六年级《数与形》教学设计

时间:2024-11-27 14:05:44 维泽 教学设计 我要投稿

六年级《数与形》教学设计(通用10篇)

  作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。那要怎么写好教学设计呢?以下是小编精心整理的六年级《数与形》教学设计,欢迎大家分享。

六年级《数与形》教学设计(通用10篇)

  六年级《数与形》教学设计 1

  教学目标

  (一)、知识与技能

  观察、寻找图形的特点,结合图形从不同角度观察得出数学规律。

  (二)、过程与方法

  应用“数形结合”,训练和培养数学推理能力和解决问题能力。

  (三)、情感态度价值观

  通过以形助数的直观生动性,体会数形结合,感受数学的趣味性。

  教学重点

  借助数形结合来解决问题。

  教学难点

  从不同角度观察得出数学规律,借助数形结合这个载体,灵活解决数学问题。

  教学准备

  教师:三幅贴图、多媒体课件。

  学生:三张题卡

  教学过程

  一、激趣揭题

  师:以同学们喜欢玩魔术激趣,请生说出从1开始的连续奇数相加的算式,师很快说出得数,这其中一定有奥秘。通过今天的学习,就会知道这其中的奥秘。今天我们一起来研究“数与形”,揭示课题并板书。

  二、新授

  1、整体观察,初步感知。

  师:这么多连续奇数相加,我们怎么样研究其中的规律呢?

  生答

  师引导学生从较小的数开始研究起。

  师在黑板上出示三幅图。

  师:仔细观察三幅图,分别说说每幅图是有几个小正方形组成的?后面的.图形与前面的图形中小正方形的个数有什么样的关系?你能用一道加法和一道乘法算式表示每幅图中小正方形的个数吗?,

  师:小组合作交流。

  小组汇报,说明理由。

  生1:第二幅图比第一幅图多3个,第三幅图比第二幅图多5个。

  生2:发现第一幅图有1个小正方形,第二幅图左边一个小正方形,和3个小正方形正好拼成一个每行每列都是2的大正方形,加法算式是1+3是4,乘法算式是2乘2,也就是2的平方等于4,第三幅图,分别用1个、3个、5个小正方形正好能拼成每行每列都是3的大正方形,加法算式1+3+5等于9,乘法算式3乘3就是32等于9,所以1=12,1+3=22,1+3+5=32。

  学生汇报的同时教师在相应的图下面板书加法和乘法算式。

  师:同学们不仅能用一个数表示每幅图小正方形的个数,而且还能用加法和乘法算式来表示这组图的规律。

  2、展开想象,发现规律

  师:想象一下,图4会是什么样子的?一共有几个小正方形?列出一道加法算式和一道乘法算式,请生在第一张题卡上画一画,算一算。

  展示学生作品,并请生汇报理由。

  师:如果不画图,你能想想第5个图形是什么样的吗?一共有几个小正方形?第8个图呢?第100个图呢?

  学生汇报。

  师:通过观察你又发现了什么?

  生:1个、4个、9个、16个等小正方形都能拼成较大的正方形。

  教师小结:像1、4、9、16等这些数在数学上称为平方数或正方形数。

  生:有几个连续奇数相加,和就是几的平方。

  师:根据学生的回答,教师板书(从1开始,有几个连续奇数相加,和就是几的平方)。

  4、小结归纳,提炼思想

  师:老师刚才算的那道题对吗?为什么?知道其中的奥妙了吗?我们回忆一下,刚才是怎么样研究的?又结合什么找到规律的?

  生答。

  小结:教师提炼化繁为简和数形结合思想。

  师:数形结合例子,以前我们在学习中就接触过,想一想。

  生:植树问题就是采用化繁为简、数形结合的思想。

  根据学生的回答,课件演示植树问题的图片。接着课件演示以前学习中用过数形结合的例子。

  三、巩固练习

  练习一

  教材第108页“做一做”第1题,请生动笔在第二张题卡上算一算。

  1+3+5+7+5+3+1=

  1+3+5+7+9+11+13+11+9++7+5+3+1=指名答,说明理由。

  练习二

  教材第108页“做一做”第2题,请生拿出第三张题卡,先独立完成,然后小组交流,最后再汇报,并说出理由。

  四、全课总结

  通过今天的学习,你有什么收获?

  六年级《数与形》教学设计 2

  教学内容:

  人教版六年级上册P107例1,P108做一做,练习二十二第2题。

  教学目标:

  1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。

  2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。

  教学重点:

  借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。

  教学难点:

  找到合适的形来表示数和在形中找出数的规律。

  教学过程:

  一、复习导入:

  师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)

  师:相邻的两个奇数之间有什么关系?

  今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)

  师:同学们算得真快。(出示:1+3+5+7+9+11+13=)你还能马上报出得数吗?

  二、探究新知:

  教学例一

  师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?

  复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。

  (一)画图形

  1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。

  出示图片

  有几个小正方形?你是怎么知道的?

  2、再+5呢?可以怎么摆?

  出示图片

  (二)形与数对应

  为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?

  我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?

  板书:

  1=1的平方

  1+3=2的平方

  1+3+5=3的平方

  小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的规律,图四会是什么样子,与它配套的.算式又是什么样子?同桌合作,画出草图,写出算式。

  (三)找规律

  观察这些数和形,你有什么发现?

  生1:大正方形右上角的小正方形和其他“L”形所包含的小正方,形数之和正好是每行每列小正方形数的平方

  生2:加法算式中的加数都是奇数,(都是从1开始的)

  生3:有几个数相加,和就是几的平方

  想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?

  只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。

  (四)总结

  刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。

  (五)没有图你会计算这几题吗?

  (1)1+3+5+7=

  (2)1+3+5+7+9+11=

  (3)=9的平方

  回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?

  1、写算式

  2、增加图

  3、找规律

  4、拓展

  掌握这个方法,我们可以解决很多问题。

  三、练习拓展

  P108“做一做”第2题

  1、出示问题,生独立观察。

  2、小组讨论、发现规律。

  3、全班汇报、交流。(PPT展示)

  二十二第2题(三角形数)

  1、小组合作探究

  运用刚才的方法,完成书中P1092题

  2、生汇报

  (1)写算式

  (2)增加图

  (3)找规律

  形的特点:第几幅图就有几行,最下方就有几个

  数的特点:都是从1开始,相邻两数相差1

  和的特点:(首行+末行)×行数÷2

  (4)拓展第十个图

  3、讲解三角形数

  由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。

  其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。

  4、回顾以前涉及的一些数形结合的例子。

  四、全课总结

  通过这节课的学习,你有什么收获?

  通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:

  数与形,本是相倚依,焉能分作两边飞。

  数无形时少直觉,形无数时难入微。

  数形结合百般好,隔离分家万事休。

  切莫忘,几何代数统一体,永远联系,切莫分离。”

  五、练习

  教材第109页第1题。

  六年级《数与形》教学设计 3

  教学目标:

  使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。

  使学生在解决数学问题的过程中,感受数形结合思想的魅力。

  学习目标:

  探索利用图形直观解决计算的优越

  感受用算式表达图形规律的优越

  一、激情导课

  师:这个周末老师又学了一招,想知道吗?我能很快的算出从1开始的连续奇数相加的结果,如1+31+3+5+7等等,信不信,现在就由你来出题,我来算,看看快不快?为了证明答案是否正确,带计算机的同学可以拿出来验证结果。

  活动开始:老师板书的同时说出答案。

  怎么样?是不是特快?想知道我是怎么算出来的吗?我直接告诉你答案,还是你们自己研究?现在我可以给你告诉一个小小的提示,我是通过图形来发现规律的。

  板书:形同时说这节课咱们就来学习“数与形”,完成板书

  二、民主导学

  任务一:通过数形结合,探索从1开始的连续奇数之和与“正方形数”的关系

  任务呈现:

  (我是通过观察图形和算式之间的关系发现的,你来试一试。)

  观察,上面的图形和下面的算式有什么关系,把算式补充完整。图形和算式对照,说说你的发现。

  展示交流:

  (那个小组最先给我们说说你们的发现呢?先说第二道)

  展示时,老师要具体问问算式左边的加数和右边的平方数是怎么来的?(1在哪?3在哪呢?平方数代表图中的什么呢?)

  预设发现:

  我发现,算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方。

  我发现,从1开始的连续奇数的和正好是这串数个数的平方。

  想一想,1+3+5+7又会是什么样子呢?

  现在你是不是也能向老师一样算的快了呢?试一试

  任务二:利用规律填一填

  1+3+5+7=

  1+3+5+7+9+11+13=

  ()=9的平方

  1+3+5+7+5+3+1=

  展示交流:

  说说你是怎么算的'?

  小结:这么巧妙,简单的办法我们是怎么发现的呢?(借助图形)。看来借助图形能巧妙的帮助我们解决计算问题。那么图形的问题会不会蕴藏着数的规律呢?

  板书数-----------形

  任务三:发现图形中的数字规律

  任务呈现:课本练习二十三的第二题

  自主学习:

  先自己思考,再与同桌交流你的想法。

  展示交流:

  预设:

  小组展示:我们组发现了后一个图片总比前一个图片多一行,

  第二个图比第一个图多2个,第三个图比第二个图多3个,以此类推。

  第一个图有一行就是1,第二个图有两行,就是1和2,有几行,就从1开始排到几,如第五个图,有5行,分别是1、2、3、4、5。可以用1+2+3+4+5=15来计算。

  第10个数就是从1连续加到10的和,所以算式就是1+2+3+4+5+6+7+8+9+10=55

  小结:像刚才这些数量为1、3、6、10、15、55的圆片可以组成三角形,所以,这些数也叫做“三角形数”,回过头来看看刚才的例一的那些数,你想到了什么?(1、4、9、16、100等等正方形数)

  数和形真是一对好朋友,数形结合能帮助我们解决好多数学问题,其实在以前的学习中,我们就有由体会。

  课件呈现

  怪不得,我们的数学家华老这样说,数形结合百般好,隔离分家万事休。

  三、检测导结

  课本108页的做一做

  六年级《数与形》教学设计 4

  教学内容:

  人教版小学数学六年级上册《数与形》107-108页

  教学目标:

  1、使学生通过自主研究发现图形中隐藏着的书的规侓,并会应用所发现的规侓。

  2、使学生会利用图形来解决一些有关的问题。

  3、使学生在解决数学问题的过程中,体会和掌握数形结合与归纳推理数学思想。

  教学重难点:

  1、结合具体实例理解数形结合的思想方法。

  2、运用数形结合的方法探索规律,解决实际问题。

  教学准备:

  学习单(正方形、线段、圆形)

  练习纸教学过程:

  (一)创设情境

  谈话导入:一提到数学一会想到什么?预设:数字、图形、计算……

  揭示课题:把你们说的可以分为两类,一类是数,一类是形,今天我们就来研究数与形。

  (二)建立模型

  一、教学例1师:这是一组图形,你发现他们的规律了吗?请用数或式子表示你发现的规律。

  学生独立思考,教师巡视指导:

  预设:

  1x1=1

  2x2=4

  3x3=9

  4x4=16

  1+3=4

  1+3+5=9

  1+3+5+7=16展示交流:

  师:你能说说你是怎么想的吗?预设:

  生:我是从小正方形的个数上来想的生:我是从整个图形的面积上来想的生:我是从每次增加的正方形数来想的师:你这种观察的角度有点不一样,我们用不同颜色给区分一下(是将提前准备好的'不同颜色纸条贴到黑板上)

  虽然我们观察的角度不同,但是这三种方法都能表示这组图形的规律,是不是?

  生:是

  师:我们把这三种方法整理一下,来看黑板,1x1还可以写成12,1=12,2x2=22=+3=4,所以1+3=22,1+3+5=32,+3+5+7=42。

  师:那你觉得图形中有数的影子吗?生:有

  师:那我们继续研究,大屏幕出示图形,你能知道这个图形对应的式子是什么吗?

  生:1+3+5+7+9=52

  师:你知道1+3+5+7+9+11这个式子对应什么样的图形吗?生:边长为6的正方形

  师:是不是这样呢?我们来看大屏幕

  师:我们能从图形中看到数的影子,从数中又能发现图形,那你们觉得数与形有关系吗?生:有

  师:那我们继续研究:

  1、先观察这些式子的左边有什么特点?

  2、再从左往右依次观察这些式子你有什么发现?师:先独立思考,在把你的想法和同桌交流汇报交流:

  小结:从1开始连续相加奇数的和等于奇数个数的平方。练习:1+3+5+7+9+11+13+15+17+19= 1+3+5+7+9+11+13+11+9+7+5+3+1

  六年级《数与形》教学设计 5

  教学内容:

  人教版《义务教育教科书数学》六年级上册第107页例1。

  教材分析:

  《数与形》是本册教材第八单元《数学广角》的内容。它是教材新增的内容,按照传统的教学,是供学有余力的学生学习的,而对普通学生来说要求偏高。现在教材作为例题编写,其意图是让学生通过数与形的对照,探究发现图形中隐藏的数的规律,进一步体会数与形之间的内在联系,感受用形来解决数的有关问题的直观性与简捷性。并能把数形结合的思想迁移到解决其他一些实际问题,帮助学生积累经验。

  设计理念:

  数形结合是一种非常重要的数学思想,把数与形结合起来解决问题,可使复杂的问题变得更简单,使抽象的问题变得更直观。教学中学生通过想一想、摆一摆、算一算、议一议,发现图形中隐藏的数的规律,并且能用发现的规律来解决一些有关数的问题,在解决数学问题的过程中,体会和掌握数形结合、归纳推理的数学思想,培养学生分析问题、解决问题的意识和能力。在练习中,学生利用数形对照,观察图的变化规律,并探究数的'变化规律,体验数与形的对应关系,互相印证结果,感受数学的魅力。

  教学目标:

  1、学生通过自主探究发现图形中隐藏着数的规律,并会应用所发现的规律。

  2、学生利用图形解决一些有关数的问题。

  3、学生在解决数学问题的过程中,体会和掌握数形结合的数学思想。培养学生用“数形结合”的思想解决问题。

  教学重难点:

  借助“形”感受与“数”之间的关系,培养学生用“数形结合”的思想解决问题。

  教具学具准备:

  课件、颜色不同的小正方形若干、彩色笔、学习记录单等。教学过程:

  一、创设情境,引入新课

  出示本地“十一”假期中接待游客总数量的统计图,学生通过观察统计图来解决一些问题。并引入新课:数与形

  【设计意图:新课的导入,联系生活,拉近学生距离。通过旧知,唤起学生对数与形的感知,初步建立数与形的思想。】

  二、发现问题,探究规律

  1、探究例1,发现规律。

  今天这节课,我们先来玩一个拼图游戏吧!就是用这样的小正方形来拼出更大的正方形,相信你一定会从中发现数与形的奥秘。

  ①学生在小组内完成学习单中的想一想、拼一拼、算一算、议一议。

  ②学生以小组为单位把拼图呈现在黑板上,并汇报。

  结合图形发现算式中的特点:从1开始,连续奇数相加,有几个这样的奇数和就是几的平方。

  2、验证规律:结合图形总结得出:从1开始连续奇数相加,有几个这样的奇数拼出的图形就有几行几列,也就是几的平方。

  3、写写填填。

  同学们,老师想考考你们,你们能用刚才发现的规律直接写一写吗?1+3+5+7=()2

  1+3+5+7+9+11+13=()2

  =92请你根据例1的结论算一算。 1+3+5+7+5+3+1=()

  1+3+5+7+9+11+13+11+9+7+5+3+1=()

  4、变式练习

  接下来的题目有信心吗?3+5+7=()

  9+11+13+11+9+7+5+3+1=()

  【设计意图:让学生通过想一想、拼一拼、算一算、议一议,亲历了从“形”到“数”的过程,能直观的发现“形”与“数”的关系。结合图形与算式发现计算规律,并且能应用规律来解决一些计算问题。让学生初次体验“形”能直观解释“数”的计算,从而体验成功的乐趣。增加变式练习丰富课时内容,变式练习1针对学生易忽略从1开始这一要素进行训练,变式练习2训练学生解决问题的策略】

  三、发现规律,解决问题

  同学们,图形与数之间还有许多的奥秘等着我们去发现,大家有信心接受挑战吗?

  1、完成P108“做一做”第2题。

  2、练习二十二第2题。

  【设计意图:引导学生从多样化的角度探索规律,并应用规律解决一些有关数的问题,进一步体会和掌握数形结合、归纳推理的数学思想,培养学生分析问题、解决问题的意识和能力。】

  四、归纳小结,拓展延伸

  1.介绍“正方形数”和“三角形数”

  像1、3、6、10、15、21、28.....这些数都叫做三角形数。像这样1、4、9、16...能拼出正方形的数都叫做正方形数。

  2.通过今天的学习你有哪些收获?

  【设计意图:适时地介绍一些小知识,激发学生对数形结合的研究兴趣。通过回忆旧知,唤起相关活动记忆,沟通本节课与过去学习的内在联系。让学生感受到数形结合的学习方法并不陌生,它将一直伴随着我们的学习。】

  板书设计:数与形

  1+3=4 1+3+5=9 1+3+5+7=162X2=4 3X3=9 4X4=16 2 2 2 2

  1=1 1+3= 2 1+3+5=3 1+3+5+7=4

  从1开始的连续奇数相加,有几个这样的奇数和就是几的平方

  六年级《数与形》教学设计 6

  设计说明

  数与形之间密不可分,它们相互转化,相辅相成。在课堂教学中适当地应用数形结合思想,把握好数形结合的度,就可以把问题化难为易,化繁为简。在引进新知、建构概念、解决问题时,还可以激发学生的学习兴趣,有利于发展学生的想象力,提高学生的思维能力。

  1.重视数与形之间的联系,找到解题规律。

  数形结合思想是小学阶段最重要的一种数学思想,在课堂教学中,重视数与形之间的联系,有助于学生抽象能力的提升。因此,教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数和与大正方形中每列(或每行)小正方形个数的关系,发现数与形之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

  2.借助数与形之间的关系解决相关问题。

  教学例2时,从观察抽象的算式特点开始,先通过简单的计算找到规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用数形结合思想方法的'同时,体验到数学的极限思想。

  课前准备

  教师准备 PPT课件 学情检测卡

  学生准备 若干张完全相同的小正方形纸卡

  教学过程

  ⊙问题导入

  1.课件出示问题。

  小兰和爸爸、妈妈一起步行到离家800 m远的公园健身中心,用了20分钟。妈妈到了健身中心后直接返回家里,还是用了20分钟。小兰和爸爸一起在健身中心锻炼了10分钟。然后,小兰跑步回到家中,用了5分钟,而爸爸走回家中,用了15分钟。上面几幅图哪幅是描述妈妈离家时间和离家距离的关系?哪幅是描述爸爸的?哪幅是描述小兰的?

  2.学生讨论、回答。

  (图2是描述妈妈的,因为妈妈在健身中心没停留;图1是描述小兰的,因为她在回家的路上用了5分钟;图3是描述爸爸的)

  3.揭示课题。

  借助图形不但能帮助我们直观了解小兰离家时间与离家距离的关系,还可以帮助我们解决复杂的代数问题,这节课我们就来研究数与形。

  设计意图:通过解决与图形有关的数学问题,使学生关注图形与数学的关系,在调动学生学习的积极性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.教学例1。

  (1)课件出示例题。

  观察图形,把算式补充完整。

  1=()2 1+3=()2 1+3+5=()2

  (2)观察图形与算式,总结规律。

  ①观察、讨论。

  仔细观察,看一看上面的图形和算式左边的加数有什么关系。

  ②汇报规律。

  [规律一:算式左边加数的个数与对应的大正方形中每列(或每行)小正方形的个数相同。

  规律二:算式左边加数的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的个数和。

  规律三:算式左边加数的和正好等于大正方形中每列(或每行)小正方形个数的平方。]

  (3)运用规律解决问题。(可借助学具摆一摆)

  ①1+3+5+7=()2 (1+3+5+7=42)

  ②1+3+5+7+9+11+13=()2

  (1+3+5+7+9+11+13=72)

  ③________________=92

  (1+3+5+7+9+11+13+15+17=92)

  2.教学例2。

  (1)课件出示例题。

  计算++++++…。

  (2)观察、试算、发现规律。

  ①观察算式中加数的特点,你有什么发现?

  ②分步算一算,你有什么发现?

  试算:+=,+=,+=…

  (发现继续加下去,等号右边的分数越来越接近1)

  (3)数形结合,验证规律。

  ①引导验证:你发现的规律成立吗?请结合图示进行验证。

  ②汇报、交流。

  a.结合圆的面积验证:用一个圆的面积表示单位“1”,则原算式可表示为:

  b.结合线段图验证:用一条线段表示单位“1”,则原算式可表示为:

  (4)明确结论。

  ++++++…=1

  (5)交流对用数形结合的方法解决问题的感悟。

  (数形结合的方法可以把抽象的代数问题形象化,使其直观、简洁、易懂)

  设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。

  ⊙巩固练习

  1.完成教材108页1题。(让学生独立读题、分析、解答,鼓励用不同的方法解答)

  2.完成教材108页2题。

  3.完成教材110页4题。

  ⊙课堂总结

  通过本节课的学习,你学会了哪些解决问题的方法?

  ⊙布置作业

  1.教材109页1题。

  2.教材110页3题。

  3.教材111页6题。

  板书设计

  数学广角——数与形

  数形结合 形象直观

  六年级《数与形》教学设计 7

  (一)教学目标

  1、使学生通过自主研究发现图形中隐藏着的书的规侓,并会应用所发现的规侓。

  2、使学生会利用图型来解决一些有关的问题。

  3、使学生在解决数学问题的过程中,体会和掌握数形结合`、归纳推理、极限等基本的数学思想。

  (二)内容安排及其特点

  1、教学内容和作用。

  数形结合是一种非常重要的数学思想,把数与行结合起来解决问题可使复杂的问题变得更简单,使抽象的问题变得更直观。

  数与形相结合的例子在小学教材中比比皆是。有的时候,是图形中隐含着数的规侓,可利用数的规侓来解决图形的问题。有时候,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。尤其是小学生思维的抽象程度还不够高.经常需要借助直观模型来帮助理解。例如:利用长方形模型来教学乘法的算理,利用线段图来帮助学生理解分数除法的算理,利用面积模型来解释两位乘两位数的算理、乘法分配侓、完全平方公式等。

  还有时候,数与形密不可分,可用“数”来解决“形”的问题,也可以用“形”来解决“数”的问题。例如:几何及微积分中曲线与方程、方程组及函数与图像互为工具互为解释,有机融合。小学中的正比例关系和反比比例关系图象也很好的反映了这样的思想。

  本单元中,教材以“1+3+5+7+……+(2n-1)=n2”“1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……=1”为例,引导学生认识和利用数学与形的结合,可以解决一些有趣的数学问题。

  具体编排结构如下:

  等差数列1,3,5,…之和与正方形数的关系 例1

  数与形

  求等比数列1/2,1/4,1/8,…之和例2

  从上表可以看出,本单元的教学内容分为两个层次。

  一是使学生通过数与形的对照,利用图形直观形象的特点表示出数的规律。例如,例1中,从图形的角度直观的理解“正方形数”和“平方数”的特点。

  二是借助图形解决一些比较抽象的、复杂的、不好解释的问题。例如,例2中,解决1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……的求和问题,教材利用分数意义的直观模型,使学生直观的理解“无限”的抽象概念;再如,练习二十二第6题,通过画示意图的方式可以比较便捷的解决比较抽象的问题。

  2、教材编排特点。

  本单元教材在编排上有下面几个特点。

  ⑴ 突出探索规律、应用规律的编排意图。不管是数还是形,都突出对其规律的探索。例如,通过观察和计算1、1+3、1+3+5、1+3+5+7+…既能发现加数的规律(从1开始的连续奇数的相加),又能发现和的规律(都是连续的正方形数);通过观察和计算1/2+1/4、1/2+1/4+1/8、1/2+1/4+1/8+1/16,…同样,既能发现加数的规律,又能发现和的规律。在发现规律的基础上,通过推理,再引导学生把规律应用于一般的情形,解决问题。

  ⑵ 在利用数形解决问题的过程中积累基本的活动经验,培养基本的数学思想。例如,在例2中,让学生通过计算,发现和越来越趋向于1,感受什么叫“无限接近”。虽然无法一一穷举所得的结果,但可以利用观察到的规律进行“无穷无尽的”类推。使学生在这一过程中体会推理和极限的思想。

  (三)教学建议

  1、引导学生数形结合,相互印证。

  形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+…的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“平方数”和“正方形数”的'含义。也就是说,如果用1个小正方形、3个小正方形、5个小正方形……可以共同拼出一些大小不一的大正方形图。也可以有规律的呈现由小正方形拼成的大小不一的大正方形图,让学生看看前后两个大正方形图相差多少个小正方形,例如,边长是2的大正方形和边长是1大正方形,相差的是3个小正方形;边长是3的大正方形和边长是2大正方形,相差的是5个小正方形……相差的小正方形数正好是“?”形中的小正方形数。因此,每个大正方形图中都隐藏着一个算式,即1+3+5+…+(2n-1)=n2。

  2、使学生感受到用形来解决数的有关问题的直观性与简捷性。

  图形的直观、形象的特点,决定了化数为形往往能够达到以简驭繁的目的。例如,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加的结果为1。但是如果用圆和线段的图形加以说明,学生则比较容易理解当一个数无限趋近于1时,其结果就是1.一个极其抽象的极限问题,由于用图形来解决,就变得十分直观和便捷了。

  3、引导学生从不同的角度探索数与形的通用模式。

  小学阶段,虽然不要求写出一个数列的通式,但可以通过数形结合的方法,利用图形的规律,从不同的角度,用自己的语言描述出数列的通用模式。例如,第109页第1题,根据例1的结论,很容易得到第n个图形中最外围的小正方形数为:(2n+1)2-(2n-1)2,也可以从结果看到第一个图最外圈有8个小正方形,第二个图最外圈有8×2个小正方形,第三个图最外圈有8*3个小正方形……通过推理,可知第n个图最外圈就有8×n个小正方形,每一次都是在前一个图的基础上增加8个小正方形。还可以引导学生进一步思考:每次多的这8个小正方形都是怎么来的?使学生观察到是由于每边增加2个小正方形所产生的。

  六年级《数与形》教学设计 8

  教学目标:

  知识与技能

  1、通过观察、实验,使学生认识图形和相应的数字之间的联系。

  2、启发学生结合图形的变化规律发现相应的数字之间的联系。

  3、引导学生探索规律,发现规律,运用规律提高计算技能。

  过程与方法

  经历解决问题的相关过程,体验迁移类推的学习方法。

  情感态度与价值观

  感受数学在解决实际问题的作用,培养学生热爱数学、乐学数学的情感,体验数学知识的应用价值。

  重点:

  引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律。

  难点:

  探索规律并验证规律。

  教学准备:

  课件,小正方形若干。

  教学过程:

  一、质疑导入

  出示算式:1+3+5+7+9+11+······+=(?)你能快速口报出结果吗?观察这道算式,这些加数都有什么特点?

  二、探究新知

  1、化繁为简初步探究(1)1+3=()1+3+5=()1+3+5+7=()算出结果。观察算式与结果,你有什么发现?

  (1、它们都是从1开始的连续奇数数列求和。2、它们的和是一个数的平方。)

  (1)像这样的算式会有什么奥妙呢?今天我们就借助小小的正方形来研究像这样的数列求和的奥妙(板书课题:数与形)

  教师演示1可以表示1个正方形,1+3可以用1个正方形和3个正方形拼成一个稍大的正方形,是几行几列呢?

  (2)数形结合在拼好的稍大正方形、较大正方形上涂一涂,分别找出加数1、3、5在图形上怎么表示?一个数涂一种颜色。

  (3)观察算式与图形,你发现了什么规律?同桌交流学生汇报。

  (规律:1、这样的数列求和:有几个加数就是几的平方。2、每多一个加数,图形上会增加一个“L”形。3、和是一个数的.平方,这个数是组成正方形行与列小正方形的个数。(正方形边长))

  (4)利用规律完成练习1+3+5+7+9=1+3+5+7+9+11+13=()=9的平方11+9+7+5+3+1=3、深化规律,探究求和通式(1)引导;

  1+3=2的平方,结果中2的平方,这里的2与哪个加数更为紧密?(3+1)÷2=2(2)学生推出1+3+5=3的平方(5+1)÷2=34、独立验证求和通式1+3+5+7+9=1+3+5+7+9+11+13=三、深化练习1+3+5+7+9+11+······+=(?)

  六年级《数与形》教学设计 9

  【教学目标】

  知识技能

  1.重视“数”“形”之间的联系,找到解题规律。

  2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

  过程与方法:

  1.借助“数”“形”之间的关系,解决相关问题。

  2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

  情感态度价值观:

  在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

  【教学重难点】

  重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。

  【教具准备】

  教具:正方形块 ,课件。

  学具:完全相同的小正方形纸卡若干

  【教学过程】

  一、激趣导入

  师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?

  生:想

  师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)

  二、探究新知

  1.教学例1。

  (1)出示例题。

  2 2 1=(1)

  1+3=(2) 1+3+7=(3) 2

  (以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子

  说:“考考你,你算算我有多大?”数上下打量了一下形:“哼!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的面积是1+3=4,4是2的平方。”

  师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。

  (2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。

  ①排列图形、观察、讨论。

  仔细观察,看一看上面的图形和算式左边有什么关系?

  ②汇报发现。

  发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;

  发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。

  发现三:算式左边的加数和正好等于大正方形中每行(或每列)的'小正方形个数的平方。

  [算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]

  发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。

  三、应用知识。

  1.你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆)

  ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2

  ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )

  ③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )

  2. 请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+5+3+1 =() 5 2

  3.请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+9+11+13+11+9+7+5+3+1=( )85

  六年级《数与形》教学设计 10

  教学目标:

  在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。通过具体的观察,发展数形观念,培养数形结合思想,感受学习数学的乐趣。

  教学重点:

  通过一些数形结合的实例,使学生感受数形结合思想的优越性。

  教学难点:

  尝试运用数形结合解决问题。

  教学过程:

  一、谈话导入

  我们学校门口的两侧有两个正方形的草坪,如果我们想在草坪的四周摆上花,你能帮忙算一算,一个草坪最少要摆多少盆花吗?

  课件出示:

  师:你可以画画图帮助你解决这个问题。

  让学生独立做:

  师:哪位同学们到前面来给大家说一说你是怎样做的?

  还有不同的做法吗?其他的同学也是这样做的吗?

  师:刚才同学们在解决这个问题的时候都是通过画图来解决问题的,这样通过画示意图,来解决问题的方法,在数学上叫做数形结合,数形结合就是指数和形之间一一对应的`关系,数形结合是一种很重量的数学思想方法。

  二、回顾整理

  师:想一想,我们学习哪些知识的时候运用到了数形结合?

  课前,老师已经让大家对这部分知识作了整理下面请把你整理的情况先在小组里交流一下,小组长对同学们整理的情况进行归纳整理并做好记录,比一比看哪个小组合作的好,整理的全面。

  三、汇报交流

  师:谁愿意代表你们小组把你们交流的结果展示给大家看。

  学生汇报:

  师:你认为这个小组汇报的怎么样?

  师小结并及时评价

  师:除了在这几个方面用到了数形结合的思想方法,还有哪些方面也用到了数形结合?

  生汇报后师小结。

  师:你觉得画图有什么好处吗?

  还有哪个小组要补充吗?

  师:通过同学们的回顾整理,我们发现在学习这么多知识的时候都用了数形结合的方法。

  师举例并展示课件

  小结:

  同学们请看,像数的认识,数的运算,解决问题正比例图像,这都属于数与代数领域的内容,统计图是属于统计与可能性领域。确定位置属于空间与图形领域。看来,我们几乎在学习每一部分知识的时候,都用到了数形结合的思想方法。(示我国的著名的数学家华罗庚先生的名言让学生读一读。)

  师:数形结合的方法确实是一种很好的数学思想方法,它能帮助我们把复杂的问题简单化,把抽象的问题直观的、形象化。

  四、应用与反思

  下面的几道题,你能用数形结合的方法来解决吗?

  师:杨晨旭同学准备参加六一儿童节的时装表演节目,你能给她帮帮忙吗?

  出示:

  学生独立做

  汇报评价

  师:你认为他的方法怎么样?还有不同的方法吗?

  师小结。

  出示第二题:

  师:有困难的同学同位俩可以商量一下

  学生独立做,汇报展示。

  师:这道题看着似乎很难,但是一画线段图,一切问题就迎刃而解,数形结合的方法又一次帮助了我们。

  出示:1/2+1/4+1/8+1/16=

  下面这道题,你能顺利解决吗?

  师:你是怎样做的?到前面展示给大家看。

  还有同的方法吗?

  五、小结:

  师:通过这节课的学习,你有什么收获吗?

  现在让我们再一次读一读华罗庚先生的这句话。希望同学们在今后的学习和生活中都能用数形结合的方法解决。

【六年级《数与形》教学设计】相关文章:

《数与形》优秀教学设计范文03-07

六年级《数与形》教学设计10-30

《数形结合解决问题》教学设计09-22

数与形教学反思09-22

数与形的教学反思08-23

六年级《数与形》教学设计(通用7篇)11-13

数与形教学反思13篇09-24

数与形教学反思(精选9篇)12-28

数与形教学反思(精选10篇)12-21