高中数学教案

时间:2025-02-24 09:20:10 欧敏 教案 我要投稿

高中数学教案(精选22篇)

  作为一名老师,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编精心整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学教案(精选22篇)

  高中数学教案 1

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:

  集合的基本概念及表示方法

  教学难点

  运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:

  新授课

  课时安排

  1课时

  教 具

  多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的'每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

  高中数学教案 2

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的`方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  高中数学教案 3

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的`条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

  高中数学教案 4

  教学目标

  (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

  (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

  (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

  (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

  (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

  教学建议

  一、知识结构

  二、重点难点分析

  本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

  从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的'一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

  公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

  排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

  在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

  在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

  三、教法建议

  ①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

  ab,ac,ba,bc,ca,cb,

  其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

  ②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

  从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

  在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

  在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

  要特别注意,不加特殊说明,本章不研究重复排列问题。

  ③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

  导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

  公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

  (1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

  (2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

  ④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

  ⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

  高中数学教案 5

  教学目标:

  1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2、会求一些简单函数的反函数。

  3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1、复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3、板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1、问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2、问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3。渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1、(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2、引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3、两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4、函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1、(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2、总结求函数反函数的步骤:

  由y=f(x)反解出x=f(y)。

  把x=f(y)中 x与y互换得。

  写出反函数的定义域。

  (简记为:反解、互换、写出反函数的'定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2.4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

  高中数学教案 6

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的`单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

  高中数学教案 7

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的'点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

  高中数学教案 8

  猴子搬香蕉

  一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。

  河岸的距离

  两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

  解答:

  当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度

  等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。

  变量交换

  不使用任何其他变量,交换a,b变量的值?

  分析与解答

  a = a+b

  b = a-b

  a= a-b

  步行时间

  某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。

  有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到

  他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?

  解答:

  假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

  因此,温斯顿步行了26分钟。

  付清欠款

  有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

  贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

  解答:

  贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

  贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

  一美元纸币

  注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

  一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

  (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

  (2)这四人中没有一人能够兑开任何一枚硬币。

  (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要

  付的帐单款额其次,一个叫内德的男士要付的`账单款额最小。

  (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

  (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

  (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

  (7)随着事情的进一步发展,又出现如下的情况:

  (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

  现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

  解答:

  对题意的以下两点这样理解:

  (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

  (6)中指如果A,B换过,并且A,C换过,这就是两次交换。

  高中数学教案 9

  教学目标:

  1.结合实际问题情景,理解分层抽样的必要性和重要性;

  2.学会用分层抽样的方法从总体中抽取样本;

  3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

  教学重点:

  通过实例理解分层抽样的方法.

  教学难点:

  分层抽样的步骤.

  教学过程:

  一、问题情境

  1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

  2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

  由于样本的容量与总体的个体数的.比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是,即40,32,28.

  三、建构数学

  1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

  2.三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3.分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分.

  (2)确定比例:计算各层的个体数与总体的个体数的比.

  (3)确定各层应抽取的样本容量.

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

  四、数学运用

  1.例题.

  例1(1)分层抽样中,在每一层进行抽样可用_________________.

  (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

  ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

  ③某班元旦聚会,要产生两名“幸运者”.

  对这三件事,合适的抽样方法为()

  A.分层抽样,分层抽样,简单随机抽样

  B.系统抽样,系统抽样,简单随机抽样

  C.分层抽样,简单随机抽样,简单随机抽样

  D.系统抽样,分层抽样,简单随机抽样

  例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

  很喜爱

  喜爱

  一般

  不喜爱

  2435

  4567

  3926

  1072

  电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

  解:抽取人数与总的比是60∶12000=1∶200,

  则各层抽取的人数依次是12.175,22.835,19.63,5.36,

  取近似值得各层人数分别是12,23,20,5.

  然后在各层用简单随机抽样方法抽取.

  答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

  数分别为12,23,20,5.

  说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

  (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

  分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

  (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

  (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.分层抽样的概念与特征;

  2.三种抽样方法相互之间的区别与联系.

  高中数学教案 10

  教学目标

  (1)了解算法的含义,体会算法思想。

  (2)会用自然语言和数学语言描述简单具体问题的算法;

  (3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

  教学重难点

  重点:算法的含义、解二元一次方程组的算法设计。

  难点:把自然语言转化为算法语言。

  情境导入

  电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

  第一步:观察、等待目标出现(用望远镜或瞄准镜);

  第二步:瞄准目标;

  第三步:计算(或估测)风速、距离、空气湿度、空气密度;

  第四步:根据第三步的结果修正弹着点;

  第五步:开枪;

  第六步:迅速转移(或隐蔽)

  以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

  课堂探究

  预习提升

  1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

  2、描述方式

  自然语言、数学语言、形式语言(算法语言)、框图。

  3、算法的要求

  (1)写出的算法,必须能解决一类问题,且能重复使用;

  (2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

  4、算法的特征

  (1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

  (2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

  (3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

  (4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

  (5)不唯一性:解决同一问题的算法可以是不唯一的

  课堂典例讲练

  命题方向1对算法意义的理解

  例1、下列叙述中,

  ①植树需要运苗、挖坑、栽苗、浇水这些步骤;

  ②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

  ③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

  ④3x>x+1;

  ⑤求所有能被3整除的正数,即3,6,9,12。

  能称为算法的个数为(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

  【答案】B

  [规律总结]

  1、正确理解算法的概念及其特点是解决问题的关键、

  2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

  【变式训练】下列对算法的理解不正确的是________

  ①一个算法应包含有限的步骤,而不能是无限的

  ②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

  ③算法中的每一步都应当有效地执行,并得到确定的结果

  ④一个问题只能设计出一个算法

  【解析】由算法的有限性指包含的步骤是有限的故①正确;

  由算法的明确性是指每一步都是确定的故②正确;

  由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

  由对于同一个问题可以有不同的算法故④不正确。

  【答案】④

  命题方向2解方程(组)的算法

  例2、给出求解方程组的一个算法。

  [思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

  [规范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程组可化为

  第二步,解方程③,可得y=-1,④

  第三步,将④代入①,可得2x-1=7,x=4

  第四步,输出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,输出4,-1

  [规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的.理解,又要强调对所学知识的灵活运用。

  2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

  【变式训练】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命题方向3筛选问题的算法设计

  例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

  [思路分析]比较a,b比较m与c―→最小数

  [规范解答]算法步骤如下:

  1、比较a与b的大小,若a

  2、比较m与c的大小,若m

  [规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

  【变式训练】在下列数字序列中,写出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一个数m,m=21;

  2、将m与89比较,是否相等,如果相等,则搜索到89;

  3、如果m与89不相等,则往下执行;

  4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

  命题方向4非数值性问题的算法

  例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

  (1)设计安全渡河的算法;

  (2)思考每一步算法所遵循的共同原则是什么?

  高中数学教案 11

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的.距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

  高中数学教案 12

  教学目的:

  通过实例及图形让学生理解交集与并集的概念及有关性质。

  (1)结合集合的图形表示,理解交集与并集的概念;

  (2)掌握交集和并集的表示法,会求两个集合的交集和并集;

  教学重点:

  交集和并集的概念

  教学难点:

  交集和并集的概念、符号之间的区别与联系

  教学过程:

  一、复习引入:

  1.说出的意义。

  2.填空:若全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么CUA=,CUB=.

  3.已知6的正约数的集合为A={1,2,3,6},10的正约数为B={1,2,5,10},那么6与10的正公约数的集合为C=.

  4.如果集合A={a,b,c,d}B={a,b,e,f}用韦恩图表示(1)由集合A,B的.公共元素组成的集合;(2)把集合A,B合并在一起所成的集合.

  cdabef

  cdabef

  公共部分A∩B合并在一起A∪B

  二、新授

  定义:交集:A∩B={x|xA且xB}符号、读法

  并集:A∪B={x|xA或xB}

  例题:例一设A={x|x-2},B={x|x3},求.

  例二设A={x|是等腰三角形},B={x|是直角三角形},求.

  例三设A={4,5,6,7,8},B={3,5,7,8},求A∪B.

  例四设A={x|是锐角三角形},B={x|是钝角三角形},求A∪B.

  例五设A={x|-1x2},B={x|1x3},求A∪B.

  例六设A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7}且A∩B=C求x,y.

  解:由A∩B=C知7A∴必然x2-x+1=7得

  x1=-2,x2=3

  由x=-2得x+4=2C∴x-2

  ∴x=3x+4=7C此时2y=-1∴y=-

  ∴x=3,y=-

  例七已知A={x|2x2=sx-r},B={x|6x2+(s+2)x+r=0}且A∩B={}求A∪B.

  解:∵A且B∴

  解之得s=-2r=-

  ∴A={-}B={-}

  ∴A∪B={-,-}

  练习P12

  三、小结:交集、并集的定义

  补充:设集合A={x|-4≤x≤2},B={x|-1≤x≤3},C={x|x≤0或x≥},求A∩B∩C,A∪B∪C。

  高中数学教案 13

  教学目标:

  1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

  2.会求一些简单函数的反函数.

  3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

  4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

  教学重点:求反函数的方法.

  教学难点:反函数的概念.

  教学过程

  教学活动

  设计意图一、创设情境,引入新课

  1.复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

  3.板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

  二、实例分析,组织探究

  1.问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2.问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3.渗透反函数的概念.

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

  三、师生互动,归纳定义

  1.(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

  2.引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因.

  3.两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4.函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1.(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x-1 (2)y=x 1

  【例2】求函数的反函数.

  (教师板书例题过程后,由学生总结求反函数步骤.)

  2.总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x与y互换得.

  3° 写出反函数的定义域.

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________.

  (3)(x<0)的反函数是__________.

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

  五、巩固强化,评价反馈

  1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的`两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

  六、作业

  习题2.4第1题,第2题

  进一步巩固所学的知识.

  教学设计说明

  "问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

  高中数学教案 14

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的`三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

  高中数学教案 15

  教学目标

  知识与技能

  理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题、

  过程与方法

  经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力、

  情感态度

  让学生感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心、

  教学重点

  等式的性质和运用、

  教学难点

  引导学生发现并概括出等式的性质、

  教学过程

  一、情景导入,初步认知

  同学们,你们还记得“曹冲称象”的故事吗?请同学们说说这个故事、

  小时候的曹冲是多么的聪明啊!随着社会的进步,科学水平的发展,我们有越来越多的方法测量物体的重量、最常见的方法是用天平测量一个物体的质量、

  我们来做这样一个实验,测一个物体的质量(设它的质量为x)、首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量、

  【教学说明】从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题、让学生从中体验学习与生活的紧密联系、

  二、思考探究,获取新知

  1、思考并回答下列问题、

  (1)如果:七年级(1)班的学生人数=七年级(2)班的学生人数、

  现在每班增加2名学生,那么七年级(1)班与七年级(2)班的学生人数相等吗?

  如果每班减少3名学生,那么这两个班的学生人数还相等吗?

  (2)如果:甲筐米的质量=乙筐米的质量

  现在将甲、乙两筐米分别倒出一半,那么甲、乙两筐剩下的米的质量相等吗?

  2、观察上面的实验操作过程,回答下列问题、

  (1)从这个变形过程,你发现了哪些一般规律?

  (2)这两个等式两边分别进行什么变化?等式有何变化?

  (3)通过上面的操作活动,你能说一说等式有什么性质吗?

  【归纳结论】等式性质1:等式的两边都加上(或减去)同一个数或式子,所得结果仍是等式、等式性质2:等式两边都乘(或除以)同一个数或式子(除数不为0),所得结果仍是等式、

  即:如果a=b,那么a±c=b±c;

  ac=bc;=(d≠0)、

  【教学说明】通过操作途径来发现等式的'加减性质,将抽象的算式具体化,降低学生的认知难度,提高课堂效率、同时,通过操作活动更加吸引学生的注意力,调动学生参与课堂的积极性、

  三、运用新知,深化理解

  1、教材P88例1、例2、

  2、下列结论正确的是(B)

  A、若x+3=y—7,则x+7=y—11;

  B、若7y—6=5—2y,则7y+6=17—2y;

  C、若0、25x=—4,则x=—1;

  D、若7x=—7x,则7=—7、

  3、下列说法错误的是(C)

  A、若=,则x=y;

  B、若x2=y2,则—4x2=—4y2;

  C、若—x=6,则x=—;

  D、若6=—x,则x=—6、

  4、已知等式ax=ay,下列变形不正确的是(A)

  A、x=yB、ax+1=ay+1

  C、ay=axD、3—ax=3—ay

  5、下列说法正确的是(D)

  A、等式两边都加上一个数或一个整式,所得结果仍是等式;

  B、等式两边都乘以一个数,所得结果仍是等式;

  C、等式两边都除以同一个数,所得结果仍是等式;

  D、一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式、

  6、判断:已知a=b,c=d

  (1)5a=5b()

  (2)c÷5=d÷15()

  (3)a—b=c—d()

  (4)a+5=c+5()

  答案:对、错、对、错、

  7、在方程的两边都加上4,可得方程x+4=5,那么原方程是x=1、

  8、在方程x—6=—2的两边都加上6,可得x=4、

  9、方程5+x=—2的两边都减5得x=—7、

  10、如果—7x=6,那么x=—、

  11、只列方程,不求解、

  某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?

  解:设原计划x天完成、

  20x+100=32x—20

  【教学说明】通过及时的练习对所学新知进行巩固和深化、在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力、

  四、师生互动、课堂小结

  先小组内交流收获和感想而后以小组为单位派代表进行总结、教师作以补充、

  【课后作业】

  布置作业:教材“习题3、2”中第1、2、3题、

  高中数学教案 16

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的'整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

  高中数学教案 17

  (一)教学具准备

  直尺,投影仪.

  (二)教学目标

  1.掌握,的定义域、值域、最值、单调区间.

  2.会求含有、的三角式的定义域.

  (三)教学过程

  1.设置情境

  研究函数就是要讨论一些性质,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

  2.探索研究

  师:同学们回想一下,研究一个函数常要研究它的哪些性质?

  生:定义域、值域,单调性、奇偶性、等等.

  师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)

  师:请同学看投影,大家仔细观察一下正弦、余弦曲线的'图像.

  师:请同学思考以下几个问题:

  (1)正弦、余弦函数的定义域是什么?

  (2)正弦、余弦函数的值域是什么?

  (3)他们最值情况如何?

  (4)他们的正负值区间如何分?

  (5)的解集如何?

  师生一起归纳得出:

  (1)正弦函数、余弦函数的定义域都是.

  (2)正弦函数、余弦函数的值域都是即,称为正弦函数、余弦函数的有界性.

  (3)取最大值、最小值情况:

  正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

  余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

  (4)正负值区间:

  ()

  (5)零点:()

  ()

  3.例题分析

  【例1】求下列函数的定义域、值域:

  (1);(2);(3).

  解:(1),

  (2)由()

  又∵,∴

  ∴定义域为(),值域为.

  (3)由(),又由

  ∴

  ∴定义域为(),值域为.

  指出:求值域应注意用到或有界性的条件.

  【例2】求下列函数的最大值,并求出最大值时的集合:

  (1),;(2),;

  (3)(4).

  解:(1)当,即()时,取得最大值

  ∴函数的最大值为2,取最大值时的集合为.

  (2)当时,即()时,取得最大值.

  ∴函数的最大值为1,取最大值时的集合为.

  (3)若,此时函数为常数函数.

  若时,∴时,即()时,函数取最大值,

  ∴时函数的最大值为,取最大值时的集合为.

  (4)若,则当时,函数取得最大值.

  若,则,此时函数为常数函数.

  若,当时,函数取得最大值.

  ∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

  指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

  思考:此例若改为求最小值,结果如何?

  【例3】要使下列各式有意义应满足什么条件?

  (1);(2).

  解:(1)由,

  ∴当时,式子有意义.

  (2)由,即

  ∴当时,式子有意义.

  4.演练反馈(投影)

  (1)函数,的简图是()

  (2)函数的最大值和最小值分别为()

  A.2,-2 B.4,0 C.2,0 D.4,-4

  (3)函数的最小值是()

  A.B.-2 C.D.

  (4)如果与同时有意义,则的取值范围应为()

  A.B.C.D.或

  (5)与都是增函数的区间是()

  A.,B.,

  C.,D.,

  (6)函数的定义域________,值域________,时的集合为_________.

  参考答案:1.B 2.B 3.A 4.C 5.D

  6.;

  5.总结提炼

  (1),的定义域均为.

  (2)、的值域都是

  (3)有界性:

  (4)最大值或最小值都存在,且取得极值的集合为无限集.

  (5)正负敬意及零点,从图上一目了然.

  (6)单调区间也可以从图上看出.

  (四)板书设计

  1.定义域

  2.值域

  3.最值

  4.正负区间

  5.零点

  例1

  例2

  例3

  课堂练习

  课后思考题:求函数的最大值和最小值及取最值时的集合

  提示:

  高中数学教案 18

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

  (2)进一步理解曲线的方程和方程的曲线。

  (3)初步掌握求曲线方程的方法。

  (4)通过本节内容的教学,培养学生分析问题和转化的能力。

  教学重点、难点:

  求曲线的方程。

  教学用具:

  计算机。

  教学方法:

  启发引导法,讨论法。

  教学过程:

  【引入】

  1、提问:什么是曲线的方程和方程的曲线。

  学生思考并回答。教师强调。

  2、坐标法和解析几何的意义、基本问题。

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程。

  (2)通过方程,研究平面曲线的性质。

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

  【问题】

  如何根据已知条件,求出曲线的方程。

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

  证明:(1)曲线上的点的坐标都是这个方程的解。

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解。

  (2)以这个方程的解为坐标的点都是曲线上的点。

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上。

  综合(1)、(2),①是所求直线的方程。

  至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的'条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

  分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

  求解过程略。

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点。

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

  高中数学教案 19

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的`几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f(x0)=1,f(x0)=1,f(x0)=-1,f(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y=2x,y|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

  高中数学教案 20

  教学目标:

  1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

  2、通过观察、操作培养学生的观察能力和动手操作能力。

  3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

  4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

  教学重点:

  理解角的概念,掌握角的三种表示方法

  教学难点:

  掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

  教学手段:

  教具:电脑课件、实物投影、量角器

  学具:量角器需测量的角

  教学过程:

  一、建立角的概念

  (一)引入角(利用课件演示)

  1、从生活中引入

  提问:

  A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

  B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

  2、从射线引入

  提问:

  A、昨天我们认识了射线,想从一点可以引出多少条射线?

  B、如果从一点出发任意取两条射线,那出现的是什么图形?

  C、哪两条射线可以组成一个角?谁来指一指。

  (二)认识角,总结角的定义

  3、 过渡:角是怎么形成的呢?一起看

  (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

  提问:观察从这点引出了几条射线?此时所组成的.图形是什么图形?

  (2)、判断下列哪些图形是角。

  (√) (×) (√) (×) (√)

  为何第二幅和第四幅图形不是角?(学生回答)

  谁能用自己的话来概括一下怎样组成的图形叫做角?

  总结:有公共端点的两条射线所组成的图形叫做角(angle)

  角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

  B

  0 A

  4、认识角的各部分名称,明确顶点、边的作用

  (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

  (2)角可以画在本上、黑板上,那角的位置是由谁决定的?

  (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

  5、学会用符号表示角

  提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

  (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

  (2)观察这两种方法,有什么特点?(字母B都在中间)

  (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

  (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

  (5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。

  6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

  二、 角的度量

  1、学习角的度量

  (1)教学生认识量角器

  (2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

  提出要求:小组合作边学习测量方法边尝试测量

  第一个角,想想有几种方法?

  1、要求合作学习探究、测量。

  2、反馈汇报:学生边演示边复述过程

  3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

  4、归纳概括测量方法(两重合一对)

  (1)用量角器的中心点与角的顶点重合

  (2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

  (3)另一条边所对的角的度数,就是这个角的度数。

  5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

  6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

  (1) 独立测量,师注意查看学生中存在的问题。

  (2) 课件演示纠正问题

  三、度、分、秒的进位制及这些单位间的互化

  为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 将57.32°用度、分、秒表示.

  解:先把0.32°化为分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化为秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化为分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化为度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、巩固练习

  课本P122练习

  五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

  六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

  高中数学教案 21

  一、教学目标

  1、知识与能力目标

  ①使学生理解数列极限的概念和描述性定义。

  ②使学生会判断一些简单数列的极限,了解数列极限的“e—N"定义,能利用逐步分析的方法证明一些数列的极限。

  ③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

  2、过程与方法目标

  培养学生的极限的思想方法和独立学习的能力。

  3、情感、态度、价值观目标

  使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

  二、教学重点和难点

  教学重点:数列极限的概念和定义。

  教学难点:数列极限的“ε―N”定义的理解。

  三、教学对象分析

  这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε—N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

  四、教学策略及教法设计

  本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

  五、教学过程

  1、创设情境

  课件展示创设情境动画。

  今天我们将要学习一个很重要的新的知识。

  情境

  (1)我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

  情境

  (2)我国古代哲学家庄周所著的《庄子·天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,无限次地切,每次都切一半,问是否会切完?

  大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

  2、定义探究

  展示定义探索(一)动画演示。

  问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

  (1)1/2,2/3,3/4,n/n—1

  (2)0.9,0.99,0.999,0.9999,1—1/10n

  问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

  师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

  那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

  那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

  提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

  展示定义探索(二)动画演示。

  师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O—1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0.0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

  数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an—A|n的极限。

  课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

  定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的'距离。如图2所示是课件运行时的一个画面。

  3、知识应用

  这里举了3道例题,与学生一块思考,一起分析作答。

  例1、已知数列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)计算an—0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

  (3)确定这个数列的极限。

  例2、已知数列:

  已知数列:3/2,9/4,15/8,2+(—1/2)n。

  猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

  例3、求常数数列一7,一7,一7,一7,的极限。

  4、知识小结

  这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

  课后练习:

  (1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

  (2)课本练习1,2。

  5、探究性问题

  设计研究性学习的思考题。

  提出问题:

  芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O。1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里这样一直追下去,阿基里斯能追上乌龟吗?

  这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

  高中数学教案 22

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能。

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解。

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。

  初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)

  (同学议论结果,答案是肯定的)

  教师提问:什么是命题?

  (学生进行回忆、思考。)

  概念总结:对一件事情作出了判断的语句叫做命题。

  (教师肯定了同学的回答,并作板书。)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。

  (教师利用投影片,和学生讨论以下问题。)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题。

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”。

  “或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。

  对“或”的理解,可联想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的`,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。

  对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。

  对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .

  命题可分为简单命题和复合命题。

  不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。

  (4)命题的表示:用 , , , ,……来表示。

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)

  我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。

  对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。

  (1) ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若 ,则 .

  (让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)

  例3 写出下表中各给定语的否定语(用课件打出来).

  若给定语为

  等于

  大于

  是

  都是

  至多有一个

  至少有一个

  至多有个

  其否定语分别为

  分析:“等于”的否定语是“不等于”;

  “大于”的否定语是“小于或者等于”;

  “是”的否定语是“不是”;

  “都是”的否定语是“不都是”;

  “至多有一个”的否定语是“至少有两个”;

  “至少有一个”的否定语是“一个都没有”;

  “至多有 个”的否定语是“至少有 个”。

  (如果时间宽裕,可让学生讨论后得出结论。)

  置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)

  4.课堂练习:第26页练习1

  5.课外作业:第29页习题1.6

《高中数学教案(精选22篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【高中数学教案】相关文章:

高中数学教案11-01

高中数学教案12-19

高中数学教案05-05

高中数学教案模板11-07

高中数学教案【推荐】10-20

高中数学教案【精】06-17

高中数学教案【热】06-26

【荐】高中数学教案07-05

【推荐】高中数学教案05-29

【精】高中数学教案06-22

高中数学教案(精选22篇)

  作为一名老师,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编精心整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学教案(精选22篇)

  高中数学教案 1

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:

  集合的基本概念及表示方法

  教学难点

  运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:

  新授课

  课时安排

  1课时

  教 具

  多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的'每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

  高中数学教案 2

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的`方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  高中数学教案 3

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的`条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

  高中数学教案 4

  教学目标

  (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

  (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

  (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

  (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

  (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

  教学建议

  一、知识结构

  二、重点难点分析

  本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

  从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的'一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

  公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

  排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

  在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

  在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

  三、教法建议

  ①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

  ab,ac,ba,bc,ca,cb,

  其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

  ②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

  从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

  在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

  在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

  要特别注意,不加特殊说明,本章不研究重复排列问题。

  ③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

  导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

  公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

  (1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

  (2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

  ④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

  ⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

  高中数学教案 5

  教学目标:

  1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2、会求一些简单函数的反函数。

  3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1、复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3、板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1、问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2、问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3。渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1、(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2、引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3、两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4、函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1、(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2、总结求函数反函数的步骤:

  由y=f(x)反解出x=f(y)。

  把x=f(y)中 x与y互换得。

  写出反函数的定义域。

  (简记为:反解、互换、写出反函数的'定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2.4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

  高中数学教案 6

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的`单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

  高中数学教案 7

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的'点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

  高中数学教案 8

  猴子搬香蕉

  一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。

  河岸的距离

  两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

  解答:

  当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度

  等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。

  变量交换

  不使用任何其他变量,交换a,b变量的值?

  分析与解答

  a = a+b

  b = a-b

  a= a-b

  步行时间

  某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。

  有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到

  他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?

  解答:

  假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

  因此,温斯顿步行了26分钟。

  付清欠款

  有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

  贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

  解答:

  贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

  贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

  一美元纸币

  注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

  一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

  (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

  (2)这四人中没有一人能够兑开任何一枚硬币。

  (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要

  付的帐单款额其次,一个叫内德的男士要付的`账单款额最小。

  (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

  (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

  (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

  (7)随着事情的进一步发展,又出现如下的情况:

  (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

  现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

  解答:

  对题意的以下两点这样理解:

  (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

  (6)中指如果A,B换过,并且A,C换过,这就是两次交换。

  高中数学教案 9

  教学目标:

  1.结合实际问题情景,理解分层抽样的必要性和重要性;

  2.学会用分层抽样的方法从总体中抽取样本;

  3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

  教学重点:

  通过实例理解分层抽样的方法.

  教学难点:

  分层抽样的步骤.

  教学过程:

  一、问题情境

  1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

  2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

  由于样本的容量与总体的个体数的.比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是,即40,32,28.

  三、建构数学

  1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

  2.三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3.分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分.

  (2)确定比例:计算各层的个体数与总体的个体数的比.

  (3)确定各层应抽取的样本容量.

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

  四、数学运用

  1.例题.

  例1(1)分层抽样中,在每一层进行抽样可用_________________.

  (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

  ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

  ③某班元旦聚会,要产生两名“幸运者”.

  对这三件事,合适的抽样方法为()

  A.分层抽样,分层抽样,简单随机抽样

  B.系统抽样,系统抽样,简单随机抽样

  C.分层抽样,简单随机抽样,简单随机抽样

  D.系统抽样,分层抽样,简单随机抽样

  例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

  很喜爱

  喜爱

  一般

  不喜爱

  2435

  4567

  3926

  1072

  电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

  解:抽取人数与总的比是60∶12000=1∶200,

  则各层抽取的人数依次是12.175,22.835,19.63,5.36,

  取近似值得各层人数分别是12,23,20,5.

  然后在各层用简单随机抽样方法抽取.

  答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

  数分别为12,23,20,5.

  说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

  (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

  分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

  (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

  (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.分层抽样的概念与特征;

  2.三种抽样方法相互之间的区别与联系.

  高中数学教案 10

  教学目标

  (1)了解算法的含义,体会算法思想。

  (2)会用自然语言和数学语言描述简单具体问题的算法;

  (3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

  教学重难点

  重点:算法的含义、解二元一次方程组的算法设计。

  难点:把自然语言转化为算法语言。

  情境导入

  电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

  第一步:观察、等待目标出现(用望远镜或瞄准镜);

  第二步:瞄准目标;

  第三步:计算(或估测)风速、距离、空气湿度、空气密度;

  第四步:根据第三步的结果修正弹着点;

  第五步:开枪;

  第六步:迅速转移(或隐蔽)

  以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

  课堂探究

  预习提升

  1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

  2、描述方式

  自然语言、数学语言、形式语言(算法语言)、框图。

  3、算法的要求

  (1)写出的算法,必须能解决一类问题,且能重复使用;

  (2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

  4、算法的特征

  (1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

  (2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

  (3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

  (4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

  (5)不唯一性:解决同一问题的算法可以是不唯一的

  课堂典例讲练

  命题方向1对算法意义的理解

  例1、下列叙述中,

  ①植树需要运苗、挖坑、栽苗、浇水这些步骤;

  ②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

  ③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

  ④3x>x+1;

  ⑤求所有能被3整除的正数,即3,6,9,12。

  能称为算法的个数为(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

  【答案】B

  [规律总结]

  1、正确理解算法的概念及其特点是解决问题的关键、

  2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

  【变式训练】下列对算法的理解不正确的是________

  ①一个算法应包含有限的步骤,而不能是无限的

  ②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

  ③算法中的每一步都应当有效地执行,并得到确定的结果

  ④一个问题只能设计出一个算法

  【解析】由算法的有限性指包含的步骤是有限的故①正确;

  由算法的明确性是指每一步都是确定的故②正确;

  由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

  由对于同一个问题可以有不同的算法故④不正确。

  【答案】④

  命题方向2解方程(组)的算法

  例2、给出求解方程组的一个算法。

  [思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

  [规范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程组可化为

  第二步,解方程③,可得y=-1,④

  第三步,将④代入①,可得2x-1=7,x=4

  第四步,输出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,输出4,-1

  [规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的.理解,又要强调对所学知识的灵活运用。

  2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

  【变式训练】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命题方向3筛选问题的算法设计

  例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

  [思路分析]比较a,b比较m与c―→最小数

  [规范解答]算法步骤如下:

  1、比较a与b的大小,若a

  2、比较m与c的大小,若m

  [规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

  【变式训练】在下列数字序列中,写出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一个数m,m=21;

  2、将m与89比较,是否相等,如果相等,则搜索到89;

  3、如果m与89不相等,则往下执行;

  4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

  命题方向4非数值性问题的算法

  例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

  (1)设计安全渡河的算法;

  (2)思考每一步算法所遵循的共同原则是什么?

  高中数学教案 11

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的.距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

  高中数学教案 12

  教学目的:

  通过实例及图形让学生理解交集与并集的概念及有关性质。

  (1)结合集合的图形表示,理解交集与并集的概念;

  (2)掌握交集和并集的表示法,会求两个集合的交集和并集;

  教学重点:

  交集和并集的概念

  教学难点:

  交集和并集的概念、符号之间的区别与联系

  教学过程:

  一、复习引入:

  1.说出的意义。

  2.填空:若全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么CUA=,CUB=.

  3.已知6的正约数的集合为A={1,2,3,6},10的正约数为B={1,2,5,10},那么6与10的正公约数的集合为C=.

  4.如果集合A={a,b,c,d}B={a,b,e,f}用韦恩图表示(1)由集合A,B的.公共元素组成的集合;(2)把集合A,B合并在一起所成的集合.

  cdabef

  cdabef

  公共部分A∩B合并在一起A∪B

  二、新授

  定义:交集:A∩B={x|xA且xB}符号、读法

  并集:A∪B={x|xA或xB}

  例题:例一设A={x|x-2},B={x|x3},求.

  例二设A={x|是等腰三角形},B={x|是直角三角形},求.

  例三设A={4,5,6,7,8},B={3,5,7,8},求A∪B.

  例四设A={x|是锐角三角形},B={x|是钝角三角形},求A∪B.

  例五设A={x|-1x2},B={x|1x3},求A∪B.

  例六设A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7}且A∩B=C求x,y.

  解:由A∩B=C知7A∴必然x2-x+1=7得

  x1=-2,x2=3

  由x=-2得x+4=2C∴x-2

  ∴x=3x+4=7C此时2y=-1∴y=-

  ∴x=3,y=-

  例七已知A={x|2x2=sx-r},B={x|6x2+(s+2)x+r=0}且A∩B={}求A∪B.

  解:∵A且B∴

  解之得s=-2r=-

  ∴A={-}B={-}

  ∴A∪B={-,-}

  练习P12

  三、小结:交集、并集的定义

  补充:设集合A={x|-4≤x≤2},B={x|-1≤x≤3},C={x|x≤0或x≥},求A∩B∩C,A∪B∪C。

  高中数学教案 13

  教学目标:

  1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

  2.会求一些简单函数的反函数.

  3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

  4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

  教学重点:求反函数的方法.

  教学难点:反函数的概念.

  教学过程

  教学活动

  设计意图一、创设情境,引入新课

  1.复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

  3.板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

  二、实例分析,组织探究

  1.问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2.问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3.渗透反函数的概念.

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

  三、师生互动,归纳定义

  1.(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

  2.引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因.

  3.两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4.函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1.(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x-1 (2)y=x 1

  【例2】求函数的反函数.

  (教师板书例题过程后,由学生总结求反函数步骤.)

  2.总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x与y互换得.

  3° 写出反函数的定义域.

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________.

  (3)(x<0)的反函数是__________.

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

  五、巩固强化,评价反馈

  1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的`两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

  六、作业

  习题2.4第1题,第2题

  进一步巩固所学的知识.

  教学设计说明

  "问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

  高中数学教案 14

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的`三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

  高中数学教案 15

  教学目标

  知识与技能

  理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题、

  过程与方法

  经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力、

  情感态度

  让学生感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心、

  教学重点

  等式的性质和运用、

  教学难点

  引导学生发现并概括出等式的性质、

  教学过程

  一、情景导入,初步认知

  同学们,你们还记得“曹冲称象”的故事吗?请同学们说说这个故事、

  小时候的曹冲是多么的聪明啊!随着社会的进步,科学水平的发展,我们有越来越多的方法测量物体的重量、最常见的方法是用天平测量一个物体的质量、

  我们来做这样一个实验,测一个物体的质量(设它的质量为x)、首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量、

  【教学说明】从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题、让学生从中体验学习与生活的紧密联系、

  二、思考探究,获取新知

  1、思考并回答下列问题、

  (1)如果:七年级(1)班的学生人数=七年级(2)班的学生人数、

  现在每班增加2名学生,那么七年级(1)班与七年级(2)班的学生人数相等吗?

  如果每班减少3名学生,那么这两个班的学生人数还相等吗?

  (2)如果:甲筐米的质量=乙筐米的质量

  现在将甲、乙两筐米分别倒出一半,那么甲、乙两筐剩下的米的质量相等吗?

  2、观察上面的实验操作过程,回答下列问题、

  (1)从这个变形过程,你发现了哪些一般规律?

  (2)这两个等式两边分别进行什么变化?等式有何变化?

  (3)通过上面的操作活动,你能说一说等式有什么性质吗?

  【归纳结论】等式性质1:等式的两边都加上(或减去)同一个数或式子,所得结果仍是等式、等式性质2:等式两边都乘(或除以)同一个数或式子(除数不为0),所得结果仍是等式、

  即:如果a=b,那么a±c=b±c;

  ac=bc;=(d≠0)、

  【教学说明】通过操作途径来发现等式的'加减性质,将抽象的算式具体化,降低学生的认知难度,提高课堂效率、同时,通过操作活动更加吸引学生的注意力,调动学生参与课堂的积极性、

  三、运用新知,深化理解

  1、教材P88例1、例2、

  2、下列结论正确的是(B)

  A、若x+3=y—7,则x+7=y—11;

  B、若7y—6=5—2y,则7y+6=17—2y;

  C、若0、25x=—4,则x=—1;

  D、若7x=—7x,则7=—7、

  3、下列说法错误的是(C)

  A、若=,则x=y;

  B、若x2=y2,则—4x2=—4y2;

  C、若—x=6,则x=—;

  D、若6=—x,则x=—6、

  4、已知等式ax=ay,下列变形不正确的是(A)

  A、x=yB、ax+1=ay+1

  C、ay=axD、3—ax=3—ay

  5、下列说法正确的是(D)

  A、等式两边都加上一个数或一个整式,所得结果仍是等式;

  B、等式两边都乘以一个数,所得结果仍是等式;

  C、等式两边都除以同一个数,所得结果仍是等式;

  D、一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式、

  6、判断:已知a=b,c=d

  (1)5a=5b()

  (2)c÷5=d÷15()

  (3)a—b=c—d()

  (4)a+5=c+5()

  答案:对、错、对、错、

  7、在方程的两边都加上4,可得方程x+4=5,那么原方程是x=1、

  8、在方程x—6=—2的两边都加上6,可得x=4、

  9、方程5+x=—2的两边都减5得x=—7、

  10、如果—7x=6,那么x=—、

  11、只列方程,不求解、

  某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?

  解:设原计划x天完成、

  20x+100=32x—20

  【教学说明】通过及时的练习对所学新知进行巩固和深化、在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力、

  四、师生互动、课堂小结

  先小组内交流收获和感想而后以小组为单位派代表进行总结、教师作以补充、

  【课后作业】

  布置作业:教材“习题3、2”中第1、2、3题、

  高中数学教案 16

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的'整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

  高中数学教案 17

  (一)教学具准备

  直尺,投影仪.

  (二)教学目标

  1.掌握,的定义域、值域、最值、单调区间.

  2.会求含有、的三角式的定义域.

  (三)教学过程

  1.设置情境

  研究函数就是要讨论一些性质,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

  2.探索研究

  师:同学们回想一下,研究一个函数常要研究它的哪些性质?

  生:定义域、值域,单调性、奇偶性、等等.

  师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)

  师:请同学看投影,大家仔细观察一下正弦、余弦曲线的'图像.

  师:请同学思考以下几个问题:

  (1)正弦、余弦函数的定义域是什么?

  (2)正弦、余弦函数的值域是什么?

  (3)他们最值情况如何?

  (4)他们的正负值区间如何分?

  (5)的解集如何?

  师生一起归纳得出:

  (1)正弦函数、余弦函数的定义域都是.

  (2)正弦函数、余弦函数的值域都是即,称为正弦函数、余弦函数的有界性.

  (3)取最大值、最小值情况:

  正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

  余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

  (4)正负值区间:

  ()

  (5)零点:()

  ()

  3.例题分析

  【例1】求下列函数的定义域、值域:

  (1);(2);(3).

  解:(1),

  (2)由()

  又∵,∴

  ∴定义域为(),值域为.

  (3)由(),又由

  ∴

  ∴定义域为(),值域为.

  指出:求值域应注意用到或有界性的条件.

  【例2】求下列函数的最大值,并求出最大值时的集合:

  (1),;(2),;

  (3)(4).

  解:(1)当,即()时,取得最大值

  ∴函数的最大值为2,取最大值时的集合为.

  (2)当时,即()时,取得最大值.

  ∴函数的最大值为1,取最大值时的集合为.

  (3)若,此时函数为常数函数.

  若时,∴时,即()时,函数取最大值,

  ∴时函数的最大值为,取最大值时的集合为.

  (4)若,则当时,函数取得最大值.

  若,则,此时函数为常数函数.

  若,当时,函数取得最大值.

  ∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

  指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

  思考:此例若改为求最小值,结果如何?

  【例3】要使下列各式有意义应满足什么条件?

  (1);(2).

  解:(1)由,

  ∴当时,式子有意义.

  (2)由,即

  ∴当时,式子有意义.

  4.演练反馈(投影)

  (1)函数,的简图是()

  (2)函数的最大值和最小值分别为()

  A.2,-2 B.4,0 C.2,0 D.4,-4

  (3)函数的最小值是()

  A.B.-2 C.D.

  (4)如果与同时有意义,则的取值范围应为()

  A.B.C.D.或

  (5)与都是增函数的区间是()

  A.,B.,

  C.,D.,

  (6)函数的定义域________,值域________,时的集合为_________.

  参考答案:1.B 2.B 3.A 4.C 5.D

  6.;

  5.总结提炼

  (1),的定义域均为.

  (2)、的值域都是

  (3)有界性:

  (4)最大值或最小值都存在,且取得极值的集合为无限集.

  (5)正负敬意及零点,从图上一目了然.

  (6)单调区间也可以从图上看出.

  (四)板书设计

  1.定义域

  2.值域

  3.最值

  4.正负区间

  5.零点

  例1

  例2

  例3

  课堂练习

  课后思考题:求函数的最大值和最小值及取最值时的集合

  提示:

  高中数学教案 18

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

  (2)进一步理解曲线的方程和方程的曲线。

  (3)初步掌握求曲线方程的方法。

  (4)通过本节内容的教学,培养学生分析问题和转化的能力。

  教学重点、难点:

  求曲线的方程。

  教学用具:

  计算机。

  教学方法:

  启发引导法,讨论法。

  教学过程:

  【引入】

  1、提问:什么是曲线的方程和方程的曲线。

  学生思考并回答。教师强调。

  2、坐标法和解析几何的意义、基本问题。

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程。

  (2)通过方程,研究平面曲线的性质。

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

  【问题】

  如何根据已知条件,求出曲线的方程。

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

  证明:(1)曲线上的点的坐标都是这个方程的解。

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解。

  (2)以这个方程的解为坐标的点都是曲线上的点。

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上。

  综合(1)、(2),①是所求直线的方程。

  至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的'条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

  分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

  求解过程略。

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点。

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

  高中数学教案 19

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的`几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f(x0)=1,f(x0)=1,f(x0)=-1,f(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y=2x,y|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

  高中数学教案 20

  教学目标:

  1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

  2、通过观察、操作培养学生的观察能力和动手操作能力。

  3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

  4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

  教学重点:

  理解角的概念,掌握角的三种表示方法

  教学难点:

  掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

  教学手段:

  教具:电脑课件、实物投影、量角器

  学具:量角器需测量的角

  教学过程:

  一、建立角的概念

  (一)引入角(利用课件演示)

  1、从生活中引入

  提问:

  A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

  B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

  2、从射线引入

  提问:

  A、昨天我们认识了射线,想从一点可以引出多少条射线?

  B、如果从一点出发任意取两条射线,那出现的是什么图形?

  C、哪两条射线可以组成一个角?谁来指一指。

  (二)认识角,总结角的定义

  3、 过渡:角是怎么形成的呢?一起看

  (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

  提问:观察从这点引出了几条射线?此时所组成的.图形是什么图形?

  (2)、判断下列哪些图形是角。

  (√) (×) (√) (×) (√)

  为何第二幅和第四幅图形不是角?(学生回答)

  谁能用自己的话来概括一下怎样组成的图形叫做角?

  总结:有公共端点的两条射线所组成的图形叫做角(angle)

  角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

  B

  0 A

  4、认识角的各部分名称,明确顶点、边的作用

  (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

  (2)角可以画在本上、黑板上,那角的位置是由谁决定的?

  (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

  5、学会用符号表示角

  提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

  (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

  (2)观察这两种方法,有什么特点?(字母B都在中间)

  (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

  (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

  (5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。

  6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

  二、 角的度量

  1、学习角的度量

  (1)教学生认识量角器

  (2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

  提出要求:小组合作边学习测量方法边尝试测量

  第一个角,想想有几种方法?

  1、要求合作学习探究、测量。

  2、反馈汇报:学生边演示边复述过程

  3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

  4、归纳概括测量方法(两重合一对)

  (1)用量角器的中心点与角的顶点重合

  (2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

  (3)另一条边所对的角的度数,就是这个角的度数。

  5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

  6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

  (1) 独立测量,师注意查看学生中存在的问题。

  (2) 课件演示纠正问题

  三、度、分、秒的进位制及这些单位间的互化

  为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 将57.32°用度、分、秒表示.

  解:先把0.32°化为分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化为秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化为分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化为度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、巩固练习

  课本P122练习

  五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

  六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

  高中数学教案 21

  一、教学目标

  1、知识与能力目标

  ①使学生理解数列极限的概念和描述性定义。

  ②使学生会判断一些简单数列的极限,了解数列极限的“e—N"定义,能利用逐步分析的方法证明一些数列的极限。

  ③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

  2、过程与方法目标

  培养学生的极限的思想方法和独立学习的能力。

  3、情感、态度、价值观目标

  使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

  二、教学重点和难点

  教学重点:数列极限的概念和定义。

  教学难点:数列极限的“ε―N”定义的理解。

  三、教学对象分析

  这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε—N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

  四、教学策略及教法设计

  本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

  五、教学过程

  1、创设情境

  课件展示创设情境动画。

  今天我们将要学习一个很重要的新的知识。

  情境

  (1)我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

  情境

  (2)我国古代哲学家庄周所著的《庄子·天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,无限次地切,每次都切一半,问是否会切完?

  大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

  2、定义探究

  展示定义探索(一)动画演示。

  问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

  (1)1/2,2/3,3/4,n/n—1

  (2)0.9,0.99,0.999,0.9999,1—1/10n

  问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

  师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

  那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

  那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

  提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

  展示定义探索(二)动画演示。

  师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O—1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0.0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

  数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an—A|n的极限。

  课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

  定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的'距离。如图2所示是课件运行时的一个画面。

  3、知识应用

  这里举了3道例题,与学生一块思考,一起分析作答。

  例1、已知数列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)计算an—0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

  (3)确定这个数列的极限。

  例2、已知数列:

  已知数列:3/2,9/4,15/8,2+(—1/2)n。

  猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

  例3、求常数数列一7,一7,一7,一7,的极限。

  4、知识小结

  这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

  课后练习:

  (1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

  (2)课本练习1,2。

  5、探究性问题

  设计研究性学习的思考题。

  提出问题:

  芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O。1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里这样一直追下去,阿基里斯能追上乌龟吗?

  这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

  高中数学教案 22

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能。

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解。

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。

  初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)

  (同学议论结果,答案是肯定的)

  教师提问:什么是命题?

  (学生进行回忆、思考。)

  概念总结:对一件事情作出了判断的语句叫做命题。

  (教师肯定了同学的回答,并作板书。)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。

  (教师利用投影片,和学生讨论以下问题。)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题。

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”。

  “或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。

  对“或”的理解,可联想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的`,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。

  对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。

  对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .

  命题可分为简单命题和复合命题。

  不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。

  (4)命题的表示:用 , , , ,……来表示。

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)

  我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。

  对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。

  (1) ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若 ,则 .

  (让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)

  例3 写出下表中各给定语的否定语(用课件打出来).

  若给定语为

  等于

  大于

  是

  都是

  至多有一个

  至少有一个

  至多有个

  其否定语分别为

  分析:“等于”的否定语是“不等于”;

  “大于”的否定语是“小于或者等于”;

  “是”的否定语是“不是”;

  “都是”的否定语是“不都是”;

  “至多有一个”的否定语是“至少有两个”;

  “至少有一个”的否定语是“一个都没有”;

  “至多有 个”的否定语是“至少有 个”。

  (如果时间宽裕,可让学生讨论后得出结论。)

  置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)

  4.课堂练习:第26页练习1

  5.课外作业:第29页习题1.6