《基本运算》教案

时间:2023-04-01 15:08:11 教案 我要投稿
  • 相关推荐

《集合基本运算》教案

  作为一位兢兢业业的人民教师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。那要怎么写好教案呢?以下是小编帮大家整理的《集合基本运算》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《集合基本运算》教案

《集合基本运算》教案1

  教学目的:

  (1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

  (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  课 型:新授课

  教学重点:

  集合的交集与并集、补集的概念;

  教学难点:

  集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

  教学过程:

  1、引入课题

  我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

  思考(P9思考题),引入并集概念。

  2、新课教学

  1.并集

  一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

  记作:A∪B读作:“A并B”

  即: A∪B={x|x∈A,或x∈B}

  Venn图表示:

  说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

  例题(P9-10例4、例5)

  说明:连续的'(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

  问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

  2.交集

  一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

  记作:A∩B读作:“A交B”

  即: A∩B={x|∈A,且x∈B}

  交集的Venn图表示

  说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

  例题(P9-10例6、例7)

  拓展:求下列各图中集合A与B的并集与交集

  说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集

  3.补集

  全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

  补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,

  记作:CUA

  即:CUA={x|x∈U且x∈A}

  补集的Venn图表示

  说明:补集的概念必须要有全集的限制

  例题(P12例8、例9)

  4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

  5.集合基本运算的一些结论:

  A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A

  AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A

  (CUA)∪A=U,(CUA)∩A=

  若A∩B=A,则AB,反之也成立

  若A∪B=B,则AB,反之也成立

  若x∈(A∩B),则x∈A且x∈B

  若x∈(A∪B),则x∈A,或x∈B

  6.课堂练习

  (1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=

  (2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z

  3、归纳小结(略)

  4、作业布置

  1、书面作业:P13习题1.1,第6-12题

  2、提高内容:

  (1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,试求p、q;

  (2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;

  (3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B。

《集合基本运算》教案2

  一. 教学目标:

  1. 知识与技能

  (1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.

  (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

  (3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.

  2. 过程与方法

  学生通过观察和类比,借助Venn图理解集合的基本运算.

  3.情感.态度与价值观

  (1)进一步树立数形结合的思想.

  (2)进一步体会类比的作用.

  (3)感受集合作为一种语言,在表示数学内容时的简洁和准确.

  二.教学重点.难点

  重点:交集与并集,全集与补集的概念.

  难点:理解交集与并集的概念.符号之间的区别与联系.

  三.学法与教学用具

  1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.

  2.教学用具:投影仪.

  四. 教学思路

  (一)创设情景,揭示课题

  问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

  请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?

  引导学生通过观察,类比.思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的`内容。

  (二)研探新知

  l.并集

  —般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.

  记作:A∪B.

  读作:A并B.

  其含义用符号表示为:

  用Venn图表示如下:

  请同学们用并集运算符号表示问题1中A,B,C三者之间的关系.

  练习.检查和反馈

  (1)设A={4,5,6,8),B={3,5,7,8),求A∪B.

  (2)设集合

  让学生独立完成后,教师通过检查,进行反馈,并强调:

  (1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.

  (2)对于表示不等式解集的集合的运算,可借助数轴解题.

  2.交集

  (1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

  请同学们考察下面的问题,集合A.B与集合C之间有什么关系?

  ②B={|是新华中学20xx年9月入学的高一年级同学},C={|是新华中学20xx年9月入学的高一年级女同学}.

  教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;

  一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.

  记作:A∩B.

  读作:A交B

  其含义用符号表示为:

  接着教师要求学生用Venn图表示交集运算.

  (2)练习.检查和反馈

  ①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系.

  ②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义.

  学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.

  (三)学生自主学习,阅读理解

  1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:

  (1)什么叫全集?

  (2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?

  (3)已知集合.

  (4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求.

  在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.

  (四)归纳整理,整体认识

  1.通过对集合的学习,同学对集合这种语言有什么感受?

  2.并集.交集和补集这三种集合运算有什么区别?

  (五)作业

  1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

  2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.

  3.书面作业:教材第12页习题1.1A组第7题和B组第4题.

《集合基本运算》教案3

  一、教材分析

  集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。

  根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:

  二、教学目标

  1,知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集

  的表示法以及求解两个集合并集与交集的方法。

  2,过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。

  3,情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。

  根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,

  三、教学重点与难点,

  重点:并集与交集的概念的理解,以及并集与交集的求解。

  难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。

  为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;

  四、教学方法与学法

  本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。

  那么在本节课中我的教学过程是这样设计的,

  五、教学过程

  1复习旧知、引入主题

  问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?

  由此引入了本节课的课;集合的基本运算,并让学生观察这样三个集合

  集合A={1,3,5},B={2,4,6},c={1,2,3,4,5,6}并让学生思考集合A、集合B并与集合c之间有什么关系?

  通过对以上集合的观察、比较、分析、学生容易得出集合c里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会类比这个例子让学生自己归纳出并集中“或”的'三层意思)

  引入并集的符号“”,并用数学语言描述A与B的并集:或}

  介绍Veen图

  通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的互易性确定的,由此复习了集合的互易性,

  再对例5的讲解,让学生会用数轴来求解并集,

  学生学习了并集含义之后,我会让学生思考这样一个问题,

  问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:

  A={1,2,3}B={3,,4,5}c={3}让学生类比并集的方式归纳出它们之间的关系:集合c里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,

  引导学生发现交集里面的关键词“且”,介绍交集的符号“

  ”用数学语言表示交集:

  且

  };介绍Veen图

  对书上例6的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,

  例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,

  让学生完成书上的练习,

  1、课堂练习,反馈信息。(P11,1、2题)

  在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。

  2、课堂小结,自我评价。

  通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。

  3、作业布置,反馈矫正。(P12,6、7)

【《基本运算》教案】相关文章:

集合的基本运算说课稿06-12

《集合基本运算》说课稿07-06

集合的基本运算练习题06-24

集合的基本运算教学计划06-13

集合的三要素及基本运算09-08

《集合的基本运算》教学反思(通用5篇)07-18

《运算律》教案09-18

混合运算教案09-03

混合运算教案07-02

运算律的教案10-18