小学数学《圆的对称性》教学设计(精选19篇)
教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。以下是小编整理的小学数学《圆的对称性》教学设计,欢迎大家分享。
小学数学《圆的对称性》教学设计 篇1
一、教材分析:
《圆的对称性》是义务教育课程标准实验教科书六年级上册第四单元第59页的内容。它是在学生已经认识了长方形、正方形、等腰三角形、等腰梯形等平面图形和初步认识轴对称图形和对称轴基础上进行学习的。这是学生研究曲线图形的开始,是学生认识发展的又一次飞跃。教材注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆也是轴对称图形,体会到圆是轴对称图形且有无数条对称轴。考虑到小学生的认知水平,教材并没有给出圆的对称特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的知识提供了感性认识和直观经验。通过对圆的有关知识的学习,不仅能够加深学习对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制扇形统计图打好基础。
二、教学内容:
教材59页例3。
三、设计思想:
现代课堂教学是以现代先进的教育思想和教学理论为指导的,以面向全体学生,全面提高学生作为现代人应具备的基本素质为根本目的,以充分体现学生主体地位,实现教学过程最优化为基本特征的实践活动。“圆的对称性”的设计我力求体现:
1、数学于生活,中出示的几种生活中的图形都是轴对称图形图形,很自然的就为学生创设了问题情境。
2、强化操作,在操作中探究,画一画、剪一剪、折一折,让学生在操作中感知圆对称性特征。
3、运用,用新颖的教学手段加深学生的印象,激发学生的求知欲,发挥图象的效果,让学生建立深刻的印象。
4、将知识还原于生活,运用于生活,不断激发学生的思维,促进学生思维活动的发展,培养创新意识,又让学生感受到数学起源于生活,又能应用于生活。
四、学法指导:
动手操作,结合观察、分析、推理和验证
五、教学目标:
知识目标:认识圆也是轴对称图形。
能力目标:通过画一画,折一折,在实际操作中来体会圆的对称轴有无数条这一特性。
情感目标:重视联系生活实际,为学生搭建欣赏数学对称美的平台。
六、教学重点:
能准确找出学过的平面图形的对称轴,能根据对称轴画出与给定图形对称的图形。
七、教学难点:
画出由多个圆组成的对称轴。
八、媒体资源:
教师:多媒体。
学生:纸、剪刀、圆规、红色剪纸。
九、教学过程:
(一)、复习引入
师:我们以前学过轴称图形,同学们还记得什么叫轴对称图形吗?生:自由回答,教师出示“轴对称图形”。
师:老师今天给同学们带来了几个图形,(教师随着学生回答滚动鼠标演示)请同学们观察在这些图形当中哪些是轴对称图形?
师:在日常生活中,你见过哪些轴对称图形呢?(指名回答)
教师出示“生活中的对称图形”。(滚动鼠标演示)
现在我们一起来剪一剪,好不好,看看这是不是轴对称图形。教师出示剪好的图形。
上节课我们学习了圆,那么圆是不是轴对称图形呢?
(二)、合作探究,初步体验。
1.画圆。
现在我们就一起画一个圆,折一折,试验一下好不好?
谈话:请大家先在小组里商量,然后用圆规画圆,再折一折。
先小组讨论,然后全班交流试验后的结果论。
小结:沿着圆的任意一条直径都可以将圆折成两个完全重合的半圆。
【评析:利用学生自己操作,使学生在进一步熟悉使用圆规画圆的基础上,更能亲身感受圆的轴对称性】
小结:圆是也是轴对称图形。
2.教学圆的对称轴
先让学生在纸上自己画一个正方形、长方形、等腰三角形、等腰梯形,然后用红色的笔画出这种图形的对称轴。
(有的同学可能只画出了一条,教师可提醒同学们:这几个图形都有几条对称轴,能不能都画出来?)
生:出示自己画的对称轴,让全班同学评判一下,哪些是对的,哪些是错的。并请同学说一说对称轴是根据什么画出来的。
师:同学们画得都非常好。刚才我们通过试验都知道了圆是轴对称图形,那么圆的对称轴是哪条,一共有多少条?同学们能不能自己画出来?
学生自己动手,体验画圆的对称轴。
教师巡视,并观察同学们是如何画的,是否规范。
教师可给与适当引导。
学生汇报交流,教师演示。
(三)、巩固深化
1.根据对称轴画出给定图形的轴对称图形。
2.在下列各图形中,你能分别画出几条对称轴?
让学生自己画。对于有困难的学生可以先自己画出图形,先折一折再在书上画。
3.让学生说一说生活中的对称图形。
4.小小设计师:请你画出一个实际生活中你喜欢的轴对称图形。
(四)、总结延伸
谈话:能说说今天你有什么收获吗?同学们的收获可真大呀,其实对称给我们的生活创造了许许多多的美,只要我们用心去发现、用心去研究,你会觉得生活中的美无处不在,老师更希望你们能用学到的知识去创造更多的美。
十、教学评价:
利用学生自己操作,使学生在进一步熟悉使用圆规画圆的基础上,更能亲身感受圆的轴对称性。 教学中,教师抓住轴对称图形的特点,精心设计师生共同欣赏生活中的轴对称图形,寻找生活中的轴对称图形,设计你喜欢的轴对称图形等活动,引导学生在轻松愉悦的氛围中学习数学,培养学生学习数学的情感。数学于生活,服务于生活。通过让学生举例生活中的轴对称图形,让学生感受,体验数学与生活的密切联系,数学在我们的生活中无处不在,学数学能够解决我们身边的实际问题。练习设计由潜入深,有梯度。从实物图形到抽象的数学图形,再让学生充当小小设计师,学生的认识得到了升华,在练习中,也进一步培养了学生的空间想象和推理能力。
小学数学《圆的对称性》教学设计 篇2
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图
教学过程:
一、以新引旧、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
5、转化后的图形与原来的图形面积相等吗?
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容
小学数学《圆的对称性》教学设计 篇3
教学目标
1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。
2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。
3、养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。
教学重难点
掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。
教学准备
多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。
教学过程
一、 导入新课
二、探究
新知
三、全课总结
四、综合练习
五、延伸拓展
1、导入:玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?
2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的,打开有关生活中圆的课件。问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。
3、怎样可以画出一个圆?还有其它方法吗?
师根据学生口答边画圆边归纳方法:
(1)定长(2)定点(3)旋转
请大家用这个方法再画一个圆,并很快把它剪下来。
要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?
4、揭题:为什么站成圆形大家会觉得比较公平呢?
今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。
(一)认识圆心
1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?
2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。
说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母O表示。(师板书:圆心O)
(二)认识半径
1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是“圆上”?指给你的同桌看一看,谁能上来指一指?
4、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)
说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。
3、认识特点:在同一个圆里,有( )条半径,它们的长度( )
4、想一想:(1)画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?
5、在白纸上点两个点,以它们为圆心分别画一个半径2厘米的圆和一个半径1.5厘米的圆,比比哪个圆大些?想想圆的大小由什么决定?圆的位置由什么决定?
(三)认识直径及直径与半径的关系
1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手,并在小组中说一说。
2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。
教师板书:(1)直径:d
(2)d=2r或R=1/2d
追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:在同一个圆里)
3、填表:P118 1
4、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是( )
5、判断:P118 2
今天我们一起认识了什么?现在你能解释一下;为什么玩套圈游戏时大家站成圆形、瓶子放在圆心比较公平吗?
1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。
2、在这片篮球场上要画一个最大的圆,至少要准备一根多少米长的绳子?
站在这个圆上的同学中,离得最远的两个同学最多相距多少米?同意的请举手。追问:依据是什么?怎样证明“两端在圆上的线段中,直径最长?
利用发现的规律你能测出硬币等圆形物体的直径吗?
生活中哪些物体必须做成圆形的,为什么?
(课件出示两辆跑车)让学生展开讨论。
师:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)
小学数学《圆的对称性》教学设计 篇4
教材分析:
这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。
教学目标:
1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
教学重点:
通过多种数学活动推导圆的周长公式,能正确计算圆的周长。
教学难点:
圆的周长与直径关系的探讨。
教学准备:
多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。
教学过程:
一、把准认知冲突,激发学习愿望。
1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)
2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)
3.指名一生说说正方形的周长计算方法:(生:边长4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)
二、经历探究全程,验证猜想发现。
(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。
1.谈话:那什么是圆的周长呢?(课件出示3个车轮)
2.师:上面的3个数据是表示什么的?(生:圆的直径)英寸是什么意思?(学生看书回答)
小学数学《圆的对称性》教学设计 篇5
教学内容
北师大版小学数学六年级上册教材第9页~第11页。
课前思考
本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。
课堂写真
(教师利用课件出示两种自行车图片,学生观察。)
师:你会选择哪一辆参加我校组织的自行车比赛呢?
生:第一辆。
师:为什么选择第一辆自行车呢?
生:因为它的轮子大,跑得快。
师:为什么它跑得快呢?
生:因为它滚一圈的长度长。
师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?
生:我们可以通过测量的方法得到车轮的周长呀!
师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!
(学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)
[分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。
师:哪个小组愿意先来晒一晒你们的测量方法?
生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。
师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?
[分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。
生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?
(说完,大家为第二小组的同学们鼓起了掌。)
师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!
(此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)
师:同学们请看,小球走过的路线是什么形状呢?
生:是一个圆形。
(这时,教师转向第二组的同学并提问。)
师:如果想得到这个圆的周长,还能用你们小组的这种绕线测量的方法吗?
生:不能。
[分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。
师:第三小组的同学,你们有什么好方法?
(第三小组派代表发言。)
生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?
(同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)
师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?
生:不可行。
师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。
生:圆的周长与什么有关?有怎样的关系?
师:请利用你们手中的学具合作探究吧!
(同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)
[分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。
课后解读
数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。
小学数学《圆的对称性》教学设计 篇6
教学内容:
义务教育课程标准实验教科书六年制小学五年级下册P93-94例1-例3及P94练一练、练习十七第1、2题
教学目标:
1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。
2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心
4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。
教学重点:
1、学会用圆规画圆。
2、在观察、操作等活动中感受并发现圆的有关特征。
教学难点:
引导学生归纳圆的特征。
教具准备:
自制多媒体课件、圆规、直尺。
学具准备:
1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。
教学过程:
一、创设情景,初步感知圆的特征
1、找一找(多媒体出示平面图形)
师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)
2、看一看
师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)
2、 说一说
美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)
二、实践操作,探索圆的特征
1、画圆:同学们,圆这样美,想不想把它画下来?
师:请你借助老师提供的工具画一个圆。(小组合作)
反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。
(1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?
(2)借助图钉和线段画:你是怎样画的?
(3)借助圆规画:你是怎样画的?
师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)
(4)请你用圆规画一个圆
2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?
3、认识圆心、半径、直径
(1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。
半径有什么特点?直径呢?
(2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。
看一看、比一比:圆规两脚间的距离和半径的长度(同样长)
(3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)
师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。
4、探索圆的特征
(1)小组合作探索
出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。
在同一个圆里可以画多少条半径,多少条直径?
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的半径和直径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
(2)交流
(3)电脑演示,加深理解。 (多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,R=d/2)
通过验证,你们发现的这些圆的特征正确吗?
质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)
(4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。
三、巩固练习(多媒体出示)
1、练一练第1题(指名说一说,说出理由)
多媒体出示
2、练习十七第1题:多媒体出示,学生口答
3、判断题(指名说一说,说出理由)
(1)圆的直径是半径的2倍
(2)圆有无数条半径
(3)通过圆心的线段是直径
(4)画直径4厘米的圆,圆规两脚间的距离是4厘米
(5)半径2厘米的圆比直径3厘米的圆小。
4、练习十七第2题
四、实际应用
1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)
2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的`很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)
(多媒体播放车轮是圆形的行进动画)
附板书:
圆的认识
画圆:两脚叉开、针尖固定、旋转成圆
(圆形图)
在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。
小学数学《圆的对称性》教学设计 篇7
教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,
理解在同一个圆内直径与半径的关系。
能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;
转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:让学生养成在交流、合作中获得新知的习惯。
教学重点:探索出圆各部分的名称、特征及关系。
教学难点:通过动手操作体会圆的特征。
教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。
教学过程:
一、创设情境、激发兴趣:
1、创设情境
师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。
师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?
生:因为一号的赛车,轮子是圆的。
师:其它的车手为什么会比一号的赛车慢呢?
生:因为它们的轮子是方形,是三角形,有棱有角的。
2、联系生活、举例说明
师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。
师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识
二、自主探索,初步体验:
1、第一次自主探索画一画。
师:你能创造出一个任意大小的圆吗?
生:能。
师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?
学生进行小组合作,分工创造圆。
生:进行小组反馈。
教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……
师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?
学生说一说各种画法的缺陷:(
1、利用圆形轮廓描和印圆,方便但圆的大小固定。
2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。
3、旋转形成圆不能留下痕迹。
4、圆规画圆,方便且一定大小的圆都能画)
师:那你认为这么多方法中用什么画圆最科学最方便?
生:用圆规画圆最方便。
2、第二次尝试画一画-----用圆规画圆。
师:那请同学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(
1、画移位的,
2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板书:能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。
三、认识圆各部分名称及探究其特征:
①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)
提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)
师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)
教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)
师:圆心一般用字母o来表示。(板书:o)
教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。
游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。
②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
通过测量引导学生发现:圆心到圆上任意一点的距离都相等。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)
提问:谁能说一说什么样的线段叫做半径?
教师说明:半径一般用字母r来表示。(板书:r)
教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?
启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。
③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)
学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)
提问:谁能说一说,什么样的线段叫做直径?
启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。
教师说明:直径一般用字母“d”来表示。(板书:d)
教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?
引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。
④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?
⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)
引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。
师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。
师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)
⑥练习:出示课件填表。
⑦巩固练习:出示判断题。
四、转回课前问题:
为什么车轮做成圆形的能得冠军呢?
(让学生结合今天所学知识解决此题。)
五、课后作业:
用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。
六、板书设计:
圆的认识
圆心O ——能决定圆的位置(定点)
半径r
——能决定圆的大小(定长)
直径d
同圆半径
无数条且长度相等
(等圆)直径
d=2r或r=d=
小学数学《圆的对称性》教学设计 篇8
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。
【教学目标】
1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
3、通过观察、操作、想象等活动,发展空间观念。
【教学重、难点】
1、圆的特征。
2、画圆的方法。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
一、观察思考。
1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。
2、观察这些图形与我们以前学过的图形有什么不同?
生活中还有哪些物体的面是圆形?
做套圈游戏,哪种方式更公平?
二、画一画。
你能想办法画一个圆吗?
用手比划着画圆。
用一根线和一支笔画圆。
用圆规画圆。
2、教学用圆规画圆的方法。
三、认一认。
学生用圆规画一个圆。
讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。
告诉学生半径和圆心。
四、画一画、想一想。
要求学生画一个任意大小的圆,并画出它的半径和直径。
观察比较得知:圆有无数条直径,无数条半径。
在同一个圆内直径都相等,半径都相等。
以点A为圆心,要求学生以A为圆心画两个大小不同的圆。
画两个半径都是2厘米的圆。
五、讨论。
圆的位置与什么有关系?
圆的大小与什么有关? 使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。
使学生在动手操作中体会圆的本质特征。
让学生进一步体会圆的本质特征。
让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。
六、观察与思考。
1、播放课件。
动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。
思考:车轮为什么是圆形?
操作:
用硬纸板分别剪一个圆形、正方形、椭圆形。
小组合作描出运动轨迹。
七、练一练。
课本练一练题目。
八、全课小结。
【教学反思】
圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。
小学数学《圆的对称性》教学设计 篇9
一:创设情境
师:同学们见过平静的水面吗?如果我们从上面丢下一颗小石子,你们会发现什么?
生:水纹是圆形的。
师:像这样的现象我们随处可见(播放课件),就请同学们和老师一起进入圆的世界。
二:操作画圆
师:要想认识圆首先就得会画圆,同学们能利用手中的工具圆规试着画出一个圆吗?
师:我发现有的同学画的圆不是很圆,你能说说这是为什么吗?
生边说边演示并总结出圆的画法。
三:认识圆
师:把你手中的圆自由的对折几次,你发现了什么?
生:都集中在了一点上。
师:这一点在什么位置?
生:圆的中心。
师:圆中心的一点也就是我们用圆规画圆时针尖固定的一点,叫做圆心。用字母O表示圆心,用字母r表示半径,用字母d表示直径。
师:还有什么其它发现吗?
生:所有折痕都通过圆心。
师:请同学们任意选一条折痕把它画下来。再仔细观察一下圆内的这条线段你还有什么发现?
师:象这样的一条线段我们给它一个名称叫直径。用字母表示。
师:自己圆上画一条半径,并用字母表示。
师:请同学们做一做有关直径和半径的练习题。
师:请同学们折一折,画一画,量一量,比一比,并且按照老师给你们的提示讨论,看看能得出什么结论?(课件出示问题)
(1)在同一个圆里,可以画多少条半径,多少条直径?
(2)在同一个圆里,半径的长度都相等吗?直径呢?
(3)同一个圆里的半径和直径有什么关系?
学生边说老师边板书:无数条、都相等、
如果学生没说同一个圆里,老师应重点引导学生说同一个圆里。
四:小结收获
这节课学习了什么?你有什么收获?
小学数学《圆的对称性》教学设计 篇10
教学内容:
圆的面积(2)
教学目的:
5、使学生能够正确并灵活的运用公式进行计算。
6、培养学生观察、比较、分析、综合能力并培养学生合作意识。
7、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辩证思维方法。
教学重点:
1、学生能够正确并灵活的运用公式进行计算。
2、培养学生观察、比较、分析、综合能力并培养学生合作意识。
教学难点:
使学生能够正确并灵活的运用公式进行计算。
教学过程:
1、说一说你的计算方法:
r=3,c=
s=
2、上节课我们研究了圆的面积,如果求圆的面积需要知道什么条件?怎么求?(需要知道r可以直接用公式计算。)
板书:
3、导入:如果知道直径或周长,你能求出圆的面积吗?还有哪些图形的面积需要运用圆的面积的知识来解决的呢?今天我们继续研究有关圆的面积的知识。
板书:圆的面积
(一)研究圆的面积的计算方法:
1、出示例4:街心花园中的圆形花坛周长是18.84米,花坛的面积是多少平方米?
(1)学生读题。
(2)学生试做。
(3)全班汇报。
18.84÷3.14÷2=3(米)
3.14×32=28.26(平方米)
答:花坛的面积是28.26平方米?
(4)师问:3米表示什么?
28.26表示什么?
为什么两个单位名称不同?
小结:看来,我们要想求圆的面积需要先求出圆的半径。
2、反馈:
清华附小有一个圆形花圃,它的直径是8米,它的面积是多少平方米?
(1)生试做。
(2)小组交流。
(3)全班交流。
小结:通过刚才两道题的练习,我们对圆的面积的计算又有了新的认识,知道周长或直径也能求出圆的面积,看来事物间是相互联系的。
(二)研究环形面积的计算方法:
1、出示例5:右图中涂色部分是个环形,它的内圆半径是10厘米,外圆半径是15厘米,它的面积是多少平方厘米?
(1)学生读题。
(2)观察:
a:哪里是内圆和内圆半径?你能指一指吗?
b:哪里是外圆和外圆半径?你能指一指吗?
外圆是由哪几部分组成的?
C:哪里是环形面积?
D:请你观察环形有什么特点?生活中在哪里见到过环形?
(同一个圆心;由内圆和外圆之分;环形是一个中间镂空的圆环)
(3)你打算怎样求出环形面积?(学生讨论)
(4)学生试做。
(5)全班汇报:
a:外圆面积:3.14×152=706.5(平方米)
b:内圆面积:3.14×102=314(平方米)
c:环形面积:706.5-314=392.5(平方米)
答:它的面积是392.5平方厘米?
(6)你是怎样求的环形面积?你能列出综合算式解答吗?
板书:3.14×152-3.14×102=392.5(平方米)
(7)小结并质疑:
根据环形的特点,我们可以用外圆面积减内圆面积的方法求出环形的面积。你还有其他方法求出环形的面积吗?小组讨论。
(8)全班汇报:
根据综合算式3.14×152-3.14×102=392.5(平方米),我利用乘法分配率推出了3.14×(152-102)=392.5(平方米)也就是用(R2-r2)π=S环
板书:S环=(R2-r2)π
(9)小结:你们自己发现了两种方法计算环形的面积,你们可真够棒的。
(10)判断:用算式(15-10)2×3.14计算环形面积可以吗
小学数学《圆的对称性》教学设计 篇11
教学目标
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备
教学重点和难点:圆面积的计算公式推导。
教学准备:圆形纸片、剪刀、多媒体课件等。
教学过程
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)
教学过程:
一、开门见山,揭示课题
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)
二、第一次探究,明确思路,体会“转化”的数学思想方法
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)
怎样让扇形和三角形的面积接近一些?
现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)
四、第三次探究,深化思维,推导公式
刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)
五、解决问题
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)
(教师组织交流。)
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)
六、小结
小学数学《圆的对称性》教学设计 篇12
课 题:圆的认识
教学目标
1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教材分析
重点:在观察、操作中体会圆的特征。知道半径和直径的概念。
难点:圆的特征的认识及空间观念的发展。
教具:教学圆规 电化教具 课件
教学过程:
一、 观察思考
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)
三、认一认
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认 。
四、画一画,想一想
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直
径呢?(放动画)
2、以点A为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
五、应用提高
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业
1、教材第5页练一练
2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)
训练学生的观察能力,发现问题的能力
不直接说出圆,把思考的空间留给学生
在画图中体会圆的特征
思考共同之处时再一次体会圆的特征
通过正反例的练习,加深对半径和直径的理解
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)
巩固提高,满足不同学生要求
小学数学《圆的对称性》教学设计 篇13
教学目标
1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。
2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。
教学重点和难点
由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。
教学过程设计
(一)复习准备
在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?
(产生疑问,引起争议,激发起学生的学习兴趣。)
这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)
(二)学习新课
1.认识圆心、半径、直径。
同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)
(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。
老师刚才画圆时,中间的点怎么样?(中间的点不动。)
我们把这个不动的点叫定点。(板书:定点)
粉笔画出的线为什么能首尾相接呢?
应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)
如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?
(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)
你们会用圆规画圆吗?
请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)
画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?
(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)
定点,用数学语言说叫圆心。(板书:圆心)
什么叫圆心?(指名回答)
哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)
谁说说什么叫半径?(指名回答)
(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?
像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)
谁再说说什么叫直径?(指名回答)
我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?
(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)
(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)
老师想看看同学们是不是真正掌握了这些概念。
练一练
(1)判断这几条线段中哪一条是半径?
(2)判断哪条线段画的是直径?
(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)
同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?
2.研究圆的特征。
用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?
(学生分小组讨论。)
(老师再在幻灯上演示一遍,提问讨论结果。)
(板书) 无数条 相等
刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)
甲圆的半径和乙圆半径相等吗?
甲圆直径是乙圆直径的2倍吗?
那么圆在什么情况下才存在这些特征?(板书:同一圆里)
练一练(正确画,错误画。)
(1)在同一圆里,所有的半径都相等,所有的直径都相等。 ( )
(3)在同一圆里,半径是4厘米,直径一定是2厘米。 ( )
(4)圆心在圆上。 ( )
同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:
同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)
请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。
刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?
(板书) 位置 大小
圆心决定圆的位置,画圆时要先点圆心。
(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?
如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?
(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)
(三)课堂总结
今天你学会了哪些知识?
你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)
小学数学《圆的对称性》教学设计 篇14
教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。
难点:圆面积公式的推导。
准备:圆形纸片
一. 创设情境。
S:同学们,请看这里?(展示课件动画)
S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)
S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆
的什么量呢?
X:是圆的面积。
S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)
二. 探索交流,学习新知。
1. 出示电子课本。
S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。
X1:公式。
X2:转化成学过的图形来计算。
S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)
X:长方形,正方形,三角形,平行四边形,梯形等等。
(单击课件)
S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。
S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)
S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了
吗?
X:准备好了。
S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?
X:(学生自由回答)
S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。
(课件演示)
2. 讲解课件。
4份时S问:这个像是咱们以前学过的图形吗?
X:不像。
S:不像没关系,咱们继续分,再分成8份,这次呢?
X:有点像平行四边形了。
S:继续分。(演示到32份)
S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)
S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。
X:长方形。
S:到底是长方形还是平行四边形。
S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?
X:长方形。
(板书:长方形)
S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。
3. 电子课本P68
S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的……关系?
S:请大家注意看我的课件演示。(讲解)
板书:长方形的面积= 长 x宽 圆的面积=圆周长的一半 x 半径 =Cxr 2
=2π
2rxr
=πrxr
2 =πr
2即 S=πr
S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?
X:半径。
S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?
S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?
X:半径。
学生先做题,再用课件演示答案。
三. 拓展练习。
1. 回答(尽量不要动笔)。
2. 计算(78.5 m2)
S= πr2
2 = 3.14×5
= 3.14×5×5
=3.14×25
=78.5 (m2)
四. 回顾总结。
谁愿意和大家分享你的学习成果?(学生自己总结)
老师补充:1.化圆为方。
2. S= πr2
3.计算圆面积的必要条件是什么(半径)
板书:
1. 化圆为方。
小学数学《圆的对称性》教学设计 篇15
【第一课时】 圆的面积
一、 教学目标
1.知识与技能
理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。
2.过程与方法
引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。
3.情感态度与价值观
通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。
二、教学重点
正确计算圆的面积。
三、教学难点
圆面积公式的推导。
四、教学具准备
课件、学具。
五、教学过程
(一)情境导入
1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?
今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)
2.看到今天的课题,你都想知道什么?
3.什么是圆的面积?在哪?摸摸看。
(学生摸手中圆形纸片,并用手指出圆的面积)
过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。
(二)复习旧知识
1.你还记得我们已经学过了哪些图形的面积求法吗?
(生:长方形、正方形、平行四边形、三角形、梯形)
2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)
3.问:其它图形呢?(学生简要叙述其他面积推导过程)
4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。
(三)学习新课
1.请你猜猜看,圆的面积公式应该怎么推导出来?
(生:转化成已知的图形进行推导)
2.怎么转化?想想办法。任意的分成几份行吗?
(生:沿圆的直径将圆平均分成若干份)
3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:
(1)以组为单位,先摆图形。
(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。
(3)有问题及时记录,以便讨论。
(学生动手拼摆并贴在白纸上)
4.你们遇到什么问题了吗?
(生:边不是直的,是弯的)。
5.谁能帮助他解决这个问题?
(学生谈自己的想法)
6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)
【可使用圆的图片27】
7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?
(学生谈自己的想法)
8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。
(学生谈自己的想法)
9.汇报不同推导方法:
转化成长方形的:
长方形的面积=a × b 圆的面积=c×r 2
=π r × r
=π r 2
转化成平行四边形的:
平行四边形的面积= a × h
圆的面积= c × r 2
=π r × r
=π r 2
转化成三角形的:
三角形的面积= 1× a × h 2
圆的面积= 1c×4r 24
c× r 2 =
=π r 2
转化成梯形的: 梯形面积=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圆形面积= ==
=π r 2
10.观察一下,这些推导过程有什么相同的地方?
(生:都是将圆转化成已知图形去推导的)
11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。
现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)
(四)巩固练习
1.求圆的面积(单位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?
答案:3.14×22 =12.56(平方米)
3.判断
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。 ()
4.听故事解题:
巴依老爷买来一群羊。
巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。
阿凡提说:“老爷,这个长方形羊圈太小了!”
巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”
阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”
同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。
(五)小结
今天这节课你有什么收获?
【第二课时】 圆环面积
一、 教学目标
1.知识与技能
掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法
在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观
进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会
想 会
新 旧
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
小学数学《圆的对称性》教学设计 篇16
小学数学第十一册第四单元圆练习题
一、填空。
(1) 写出下面各题的最简整数比。
①圆的半径和直径的比是( ),圆的周长和直径的比是( )。
②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。
(2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。
(3)圆的周长是37.68分米,它的面积是( )平方分米。
(4)圆的半径扩大3倍,它的面积就扩大()。
(5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。
(6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。
(7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。
(8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。
7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。
二、判断题。正确的画“√”,错的打“×”,并订正。
(1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )
(2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )
(3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )
(4)半圆的周长就是这个圆周长的一半。( )
(5)求圆的周长,用字母表示就是C=πd或C=2πr。( )
三、选择题。将正确答案的序号填在括号里。(8%)
(1)画圆时,固定的一点叫()。
① 顶点② 圆心 ③ 字母O
(2)从圆心到圆上任意一点的()叫做半径。
① 直线② 射线 ③ 线段
(3)周长相等的图形中,面积最大的是()。
① 圆 ②正方形③长方形
(4)圆周率表示()
① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系
(5)半径为r的圆面积等于()。
① πr2 ② 2πr2 ③πd
(6)圆的直径长度决定圆的()。
① 位置② 大小 ③ 形状
(7)圆的半径扩大3倍,它的面积就扩大()。
① 3倍 ② 6倍 ③ 9倍
(8)已知圆的周长是106.76分米,圆的半径是()。
① 17分米②8.5分米 ③ 34分米
四、应用题。
(1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?
(2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?
(3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)
(4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?
(5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?
(6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?
(7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?
(8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?
小学数学六年级(上册)圆测试题 (上)
一、填空
1、( )决定圆的大小,( )决定圆的位置。
2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,
3、( )是圆中最长的线段。
4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。
5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。
6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )
7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。
8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。
9、圆的周长总是直径()倍,是半径的( )倍。
10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。
11、在同一个圆里,直径和半径的关系用字母表示是()。
12、一个半圆,半径是r,它的周长是( )。
二、判断
1、直径是半径的2倍。
2、两端都在圆上的线段,叫半径。
3、半径是2厘米的圆周长和面积相等。
4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。
5、如果圆的直径是d,它的面积是 πd2 。
6、圆周率就是3.14
7、半圆形的周长就是圆周长的一半。
8、直径是圆的对称轴。
9、一个圆的面积和一个正方形的面积相等,它们的周长也相等
10、半圆形的面积就是圆面积的一半
三、应用
1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。
(1)、栅栏的长度是多少?
(2)、这条小路的面积是多少?
2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?
3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)
4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?
5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?
6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?
7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?
8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?
9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?
10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?
11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?
12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?
小学数学《圆的对称性》教学设计 篇17
一、教学目标
【知识与技能】
掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。
【过程与方法】
通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。
【情感态度与价值观】
积极参与数学活动,培养学习数学的兴趣。
二、教学重难点
【重点】圆的周长的计算公式。
【难点】圆的周长公式的推导过程。
三、教学过程
(一)导入新课
创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。
学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。
教师明确,圆一圈的长度即为圆的周长。
引入课题——圆的周长。
(二)探索新知
1.探索发现
学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。
学生汇报测量结果及测量方法。
教师引导学生思考,圆的周长大小与什么有关。
学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。
教师明确直径是半径的2倍,可看其中一项即可。
2.探索圆的周长与圆的直径关系
小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。
小组汇报分享测量结果,教师板书。
学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。
学生汇报通过多次测量计算比值总在3.1左右。
教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。
给出圆周率的特点:
(1)是一个无限不循环的小数;
(2)我国伟大的数学家祖冲之将其精确到小数点后七位;
(3)现在为了方便只要取小数点后两位即可。
(三)应用新知
问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?
教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。
(四)小结作业
提问:通过本节课,你有什么收获?
课后作业:回家找一个圆形,借助直尺测量,计算出周长。
四、板书设计
略
小学数学《圆的对称性》教学设计 篇18
一、教学目标
【知识与技能】
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
【过程与方法】
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
【情感、态度与价值观】
感受数学与生活的联系,激发学习兴趣。
二、教学重难点
【教学重点】
圆的面积计算公式。
【教学难点】
圆的面积计算公式的推导过程。
三、教学过程
(一)导入新课
创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
(二)讲解新知
提出问题:之前的图形面积公式是如何推导的?
学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。
追问:能否将圆的图形转换成之前的图形?
组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。
预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;
预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;
预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。
老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。
学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。
进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?
预设1:长方形的面积等于圆的面积;
预设2:长方形的长近似等于圆周长的一半;
预设3:长方形的宽近似等于圆的半径。
小学数学《圆的对称性》教学设计 篇19
教学内容:
冀教版小学数学六年级上册1、2、3页。
教材分析:
圆的认识是“空间与图形”领域“图形认识”部分的重要内容,是在学生已经认识了简单的平面图形以及初步认识圆的基础上学习的。主要内容包括,圆的认识、用圆规画圆、设计图案、扇形的初步认识。《数学课程标准(2011版)》对这一内容的具体要求是:通过观察、操作、认识圆。本版本进一步明确了观察、操作是学习这部分知识的基本数学活动,强化了数学学习的过程性和活动性。
从单元安排看,本教材把圆的认识和画圆安排了3课时,更体现了新的数学课程的建构思想:重视对基本图形的认识,并在经历图形认识的过程中促进学生空间观念的发展。
教学目标:
1.在观察、操作、交流等活动中,经历认识圆的过程。
2.知道圆的各部分名称,掌握圆的特征,认识同圆或等圆中半径和直径的关系。
3. 在观察、操作、交流等活动中发展初步的空间观念。
4.在解决问题的过程中,获得成功的学习体验,并对周围环境中与圆相关的事物产生好奇心,体验数学的美。
教学重点:
1.掌握圆的特征。
2.认识同圆或等圆中,直径与半径的关系。
教学难点:
利用圆的特征解决生活中的实际问题。
教学准备:
课件、剪刀、直尺、三角板、圆形物体。
教学过程:
一、课前谈话
同学们,仔细看看老师的脸是圆圆的,长长的、还是方方的?其实呀,老师更喜欢圆圆的脸,快来找一找,咱们班的同学中,谁的脸是圆圆的?圆圆的脸透着可爱,圆圆的眼睛闪烁着智慧,可爱的孩子们,老师喜欢你们!正所谓有缘千里来相会,虽然我们彼此还不太熟悉,但是老师相信,咱们一定能够很好地配合,完成今天的学习任务,有信心吗?
二、教师引领,探索新知
1.揭示课题
同学们,刚才我们在大家的脸上找到了圆,那除了圆圆的脸以外,咱们身边还有哪些物体的面是圆的呢?
预设:钟面、硬币……
出示幻灯片(圆形物体)
正如同学们所说,钟面上有圆,硬币上有圆,车轮上、茶叶桶上还有圆,可以说圆在我们的生活中是随处可见。这节课,咱们就一起走进圆的世界,探索圆的奥秘。
板书课题:圆的认识
2.描圆
要想认识圆,那咱们得想办法先得到一个圆。你能利用手中的工具得到一个圆吗?谁愿意来给大家说说,你打算怎样得到一个圆?
预设
生:我想绕硬币的边画圆。
生:我想利用尺上的圆洞画圆。……
同学们果然勤于动脑善于动手,老师真的为大家高兴。那下面就请同学们动手,在老师为你准备的操作纸上画出一个圆,然后把它剪下来。
3.探索圆曲线图形的特点
摸摸你的圆的边,想想看它与我们以往学过的长方形、正方形、三角形有什么不同?
生交流,师相机引导,得出圆是封闭的曲线图形。
板书:曲线图形。
4.探索圆的各部分名称,直径、半径以及同圆或等圆中直径与半径的关系。
①出示幻灯片。
②生操作,然后交流,引出圆心定义,并把圆心标在圆上。
在一个圆中,我们把折痕相交的点叫做圆心,其实除了圆心外,圆还有两个重要的概念。请同学们打开书第2页,认真阅读书中的文字。
出示自读提示:通过阅读你知道了哪些知识?
③师生交流,认识半径、直径及同圆或等圆中直径与半径的关系。
预设
A.认识半径
半径定义及字母表示。
师注意引导在自己的圆里画出两条半径,并思考一个圆里能画出多少条半径,为什么?
师生交流,得出同一圆里有无数条半径。
B.认识直径
直径定义及字母表示。
生交流过程中,师引导明确
⑴圆的直径必须具备两个条件:一是通过圆心,二是两端都在圆上。
⑵在自己的圆里画出两条半径,并思考一个圆里能画出多少条直径,为什么?
师生交流,得出在一个圆里有无数条直径。
C.探索直径、半径之间的关系。
出示幻灯片:测量你圆中的半径和直径长度,看看你发现了什么?
指导学生用喜欢的方法比较至少三条半径和三条直径的长。
生交流得出:同一个圆里,半径长度相等,直径长度也都相等,直径长度是半径的2倍。师板书即d=2r或r=
5.知识的梳理
出示课件:圆中心的一点叫做圆心,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。在同一个圆里,有无数条半径,无数条直径,而且直径是半径的2倍。即d=2r或r=
三、拓展延伸
同学们,咱们学习了这么多圆的知识,那么大家敢随我去《圆的王国历险园》去逛一逛吗?
出示幻灯片。
1.直径半径抢答馆。
2.爱心救助站。
3.巧手测量坊。
四、回顾知识、感受圆的魅力
师:这节课你学会了哪些知识?
(生回顾知识)
师:一位希腊的数学家说过:“圆是最完美的图形“。最后,就让我们再次走进圆的世界,感受它的神奇和魅力吧!出示课件。
五、作业
幻灯片:为什么井盖是圆的?
最后让我们一起伸出手来,共同为这节课画上一个圆满的句号。
【小学数学《圆的对称性》教学设计(精选19篇)】相关文章:
《圆的周长》教学设计04-01
圆的面积教学设计03-30
圆的面积的教学设计03-09
圆的标准方程教学设计04-28
《圆的整理与复习》教学设计03-31
圆的面积教学设计15篇03-30
圆的周长教学设计(15篇)03-04
圆的周长教学设计15篇03-04
圆的周长教学设计10篇03-16
小学数学教学设计说课稿04-07