能说吗?
生:一个西瓜,一堆西瓜。
生:一棵树,一颗星。
师:这两个字不一样,表示的物体也不一样,“棵”一般用在植物类,“颗”一般用在圆圆的、小小的、粒状的东西。
生:一棵白菜,一颗石头。
生:一颗心,一颗种子。
3.我会说。
(1)用自己喜欢的方式读课文。
(2)练习课后“我会说”。
一(朵)花一(把)扇子一(本)书一(件)衣服一(双)鞋一(块)西瓜一(辆)车
(3)续编儿歌。
学生先说一说生活中的量词,思考后续编儿歌。
例:
一个大,一个小,一头大象一只兔。
一个皮球一颗扣。
一边多,一边少,一群山羊一只鸡。
一堆萝卜一根葱。
(三)指导生字,书写生字
1.课件出示生字,学生观察生字。
课件展示书写过程,书写顺序上有什么相同的地方?重点看笔顺:先中间后两边。
引导学习新笔画“竖钩”,注意“少”上边的“小”没钩。
2.教师指导、示范,学生书空。
3.学生描红。
4.展示学生作业。
因式分解教案 14
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的'解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=2004,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=2004+1=2005
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
【因式分解教案】相关文章:
因式分解教案06-26
因式分解教案(热)10-22
因式分解教案(精选15篇)12-04
精选因式分解教案四篇10-22
初中数学因式分解教案05-17
有关因式分解教案四篇09-08
关于因式分解教案四篇06-05
【精华】因式分解教案3篇10-09
有关因式分解教案3篇09-18
实用的因式分解教案三篇10-03