比的基本性质教学设计
作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的比的基本性质教学设计,欢迎阅读,希望大家能够喜欢。
比的基本性质教学设计1
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的.基本性质
教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
比的基本性质教学设计2
素质教育目标
(一)知识教学点
1.使学生理解掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
(二)能力训练点
1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2.培养学生的观察能力、判断能力。
(三)德育渗透点
对学生进一步渗透辩证唯物主义观点的启蒙教育。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教具学具准备:
小黑板、投影片、投影仪。
教学步骤
一、铺垫孕伏
教师出示复习题,回忆有关比的知识。
1.什么叫做比?
2.什么叫做比值?
3.求下面各比的比值:
4.上面哪些比的比值相等?
学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)
二、探究新知
1.比例的意义。
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是______;
第二次所行驶的路程和时间的比是______。
这两个比的比值各是多少?它们有什么关系?
(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式
(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
师问:什么叫做比例:组成比例的关键是什么?
生答:表示两个比相等的式子叫做比例。(板书)
引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)
(3)做一做
下面哪组中的`两个比可以组成比例?把组成的比例写出来。
①6∶10和9∶15
②20∶5和1∶4
第①题由教师引导学生完成,思路如下:
所以:6∶10=9∶15
其余各题分组讨论后由学生独立完成。
(4)填空
①如果两个比的比值相等,那么这两个比就()比例。
②一个比例,等号左边的比和等号右边的比一定是()的。
2.比例的基本性质。
(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)
(2)让学生看下面这些比例,说出它的外项和内项是多少?
4.5∶2.7=10∶6
6∶10=9∶15
(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。(师边板书如下)
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。
(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)
(板书课题:加上“和基本性质”,使课题完整。)
(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?
指名回答后,师板书:
(7)做一做
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。
6∶3和8∶50.2∶2.5和4∶50
3.阅读课本第9、10页的内容并填空。
三、巩固发展
1.说一说比和比例有什么区别。
讨论后指名说明:
比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。
2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6∶9和9∶12
(2)1.4∶2和7∶10
4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)
2、3、4和6
四、全课小结
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。
五、布置作业练习一第3题。
比的基本性质教学设计3
教学内容:苏教版五年级上册p34——35例5、例6,“试一试”、“练一练”,练习六1——5题。
教学目标:
1、理解并掌握小数的性质;
2、能运用小数的性质进行小数的化简和改写;
3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。
教材的重点:通过探索,发现小数的性质,运用小数的性质解决相关问题。
教学难点:对小数的性质这一概念的理解是本节的难点。 教学过程:
一、导入新课
在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。
二、学习新知
1、研究小数的性质
(1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立。
1( )=10( )=100( )
得出:1元=10角=100分
1米=10分米=100厘米
1分米=10厘米=100毫米
出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
师:0.1、0.10、0.100是否相等?为什么?
(板书:0.1=0.10=0.100)
a、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)
b、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)
c、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)
(2)出示:0.3元、0.30元师:这两个数相等吗?说出理由。(学生交流,教师适时适当地引导)
(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.30、0.3,比较其大小,说明30个1/100就是3个1/10,0.30=0.3
(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?
(5)0.3添上“0”成0.03,大小有没有变化?为什么?
(6)引导学生归纳出小数的性质。
2、小数性质的应用
师:根据这个性质,遇到小数末尾有“0”的时候,一般可以去掉末尾的'“0”,把小数化简。
(1)化简小数
出示例6:提问:价格表上的哪些“0”可以去掉?
提问:这样做的根据是什么?弄清题意后,学生回答,教师板书:2.80=2.8 4.00=4 10.50=10.5
(2)把整数或小数改写成指定数位的小数
师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。
如:2.5元=2.50元 3元=3.00元
(3)做“试一试”
0.4=0.400 3.16=3.160 10=10.000
练习:口答“练一练”第2题。
讨论小结:改写小数时一定要注意下面三点:
a、不改变原数的大小;
b、只能在小数的末尾添上“0”;
c、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)
三、巩固练习
练一练
第1题:学生先独立做,再校对,说说为什么。
第2题:先涂色,再比较。根据小数的意义说一说。
练习六
第1题:口答,说说为什么。
第2题:把相等的数用线连起来,先在书
上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
第3题(左边4题):化简下面小数,采取抢答来完成。
第4题(左边4题):先独立做再口答订正。
第5题:用元作单位,把下面的钱数改写成两位小数。2人板演,其余学生齐练,评价鼓励。
四、课堂作业
练习六3和4(右边4题)
教学反思:
在教学时,我首先通过联系学生的生活实际,让学生感知商品的价格,引入新课揭示并板书课题。教学例题时,我没有直接出示例6而是先在黑板上写了三个1。提问:这三个1中间可以用什么符号连接?创设这样一个问题情境,让学生回答。接着,我在第二个1后面添上一个“0”成10,在第三个1后面添上两个“0”成100。问:现在这三个数还能用等号连接吗?(不能)师:你能想办法使他们相等吗?这问题情境的创设立即引起了学生们的好奇。这个富有启发性、趣味性、挑战性的问题吸引着学生,引起了他们强烈的探索欲望,使他们情不自禁地注入自己的热情成为学习的主人。他们注意力迅速高度集中,纷纷开动脑筋、个个跃跃欲试。通过大家的回答和教师的评判不知不觉引入新课的学习,自然流畅。这样设计有利于引导学生根据小数的意义出发研究新问题是小数意义的运用。接着通过观察米尺,引导学生得出0.1=0.10=0.100。让学生从左往右看,是什么情况?再从右往左看,是什么情况?发现了什么规律?引导学生找出规律:小数的末尾添上“0”或去掉“0”时,小数的大小不变。接着让学生用手中的学具验证:0.3=0.30,再次理解并掌握小数的性质。
这节课,以学生找规律、验证规律、应用规律,环节清晰。但是正如所有的课一样有优点也有缺点,反思下来我觉得本节课中教师还是讲得多了一些,因此留给学生巩固练习时间少了一些。因此,在今后的教学中,要体现以学生为主体,让学生充分发表自己的意见,大胆地说出自己的想法。
比的基本性质教学设计4
教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:理解比的基本性质
教学难点:正确应用比的基本性质化简比
教学准备:课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的.,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
教学总结
比的基本性质教学设计5
教学目标
1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2. 师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4. 研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的.分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5. 深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
比的基本性质教学设计6
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。
教学准备:多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式
校园升旗仪式
教室场景
签约仪式
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6 =3/2
60∶40=3/2
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40
2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
⑵学生尝试说说什么叫比例。
⑶教学比例的各部分的名称。
自学课本第34页的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的`名称。
学生说说自己写的比例的各项的名称。
⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
⑸判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
⑴6∶10和9∶15 ⑵20∶5和1∶4
⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4
⑹思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
⑴媒体出示
8∶4=()∶() 15:10=()∶4 12∶()=()∶5
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
⑵师提出问题:在一个比例中,它们项有什么特点?
⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。
⑷集体交流,发现性质。
学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。
⑸观察自己写的其它几个比例,验证发现。
⑹小结性质
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示
应用比例的基本性质,判断下面哪组中的两个比可以组成比例
⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50
⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5
2、拓展练习。
比一比,谁写得多。
在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6 =3/2
60∶40=3/2
比的基本性质教学设计7
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括.比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一.创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二.共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的'重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的3倍.4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考.感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个.3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三.运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
比的基本性质教学设计8
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的`验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
比的基本性质教学设计9
一、教材分析
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。
二、教学目标:
知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
三、教学重点是:
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点是抽象归纳出等式的基本性质。
四、教学程序(分三部分教学)
(一)联系实际,激趣引入
首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”
(二)自主探索,合作交流
学习等式的基本性质1
1、具体情境,感受天平平衡
利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。
图3、图4的教学模式和前面一样。
板书如下:
2、总结抽象,认识规律
通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)
教师指出这是等式的一个非常重要的性质。板书:等式的.基本性质
(三)巩固练习,深化认识
练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。
1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。
2、课堂作业。(当堂完成)
填一填。(a、b均不为0)
(1) 如果x+a=b,那么x+a-a=b○
(2) 如果x-a=b,那么x-a+a=b○
(3) 如果ax=b,那么a x÷a=b○
(4) 如果x÷a =b,那么x÷a×a=b○
3、拓展训练。
五、最后,关注学生的学习体会和感受,提出:通过本节课的学习你有什么收获?
比的基本性质教学设计10
教学内容:比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
2.4:1.6和60:40
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的.外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
3.填一填。
(1)=
()×()=()×()
(2)0.8:1.2=4:6
()×()=()×()
(3)4×5=2×10
4:()=():()
=
4.做一做。
完成课文中的“做一做”。
5.课堂小结
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例?
三、作业
完成课文练习六第4~6题。
课后记:
比的基本性质教学设计11
学习目标:
1、理解并掌握比的基本性质。
2、能应用比的基本性质化简比。
教学重点:
比的基本性质,化简比的方法。
教学难点:
化简比与求比值的区别。
教学过程:
一、激情导课
1、复习导入
上节课我们学习了比,说说你对比的理解?怎样求比值?
你还记得除法有什么性质?分数又有什么性质吗?
除法有商不变的性质,分数有分数的基本性质,联系比和除法、分数的关系,同学们猜想一下在比中是否也有类似的性质呢?
2、学习目标:
(1)理解比的基本性质。
(2)会运用比的基本性质化简比。
二、民主导学
1、探究比的基本性质
温馨提示:
自学书上50页的内容,可以利用比和除法的关系来研究,也可以根据比和分数的关系来研究。
(1)小组合作学习。
(2)全班汇报交流。
(3)总结归纳:比的`前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(4)根据商不变性质,我们可以进行除法的简算。根据分数的基本性质,我们可以把分数化成最简单的整数比,即化简比。
理解最简单的整数比的意义。
①举例:4:6=2:3
前项、后项同时除以2,前、后项必须是整数,而且互质
符合最简单的整数比要符合两个条件:一是比的前项,后项必须是整数,二是这两个整数必须是互质数,也就是这两个整数只有公约数1。
②判断:下面哪些比是最简比
6:92:94:22 7:13
2、探究化简比的方法。
出示例题:
(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。
①学生尝试完成,师巡视指导,要求写出化简过程。
②师生共同讲评:教师板书过程。问:化简比的结果是什么?
让学生明确还是一个比。
(2)把下面各比化成最简单的整数比。
0.75:2
观察0.75:2这个比,并与例1比较,有什么不同之处,怎样把小数转化成整数,比值不变?
引导学生可以乘整十整百的数,变成整数。学生独立完成。
除此之外还有没有其他的方法?
可以把0.75转化成分数,:2怎样化简呢?
引导学生想办法去掉分母,前项和后项可以同时乘4。
最后出示:,想一想怎样化简?
总结归纳:①化简比的方法
②不管选择哪种方法,最后的结果都是一个最简单的整数比,而不是一个数。
三、检测导结
1、化简下列各比。
15:210
12:0.4
3(2):2(1)
1:3(2)
2、判断:下面说法对吗?
(1)0.48∶0.6化简后是0.8。()
(2)4(3):2(1)化简后是12(1)。()
(3)0.4∶1化简后是2:5。()
3、连线:帮小蜗牛找家
4、写出各杯子中糖与水的质量比。
这几杯糖水有一样甜的吗?
四、反思总结:
这节课我们学习了什么知识?
和同学们分享一下你的收获吧。
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
求比值:结果是一个数
化简比:结果是一个比
比的基本性质教学设计12
【教学内容】
义务教育教科书六年级上册第50-51页。
【教学目标】
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。
【教学难点】
理解并掌握比的基本性质。
【教具学具】
课件。教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?
比前项:(比号)后项
比值除法
被除数÷(除号)除数商分数
分子-(分数线)分母分数值
二、探究新知。
探究一:比的基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的.关系,我们还能怎么研究比的规律?
【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看:
(1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)
(2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5
探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。32:1648:400.15:0.35173::66128
【设计意图:强化训练】
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计13
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的.猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
比的基本性质教学设计14
教材分析
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)
2、通过学习,培养学生观察、类比的能力,渗透转化的`数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点
教学重点:理解比的基本性质。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
比的基本性质教学设计15
一、学习目标:
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。
二、重、难点:
理解和掌握分数的基本性质。
三、学习过程:
一、导入
(1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
(2)你发现了什么?
二、学习新知
1、师板书 = =
2、观察三组分数,它们的分子和分母是怎样变化的?
分小组讨论,并填写
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
总结:分数的分子和分母同时 或 相同的数,分数的'大小
3、应用
根据分数的基本性质,我们可以写出很多相等的分数
⑴的分子和分母同时乘2,等于( );同时乘4,等于( );
同时乘5,等于( );同时乘7,等于( )
总结: =( )=( )=( )= ( )
⑵= 说出你这样填的理由
= 说出你的理由
4、巩固练习
⑴第80页 (直接做在课本上)
⑵.在下面的括号里填上适当的数。
在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立
⑶
请你当法官(说明理由)
⑷下面的分数化成分母是12,而大小不变的分数
⑸下面的分数化成分子是6,而大小不变的分数
5、拓展练习
判断
1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )
2、把 的分子增加1,分母增加3,分数的大小不变。( )
3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )
思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
【比的基本性质教学设计】相关文章:
《比的基本性质》教学设计07-01
比的基本性质教学设计08-15
分数的基本性质教学设计09-26
《比例的基本性质》教学设计05-04
分数基本性质教学设计08-29
比例的基本性质教学设计09-16
《分数的基本性质》教学设计05-24
《比的基本性质》教学设计及反思01-24
《比例的基本性质》教学设计05-22