- 相关推荐
加法交换律加法结合律教学设计
作为一名教学工作者,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。我们该怎么去写教学设计呢?以下是小编精心整理的加法交换律加法结合律教学设计,希望对大家有所帮助。
加法交换律加法结合律教学设计1
教学内容:
北师大版第7册
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。
教学难点:
学生将实际问题抽象为用字母表示的一般规律,熟练掌握简便运算的一般规律和基本技巧。
教学过程:
一、创设情境,导入新课,学习加法交换律
1、课间操时间,大家都在进行自己喜欢的体育项目,大家说说你在操场上喜欢玩什么?来看看图中的小朋友在干什么?提问:从这张图片中,你获得了哪些数学信息?
你能提出哪些数学问题?(提示:今天主要研究加法运算)根据学生的回答,出示:①参加跳绳的一共有多少人?
②参加活动的一共有多少人?
2、我们先来解决第一个问题:参加跳绳的一共有多少人?
学生独立列式,指名回答,教师板书(28+17=45 17+28=45)仔细观察,比较一下这两个算式有什么是相同的有什么是不同的?它们的结果呢?(两个加数相同,都是28和17,加数的'位置不同,计算结果相同)
你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28为什么能用等号连接起来呢?指出:这两个算式都表示两个数相加,尽管加数的位置发生了变化,但和不变,所以可以用加号连接.你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师随机板书算式,并追问:这样的算式能写几个?
3、我们再仔细的观察这几个算式,,两个数相加时会有什么样的规律呢?象这样的算式还有多少?也就是说任何两个加数相加都存在这样的规律.你们能结合上节课总结乘法交换律和乘法结合律的方法用一个算式来表示你们的新发现吗?
教师巡视,并作相应的辅导,在学生交流,板书:a+b=b+a。
4、教师小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。二.组织练习
完成练习题。下面我们再来研究加法中的另一个规律。
三、学习加法结合律
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)28+(17+23)(28+23)+17=68(人)28+(23+17)让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
4、那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)
5、出示:下面的Ο里能填上合适的符号吗?(30+10)+50Ο30+(10+50)(27+23)+47Ο27+(23+47)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后全班再交流,教师:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、渗透简便运算。计算比赛:两位同学上前比赛,不写过程,直接写得数,看谁速度快!
甲同学计算45+(88+12),乙同学计算(45+88)+12,30秒时间到!停笔!我宣布,甲同学快!乙同学慢!老师这样评价,你们有话要说吗?不公平!尤其是乙同学!甲同学算式中先算88加12,正好凑成100。乙同学呢?(凑不成100)能凑整的快是吗?好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。原来巧用运算律还能使一些计算更简便呢!
9、做练习题巩固知识点
58+36+22+64= 357+288+143= 248+192+352= 129+235+171+165=
五、课堂总结
通过本节课的学习,你有什么新的收获?
六、作业与思考题
加法交换律加法结合律教学设计2
教学目标
1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点
理解加法的运算律。
教学难点
概括加法的运算律,尝试用字母表示。
教学过程
一、教师适当引导,进入新知。
二、教学加法交换律。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的.等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母
学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:
引出:加法交换律(板书)
8、小练习:填数
三、教学加法结合律。
1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示
2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?
8、小练习:填数。
四、总结新知,组织练习。
1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
加法交换律加法结合律教学设计3
教材分析:
教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算律的教学方法和学习活动可以迁移到乘法运算律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。
学情分析:
本节课的新知识在以前的数学学习中有相应的认知基础,学生能利用主题图的故事性,逐步生成连贯的情境,逐步生成后续的问题,通过观察比较,探究归纳的方法,理解和掌握加法运算定律,并要学会用字母来表示,由感性认识上升到一定的理性认识,遵循认知规律。反过来,新知识又促进了学生更深入地认识原来学过的知识与方法。例如,交换加数的验算方法,加法中的“凑整”计算,等等。过去只知道这样做,现在知道了它们的依据,这种“再认识”对于加深新知识的巩固和记忆,是很有帮助的。
教学目标:
一、情感态度与价值观:培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。
二、过程与方法:通过观察比较、归纳的方法,来进行教学。
三、知识与技能:
1.引导学生探究和理解加法交换律、结合律
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点和难点:
教学重点:引导学生探究和理解加法交换律、结合律。教学难点:加法运算的交换律、结合律在计算中的应用。
教学过程:
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节
探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示:40+56=96(千米)
56+40=96(千米)
你能用等号把这两道算式写成一个等式吗?
40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的`这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在()里填上合适的数。37+36=36+()305+49=()+305
b+100=()+b 47+()=126+()
m+()=n+()13+24=()+()第二环节
探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。(45+36)+64=45+(36+)(560+)+
=560+(140+70)(360+)+108=360+(92+)(57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?(1)470+320=320+470(2)a+55+45=55+45+a(3)(27+65)+35=27+(65+35)(4)70+80+40=70+40+80(5)60+(a+50)=(60+a)+50(6)b+900=900+b
3、下面的算式运用了哪些加法运算定律?
4、课本P19练习1至5
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
【加法交换律加法结合律教学设计】相关文章:
加法交换律的教学设计03-07
小学数学《加法交换律》教学设计01-10
小学数学《加法交换律》教学设计01-10
《加法结合律》的教学设计(精选17篇)05-25
《加法交换律》教学反思05-17
加法交换律教学反思04-21
数学加法交换律教学反思04-21