《比例的意义》教案通用
作为一位杰出的教职工,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编整理的《比例的意义》教案通用,供大家参考借鉴,希望可以帮助到有需要的朋友。
《比例的意义》教案通用1
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的'比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
《比例的意义》教案通用2
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或.
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15(2)20∶5和1∶4
(3)和(4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就()比例.
(2)一个比例,等号左边的比和等号右边的比一定是()的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的`两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是()和(),内项是()和().
根据比例的基本性质可以写成()×()=()×().
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和4.和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
省略
《比例的意义》教案通用3
教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、复习旧知
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1.教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的.天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例5。
出示例5。
请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3.概括反比例的意义。
(1)综合例4、例5的共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4.具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例6。
出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做“练一练”第l题。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.做“练一练”第2题。
指名口答,说说理由。思考时可以引导看数量关系式。
3.做练习八第5题。
让学生先在书上判断。指名口答,要求说出数量关系式判断。
4.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做练习八第6题。
各人先在书上写各成什么比例。指名口答,要求说明理由。
6.做练习八第7题。
先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习八第7题。
《比例的意义》教案通用4
素质教育目标
(一)知识教学点
1.使学生理解正比例的意义。
2.能根据正比例的意义判断两种量是不是成正比例。
(二)能力训练点
1.培养学生用发展变化的观点来分析问题的能力。
2.培养学生抽象概括能力和分析判断能力。
(三)德育渗透点
1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。
2.进一步渗透函数思想。
教学重点:
使学生理解正比例的意义。
教学难点:
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
教具学具准备:
投影仪、投影片、小黑板。
教学步骤
一、铺垫孕伏
用投影逐一出示下列题目,请同学回答:
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、探究新知
1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。
2.教学例1
(1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……
(2)出示下表,并根据上述内容填表。
一列火车行驶的时间和所行的路程如下表
(3)边填表边思考:在填表过程中,你发现了什么?
学生交流时,使之明确。
①表中有时间和路程两种量。
②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
教师点拨:
像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)
③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。
教师问:根据计算,你发现了什么?
引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。
教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)
④比值60,实际就是火车的速度。用式子表示它们的关系就是:
(4)教师小结:
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
3.教学例2
(1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
(2)观察上表,引导学生明确:
①表中有数量(米数)和总价这两种量,它们是两种相关联的量。
②总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小。
③相对应的总价和米数的比的比值是一定的。
④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:
(3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)
4.抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)学生初步交流时引导学生明确:
①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;
②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。
教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)
③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。
(学生答不出来时,教师引导、点拨,并补充板书:两种量中)
(3)引导学生抽象概括出两例的共同点:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。
(4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的'量,它们的关系叫做正比例关系。
(补充板书:如果这成正比例的量正比例关系)
这就是我们这节课学习的“正比例的意义”(板书课题)
(5)看书19、20页的内容,进一步理解正比例的意义。
(6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
5.教学例3
(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(2)根据正比例的意义,由学生讨论解答。
(3)汇报判断结果,并说明判断的根据。
教师板书:
面粉的总重量和袋数是两种相关联的量。
所以面粉的总重量和袋数成正比例。
6.反馈练习
让学生试做第21页的做一做,并订正。
三、巩固发展
1.完成练习三第1题。
先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?
《比例的意义》教案通用5
教学内容:
比例的意义和基本性质。
教学要求:
使学生理解比例的意义,会用比例的意义正确地判断两个比是否成比例,使学生理解比例的基本性质。
教学重点:
理解比例的意义和基本性质。
教学难点:
灵活地判断两个比是否组成比例。
教具:
投影机等。
教学过程:
一、复习。
1、什么叫做比?什么叫做比值?
2、求出下面各比值,哪些比的比值相等?
12:16:4.5:2.7 10:6
二、提示课题,引入新课。
1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。
2、引入新课。
三、导演达标。
1、教学比例的意义。
(1)引导学生观察课本的表格后回答:
A、第一次所行驶的路程和时间的比是什么?
B、第二次所行驶的路程和时间的比是什么?
C、这两次比的比值各是什么?它们有什么关系?
板书:80:2=200:5或=
(2)引出比例的意义。
A、表示两个比相等的式子叫做比例。
B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?
C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。
D、做一做。(先练习,后讲评)
2、教学比例的基本性质。
(1)看书后回答:
A、什么叫做比例的.项?
B、什么叫做比例的外项、内项?
(2)引导学生总结规律?
先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。
3、练习:判断下面的哪组比可以组成比例。
6:9和9:12 1.4:2和7:10
四、巩固练习:第一、二题。(指名回答,集体订正)
五、总结:今天我们学习了什么?
比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。
六、作业:第二题。
《比例的意义》教案通用6
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点:理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1.复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天第二天
运输次数2 4
运输量(吨)16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少?(16 : 2)
货车第二天的运输量与运输次数的比是多少?(32:4)
货车第二天的运输量与第一天运输量的比是多少?(32:16)
(师根据学生的回答,将答案一一贴或写于黑板)
2:16;4:32;16:2;32:4;
16:32;2:4;32:16;4:2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16:2;32:4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2:16=4:32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9和9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的'秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3和8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:()1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4和6
因为2 × 6 = 3 × 4所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
《比例的意义》教案通用7
设计说明
本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:
1.重视有效学习情境的创造。
新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。
2.重视引导学生自主探究。
教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的'意义。
3.重视引导学生合作交流。
《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。
课前准备
教师准备PPT课件
教学过程
⊙渗透情感,导入新课
1.课件出示国旗画面,学生观察,激发爱国情操。
(天安门升国旗仪式、校园升旗仪式、教室场景)
师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?
2.课件出示国旗的长和宽,并提出问题。
天安门升旗仪式上的国旗:长5 m,宽m。
操场升旗仪式上的国旗:长2.4 m,宽1.6 m。
教室里的国旗:长60 cm,宽40 cm。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?
3.导入新课。
师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。
(板书课题:比例的意义和基本性质)
设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。
⊙合作交流,探究新知
1.教学比例的意义。
(1)自主尝试。
课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。
(2)汇报、交流。
预设
生1:天安门升旗仪式上的国旗。
长∶宽=5∶=
生2:操场升旗仪式上的国旗。
长∶宽=2.4∶1.6=
生3:教室里的国旗。
长∶宽=60∶40=
(3)感知比例的意义。
观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?
预设
生1:可以用等号连接,因为它们的比值相等。
“2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。
生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。
生3:根据比与分数的关系,“2.4∶1.6=60∶40”
也可以写成“=”。
《比例的意义》教案通用8
教学目标
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.
教学重难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的.量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时):路程(千米)
1:90
2:180
3:270
4:360
5:450
6:540
7:630
8:720
1.写出路程和时间的比并计算比值.
(1)2表示什么?180呢?比值呢?
(2)这个比值表示什么意义?
(3)360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
《比例的意义》教案通用9
教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
教学重点难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
教具学具准备:幻灯片、学习卡。
教学过程:
一、创设情景,引入新课。
出示三幅场景图。
(1)图上描述的是什么情景?这几幅图都与什么有关?
(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)
(3)你们有见过这样的国旗吗?或者这样的?
我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题
二、自主探究,明确意义
1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?
2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?
3、学生汇报。
4、我们以操场上和教室里的国旗为例,2.4:1.6=,60:40=,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。
像这样表示两个比相等的式子叫做比例。(板书)
5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?
6、深入探讨:
(1)比例有几个比组成?
(2)是不是任意两个比都能组成比例?
(3)判断两个比能不能组成比例,关键要看什么?
7、完成“做一做”。
三、探究比例的基本性质。
1、学习比例各部分的名称。
教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)
(1)指名读一读有关知识。
(2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?
随着学生的回答教师出示:
2.4: 1.6 = 60: 40(外项)(内项)
└-内项-┘ =
└------外项-------┘(内项)(外项)
(3)如果把比例写成分数形式,你能找出它的内项和外项吗?
(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。
2、研究比例的基本性质。
(1)活动探究,总结性质。
谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。
①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?
2.4:1.6=60:40 =
②你能举一个例子,验证你的发现吗?
③你能得出什么结论?
④你能用字母表示这个性质吗?
(2)运用性质。
①提问:学了比例的基本性质,你觉得运用它能解决什么问题?
②运用比例的基本性质,判断下面哪组中的'两个比可以组成比例。
(1) 6:3和8:5 (2) 0.2:2.5和4:50
(3) :和: (4) 1.2:和:5
四、巩固练习。
1、填空
(1)在a:7=9:b中,()是内项,()是外项,a×b=( )。
(2)一个比例的两个内项分别是3和8,则两个外项的积是(),两个外项可能是()和()。
(3)在一个比例里,两个外项互为倒数,那么两个内项的积是(),如果一个外项是,另一个外项是()。
(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是()。
(5)如果5a=3b,那么,=,= 。
2、判断。
(1)在比例中,两个外项的积减去两个内项的积,差是0。()
(2)18:30和3:5可以组成比例。()
(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。()
(4)因为3×10=5×6,所以3:5=10:6。()
3、把下面的等式改写成比例:(能写几个写几个)
16 × 3 = 4 × 12
四、总结归纳
1、这节课我们学习了什么知识?你有什么收获?
2、判断两个比能不能组成比例,有几种方法?
比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。
板书设计
比例的意义和基本性质
表示两个比相等的式子叫做比例。
2.4: 1.6 = 60: 40(外项)(内项)
└-内项-┘或=
└------外项-------┘(外项)(内项)
在比例里,两个外项的积等于两个内项的积。
A:B=C → AD=BC
《比例的意义》教案通用10
教学目标
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用,反比例的意义(参考教案二)。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1.(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2.填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的'和剩下的( )。
(4)汽车行驶的速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1.出示例4。(小黑板(二))
例4华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
《比例的意义》教案通用11
教学目标
1.使学生理解比例的意义,掌握组成比例的条件。
2.使学生能正确地判断两个比能否组成比例。
3.认识比例的各部分名称,掌握比例的基本性质。
教学重点和难点
比例的意义和性质的理解与应用。
教学过程设计
第一部分:比例的意义
(一)复习准备
1.求比值:
2.请你找出比值相等的两个比。
1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8
(二)学习新课
1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。
板书:80∶2
再请你说出第二次行驶路程和时间的比。
板书:240∶6
师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)
师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)
得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)
教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)
师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)
思考题:
1.什么叫比例?
2.比例的各部分名称?
3.组成比例的重要条件?
采取自学→两人讨论→集体讨论。
师再次强调组成比例的'条件:
A.必须是两个比。
B.两个比的比值必须相等。
C.必须是一个式子。
最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。
师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)
比例还有其它书写格式吗?请同学们看,老师怎样写。
(三)巩固反馈
1.判断下面两个比能否组成比例?
(1)1∶3和3∶9( )
(2)60∶30和160∶80( )
(4)0.2∶0.4和1.6∶4( )
并组成比例。(学生先写再说)
3.随意写比例,互相查看。(至少写2个)
第二部分:比例的性质
(一)讲授比例的性质
让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?
学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:
请你指出黑板上比例中的内外项。
现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:
通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)
师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。
师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。
师:比例写成分数形式时,比例的性质如何理解呢?
80×6=2×240 1.2×8=24×0.4
即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:
(二)课堂练习
(放幻灯片)
(1)用比例性质验证你所写的比例是否正确?
(2)用2,8,5,20四个数组成比例。
(3)填适当的数。
3∶18=5∶( )
为什么填30?有几个答案?
4.8∶0.6=( )∶2
为什么只能填16?
12∶( )=( )∶5
有几个答案?
(4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?
(5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?
(三)课堂总结
(学生小结这节课所学内容。)
1.质疑:(学生、老师质疑)(幻灯片)
①表示两个相等的式子叫比例。对吗?
2.思考题:
(1)根据30×3=45×2写比例式。
(2)求x:
12∶30=8∶x
能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?
课堂教学设计说明
本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。
第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。
第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。
另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。
在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。
板书设计
《比例的意义》教案通用12
教学目标:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:
成正比例的量的特征及其判断方法。
教学难点:
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教法:
启发引导法
学法:
自主探究法
教具:
课件
教学过程:
一、定向导学(5分)
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今天我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定
(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
y/x=k(一定)
(4)不计算,根据图像判断,如果杯中水的`高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究(5分)
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测(8分)
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业(9分)
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/x=k
(一定)
《比例的意义》教案通用13
1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。
2.学会判断成正比例关系的量。
3.进一步培养学生观察、分析、概括的能力。
教学重点和难点
理解正比例的意义,掌握正比例变化的规律。
教学过程设计
(一)复习准备
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
(二)学习新课
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的`两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
(三)巩固反馈
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
(四)课堂总结
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(五)布置作业
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
板书设计
《比例的意义》教案通用14
教学内容
教科书第48~50页例1、例2,课堂活动及练习十一1,2题。
教学目标
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点
理解比例的意义和基本性质。
教学难点
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学准备
课件,扑克牌10张(2~10以及A),圆规一个。
教学过程
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26
影子长39
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的'两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
《比例的意义》教案通用15
教学目标
知识目标:理解比例的意义,掌握组成比例的关键条件。
能力目标:能正确的判断两个比能否组成比例。
情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
重点解比例的意义,掌握组成比例的关键条件。
难点正确的判断两个比能否组成比例。
教学过程教学预设个性修改。
目标导学复习激趣目标导学自主合作汇报交流变式训练。
创境激疑
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的'想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
合作探究
二、新授(课件出示不同大小的国旗图案)
师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。
10:2和35:42()0.6:0.2和):4和3:():和12:8()
总结小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?
作业布置做一做。
板书设计比例的意义
2.4:1.6=60:40=
2.4:1.6=60:40
(或)=
【《比例的意义》教案】相关文章:
《比例的意义》教案12-23
《比例的意义》教案通用12-22
比例的意义教学教案02-21
《比例的意义》教案集锦12-22
《比例的意义》教案15篇12-22
《比例的意义》教案(精选21篇)03-10
《比例的意义》教案集合12-06
《比例的意义》教案(通用17篇)03-27
比例的意义说课稿05-17