《乘法分配律》教学反思(通用15篇)
身为一位优秀的教师,我们的工作之一就是教学,教学的心得体会可以总结在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的《乘法分配律》教学反思,希望能够帮助到大家。
《乘法分配律》教学反思1
师:出示教学挂图并提问:从图上你知道什么?
生:张阿姨买5件夹克衫和5条裤子,一共要付多少钱?
师:能自己列式解答吗?(教师巡视,学生解答)
让用两种不同方法解答的学生分别板演。
师:说说65×5+45×5这种解答方法是怎样想到的?
生:先算买夹克衫和买裤子各用多少元?
师:(65+45)×5这种方法呢?
生:先算买一套衣服用多少元?
师:比较这两种方法,有什么不同和相同呢?
生:想的方法不同导致列的算式不同,但结果相同
师:结果相等的两个算式可以用什么连接?
生:等号揭示:(65+45)×5=65×5+45×5
师:仔细观察等号两边的算式,它们有什么联系吗?(从数,运算符号思考)
生:结果相等,都有三个数,5左边出现了1次,右边出现了两次,左边先加再乘,右边先乘再加……
师:等号左边先算什么?右边呢?
生:等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。
师:你能模仿着写出几组这样的算式吗?学生试写
学生列举验证,教师将学生列举的等式写在黑板上,并让学生说出等式两边的得数。
师:还有很多同学想说,像这样的例子举得完吗?
师:由此你想到些什么?
生:这里有规律。
师:我们可以用什么来表示这种普遍存在的规律呢?
生:(字母、符号、文字)
师:试着写一写吧
生:(a+b)×c=a×c+b×c
(△+○)×□=△×□+○×□
师:小结:像这样两个数的和与一个数相乘,也可以用这两个数分别与这个数相乘,再把他们的积相加,这就是乘法分配律。(指着算式说)
顺着读,(任何事物都要从正反两面去看)反过来读乘法分配律
反思:
乘法分配律一课是苏教国标版教材四年级下册的内容,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生接触过加法、乘法的验算和口算等方面的知识,对此有较多的感性认识,这是学习乘法分配律的基础。教材安排这个运算律是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的'例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。
课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察——举例——得出结论”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。由于乘法分配律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生联想到是否具有普遍性。从而得到猜想:是不是所有的三个数都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。本课从学生的学习情况来看,通过本课的学习不但掌握了乘法分配律的知识,更重要的是学会了数学方法,并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。
《乘法分配律》教学反思2
乘法分配律是学生较难理解和叙述的定律,比起乘法交换率和乘法结合率男掌握的多。因此在本节课教学设计上,我结合新课标的一些基本理念和学生的具体情况,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习新知识。
《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,上课一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的.研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。
同时,我还注重学生的合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中得到不同的发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维能力,学生也学得积极主动。
应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用,知识掌握的牢固。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。
本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高。
《乘法分配律》教学反思3
《探索与发现(三)乘法分配律》教学反思
东新四小学 王唯
教学内容:
小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页
教学目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:理解乘法分配律的特点。
教学难点:乘法分配律的正确应用。
教学过程:
一、复习回顾
(出示课件1)计算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现
(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?
生:我估计大约有100块瓷砖
生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?
生:6×9+4×9(板书)
=54+36
=90
分别算出正面和侧面贴的块数,再相加,就是贴的总块数。
生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的'块数,就是一共贴瓷砖的块数。
师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。
6×9+4×9 = (6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。
(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c
师:这叫做乘法分配律
三、巩固练习:
1、计算
(80+4)×25 34×72+34×28
师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
[板书设计]
探索与发现(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
《乘法分配律》教学反思4
昨天,我与全班同学一起进行了乘法分配律探讨学习,从作业的反馈中,一部分同学的作业相当完美,对公式的应用,变形拓展都能应用自如;我也发现部分学生的正确率很低,特别乘法分配律的“分别”相乘理解得不清楚,没有把每个加数与因数相乘,造成作业正确率低。针对这种情况,在教学中应该注意些什么,我积极思考,与同学进行交流,找出他们思维中出错的原因,正确进行补救,以达到对乘法分配律的正确运用,灵活应用。
一、乘法分配律的教学时,注重从例题的解答中引导抽象出乘法分配律。强调注重它的外形结构特点,也要同时注重其内涵。
教材中植树情境图给出了以下的条件:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树,“一共有多少名同学参加植树活动?”这一问题,得到了如下两种解答方法。
方法一:①每组有多少名同学? 2+4=6人
②25组共有多少名同学参加植树? 6×25=150人
综合列式:(2+4)×25
=6×25
=150(个)
方法二:①挖坑种树有多少人? 4×25=100人
②抬水浇水的有多少人? 2×25=50人
③一共有多少人? 100+50=150人
综合列式:4×25+2×25
=100+50
=150(人)
同学们很容易得出(4+2)×25和4×25+2×25这两个算式结果相等。这时同学们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个数的积的和,而忽视从乘法意义角度去理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(4+2)×25=4×25+2×25是相等的,还要从乘法的意义的角度理解,即左边表示6个25,右边表示4个25加2个25,等于6个25,所以,(4+2)×25=4×25+2×25
二、注意乘法分配律的特点,多进行练习。
乘法分配律特征是两数的和乘一个数或两个积的和。在练习时学生特别容易出现错误。把算式做成(80+8)×125
=80×125+80
=10000+80
=10080
为了学生更好地掌握可以让学生划出分别相乘的箭头如:
提醒同学把箭头画出来,把两个加数“分别”与括号外的因数相乘,这样尽量减少一些把一个加数乘掉的.同学。
三、多进行分组练习
一组:15×(8+4) (80+8)×125 (40+4)×25
47×(100+1) 78×(200+2) (100-1)×125
在练习上述题后,让学生观察括号里的数如果不运用乘法分配律会变成怎样的一个算式:
15×12 88×125 44×25
47×101 78×202 99×125
这些算式我们如何将一个因数拆成两个数相加的形式,这两个加数尽量要拆成整十整百或是与外面的数相乘能得整十整百的数。
在让学生在对乘法分配律基本公式的运用掌握较好之后,再进行第二组乘法分配律反方向运用的形式。
《乘法分配律》教学反思5
一、让学生从实质上理解乘法分配律
在乘法分配律的教学中,如果只求形式把握不求实质理解,一方面从认识的角度看是不严谨的(形式上的不完全归纳不一定得出真理),另一方面很容易造成学生不求甚解、囫囵吞枣的不良认知习惯。如果满足于从形式上掌握乘法分配律,对于学生的后续发展也极为不利。因此,在教学时先出示了这样一道例题:一件茄克衫65元,一条裤子35元。王老师买5件茄克衫和5条裤子,一共要花多少元?学生用了两种解答方法即:(65+35)×5=65×5+35×5。借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。
二、突破乘法分配律的.教学难点
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破教学难点,我设计了一系列的练习。
1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□……
2、在相等的一组算式后面打“√”:如16×7+24×7(16+24)×7□……
在这一组题目中教者重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说着一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的式子。通过练习学生对乘法分配律有了进一步的认识,又让学生照上面的样子写出的几个这样的等式,最后归纳出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
实际上课堂时学生对于能否找到反例的活动很感兴趣,可以尝试让学生也提几个反例,经过讨论逐个否决,在这样的过程中,学生的等式变形能力能够得到很大提高,有益于加深对乘法分配律的认识。
《乘法分配律》教学反思6
师:(出示挂图)仔细观察,从图中你获得哪些信息?
买这些衣服,戚老师一共要付多少元呢?你能用两种方法列出综合算式吗?
生:(65+35)×12=1200(元)
生:65×12+35×12=1200(元)
师:每个算式的结果都是1200元,那么这两个算式有什么关系?
生:(65+35)×12=65×12+35×12
师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?
(学生小组讨论)
师:指名学生回答。
生:一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65+35)×12=65×12+35×12。
师:说得真棒,谁能概括地说一说。
生:12个65加12个35等于12个65与35的和。
师:请同桌互相说一遍。
师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)
(过一会儿,一只只小手举起来了,教师指名回答。)
生1:(15+25)×8=15×8+25×8。
生2:a×(5+2)=a×5+a×2。
生3:(+▲)×■=×■+▲×■。
……
师:同桌检查一下,对方写的等式两边是否相等?
师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。
生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。
生2:我们小组从乘法的意义理解发现:比如(15+25)×8=()×8+(
)×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。
……
师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。
师:像(65+35)×12=65×12+35×12这样的等式,你能写出多少个?
生:无数个。
师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?
学生尝试用字母表示乘法分配律,教师巡视。
生:a×(5+2)=a×5+a×2。
生:(+▲)×■=×■+▲×■
生(a+b)×c=a×c+b×c。
……
师:你们真棒!今天我们发现的规律就是乘
法分配律。乘法分配律常表示为(a+b)×c=a×c+b×c。
你们能用自己的话说说什么是乘法分配律吗?
指名学生回答。
师小结:两个数的和乘第三个数,可以把两个数分别和第三个数相乘,再求和。
教后反思:
1、关注学生已有的知识经验
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
2、提供自主探索的'机会
一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。
在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。
《乘法分配律》教学反思7
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的`比较轻松的。
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
《乘法分配律》教学反思8
乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。
从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,是计算的一个难点。因为它不仅仅是的乘法运算,还涉及到加法运算。这节课刘老师教学目标定位准确,没有把目标定位局限于探索理解乘法分配律,而是又引导学生应用乘法分配律进行了简便计算,通过学生与学生之间的互相启发与补充,老师的及时点拨,实现对“乘法分配律”这一运算定律的主动建构。整节课的学习氛围轻松愉悦、学生思维活跃、教学效果非常好。基本完成教学任务。
刘老师对本课的教学设计很科学,思路清晰,发现问题——观察比较——举例验证——归纳规律——运用规律,让学生经历了从具体到抽象,再由抽象到具体的知识推理方法,这节课不仅教会了乘法分配律,更教会了学生一种数学思想和数学方法,这也正是新课标强调的对学生其中两基培养的体现。
一、让学生从生活实例去理解乘法分配律
一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。
通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。
如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会
借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的`意思,也能顺利地解决两个算式相等的问题。
二、突破乘法分配律的教学难点
让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变
形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?
学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。
建议:在教学中不仅要注意乘法分配律的外形结构,更要注重其内涵。如两个算式为什么会相等?缺乏从乘法意义的角度进行理解。在理解这一概念时,尤其要抓住关键词“分别”加以分析,以此深化对数学模型的理解。否则,象38×99+38这样的形式,就会成为学生练习中的拦路虎。
《乘法分配律》教学反思9
乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。
如何帮学生建立数学模型,展现乘法分配律的.性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。
为此,我改进了教学方式——切换读法,化难为易。
[例题]植树节那天,学校组织二(1)班的学生植树,上午植树4小时,下午植树2小时,平均每小时植树25棵,问:植树节那天,学生一共植树多少棵?
步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。
步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。
步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。
步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。
实践证明,渗入思维的读法比机械复读教学效果要好。
《乘法分配律》教学反思10
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。
在充分感知的基础上引导学生比较这几组等式,发现有什么规律?
这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。
如:书上第55页的`第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
《乘法分配律》教学反思11
《乘法分配律》一直是四则运算定律的一个难点,学生最容易出错。比如38与99相乘,就容易出现“只把38与100相乘后再减1”的错误。还有的学生在计算125×48时,会出现“125×(6×8)=125×6+125×8“这样的错误。究其原因,还是未能真正理解乘法的含义和乘法的`运算定律。
在教学中,我也想了很多办法来解决这些问题,比如让学生背乘法分配律的含义,经常让学生做点这样的易错题。可发现效果不是很明显,尤其是有几个孩子,一会就忘记了。后来,我想:还是必须从理解乘法的意义中去学会乘法分配律。于是,我就在辅导这几名学生时,要求他们说出每一个算式表示的含义,再说一说自己做错的算式的含义,从而在对比中来发现、理解自己的错误,明白了自己错误的原因后,再来思考正确的解题思路,经过几次这样的训练,效果好多了。
《乘法分配律》教学反思12
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的`算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
《乘法分配律》教学反思13
多年来,我一直从事小学数学教学工作,每当教授学生学习运用乘法分配律进行简便计算时,心里多少都有些发怵,因为这是一节比较抽象的概念课,学生极易混淆概念。这节课是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是学习这几个定律中的难点,它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。于是,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行仔细观察,比较和归纳,大胆提出自己的猜想并且举例进行验证。
乘法分配律是四年级下册的教学内容,对本课的教学目标我定位在:
1、从学生已有的生活经验出发,通过口算、观察、类比,归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、在教学中渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题、解决问题的能力,提高学生对数学的应用意识。
新教材的一个鲜明特点就是,不再仅仅给出一些数值计算的实例,让学生通过传统的计算方法,发现规律,而是给学生出示一些熟悉的问题情境,让学生从实际生活出发,体会运算定律的现实生活背景,这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。
本节课也一样,教材提供了这样一个主题图:工人叔叔正在给墙面贴瓷砖呢,横着一排贴9块瓷砖,竖着有两种颜色,其中黄色的贴4排,蓝色的贴6排,需要解决的问题是:一共需要贴多少块瓷砖?学生独立计算,分别用两种不同的方法计算:
(1)4×9+6×9=90(块);
(2)(4+6)×9=90(块)。
接着我让学生叙述等号左边和右边分别表示什么意思(根据情境)。目的是让学生用等值变形对算式的理解。接着让学生观察两个算式,让学生说出:这两个算是可以用“=”连接,即:(4+6)×9=4×9+6×9。学生继续观察等于号左边和右边的算式的特点,目的是结合学生熟悉的问题情境,为后面的学习奠定基础,帮助学生体会运算定律的现实背景。接着设计“悬念”,出示四组题目,把学生引到“两个算式的结果相等”的情况中来。先让学生猜想,然后验证,再让学生仿照上式编题,让每一个学生都不由自主的参与到研究中来。在编题的过程中,大多学生都编得正确,于是学生在参与探究中体验到了成就感,从而增强了他们学习的自信心和继续探究的欲望。接着,请同学们在生活中寻找验证的方法,分小组交流讨论,学生的思维活动一下活跃起来了,纷纷探究其中的奥秘。
用小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得的成功的机会。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐。自己动手编题、自己动脑探索,从数量关系变化的.多次类比中悟出规律。
“给的现成”的少,学生“创造”的就多,这样学生学会的不仅仅是一条规律,更重要的是,学生学会了自主、主动参与,学会了进行合作、独立思考、研究、发现等,像一个数学家一样(这是我的鼓励语言)!这对于一个十来岁的孩子来说,起到的激励作用是无比巨大的。而爱思考、多思考、会思考的学习习惯,会让孩子一生受益。纵观整个教学过程,学生学得轻松,学得主动。
通过这节课的教学,我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有深度、广度,也为培养和发展学生思维的灵活性,提供了更加广阔的空间。本节课的教学较好的贯彻了新课程标准的理念,具体体现在以下几点:
一、主动探究、亲身经历和体验
学生的学习过程应该是学习文本批判、质疑和重新发现的过程,是在具体情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展的过程。本节的教学,我从主题图入手,引出(4+6)×9=4×9+6×9。设计的目的是从解决这个问题的两种算法中,得到乘法分配律的一个实例。接下来,出示四组题目,把学生引到“两算式的结果相等”的情况中来。然后让学生通过验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、验证、归纳出乘法分配律。整个过程中,我不是把规律直接呈现给学生,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个过程中,学生经历了一次严密的科学发现过程:观察――猜想――验证――结论,联系生活,解决问题。为学生的可持续学习奠定了基础。
二、多向互动,注重合作交流
在教学过程中,学生的认知水平、思维方式、智力水平、活动能力都是不一样的。因此,为了使不同层次的学生都能在学习中得到发展,我在本节课的教学中通过师生多向互动,特别是通过学生与学生之间的相互启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一定律的主动构建过程,使学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。
总之,在本节课中,虽然新的教学理念有所体现,但对于个别学生的参与积极性还没有充分调动起来,同学们虽然很投入,都似乎掌握了运算定律的运用,但在课堂练习时还是发现了一些问题,个别学生仍然出现了概念混淆,如:学生在计算形如a×(b+c)时,就把等于号右边的算式错误的写成:a×b+c,期间我还提醒大家注意,但实际运用中,很多同学还是忘记用括号里的两个加数a和b分别去乘括号外的乘数c。其实这个问题,也是我上课之前所发怵的原因,现在看来,对于这一问题,还必须在今后的练习过程中进一步加强理解、运用的训练,更有待我在今后的教学中不断地探索改进更好的教学方法,以求进一步提升课堂教学效率。
《乘法分配律》教学反思14
小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的`角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算12588;10189你能用几种方法?
12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练,针对典型题目多次进行练习。
练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
《乘法分配律》教学反思15
①1355+5587=55(13+87)=5513+5587
②8(125+9)=8125+9
③(100-7)25=10025+725
④9947=(100-1)47=10047-1
⑤35201=35(201-1)
⑥79125=125(80-1)=12580+1251
⑦79125=125(80-1)=12580-1
⑧1252532=1258+425
⑨88125=808125
⑩24335=(245)33=10033
学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?
3、让学生进行一题多解的.练习,加深对乘法结合律和乘法分配律的理解
如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的.
4、多练
针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。
【《乘法分配律》教学反思】相关文章:
《乘法分配律》教学反思12-22
乘法分配律教学反思11-11
乘法分配律教学反思04-13
《乘法分配律的练习》教学反思05-31
数学乘法分配律教学反思03-24
乘法分配律教学反思三篇03-07
乘法分配律教学反思(精选16篇)03-17
乘法分配律教学反思(精选20篇)07-17
《乘法分配律》教学反思(精选19篇)10-19
《乘法分配律》教学反思精选15篇03-05