《比的应用》教学设计

时间:2023-05-31 13:19:50 教学设计 我要投稿

《比的应用》教学设计(通用15篇)

  作为一无名无私奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写呢?下面是小编为大家整理的《比的应用》教学设计,希望能够帮助到大家。

《比的应用》教学设计(通用15篇)

《比的应用》教学设计1

  教学目标:

  1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

  2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。

  教学重点:

  在解决问题的过程中巩固两位数乘两位数的计算方法。

  教学难点:

  形成综合运用数学知识解决问题的能力。

  教学准备:

  小黑板

  教学设计

  一、情境导入

  师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:

  二、目标导学

  1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

  2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力。(让学生看看教学目标,并让一个学生读一读

  三、独立解答、小组合作解决问题

  师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)

  师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?

  生一:48根灯条,每根71个灯泡

  生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯

  生三:A型车限乘25人,B型车限乘8人,A租4辆型车正好。

  生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?

  (通过让学生说数学信息,培养学生完整、正确表达的好习惯)

  师:根据你发现的信息能提出哪些数学问题?

  (学生各抒己见)

  师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。

  出示四个问题:

  1、一共有多少个灯泡?

  2、29个同样的广告灯一天的租金多少元?

  3、A型车限乘25人,B型车限乘8人,A租4辆型车正好。如果租B型车,需要多少辆?

  4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?

  师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。

  (学生独立解答,教师巡视大约10分钟)

  师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。

  (学生小组交流,教师巡视,看看各小组讨论情况)

  师:各小组都讨论完了,下面请小组的同学上来汇报。

  小组同学就各问题汇报,不对的.和不完整的其余各小组及时纠正和补充。

  师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。

  四、自主练习

  教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)

《比的应用》教学设计2

  教学目标:

  1、结合具体的情景,体会理解分数加减法的意义。

  2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。

  3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。

  教学重点:

  理解并掌握异分母加减法的计算方法与法则。

  教学难点:

  掌握异分母分数加减法的算理与算法。

  教学过程:

  一、复习引入

  (一)复习有关分数单位的知识。

  1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。 )

  2、填一填 7/16 的分数单位是( ) ,它有( )这样的分数单位。 7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?

  (二)复习通分

  2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。 出示课题:分数加减法

  二、创设情境、提出问题

  1、同分母分数加减法 出示例 1(展示课件)

  师: 你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)

  抽学生口头汇报,同时老师根据学生的回答课件出示。

  引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。

  生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。

  生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16-1/16=6/16=3/8。答:下午比上午多铺了这个广场的` 3/8。

  师:你们真能干,不仅提出了问题,还正确的解答出来了。

  师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。

  师:有谁能用自己的话说一说分母相同的分数怎样加减呢?

  生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。

  生举出类似的算式计算(全班练习)

  2、异分母分数加减法

  师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?

  生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)

  师:说说结果是怎样得来的?预设:画图得出结果。 把分母变成同分母分数,再计算得出来的。 把分数化成小数计算,再把计算结果的小数化成分数。 ……

  师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?

  学生说出自己的意见

  师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。 1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4

  师:同学们在计算过程中,最关键的步骤是什么?

  生:最关键的步骤是先通分,再计算。

  师:说一说,异分母分数的计算方法?

  生:异分母分数相加减,先通分,再按同分母分数加减法计算。

  三、学生练习

  1、基础练习 填一填:(出示课件)

  ①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。

  ②异分母分数相加减,先(算一算: 4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24

  2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。 得出:1/a+1/b=(b+a)/ab

  3、接龙游戏

  1/2+1/3 3/4-1/2

  四、课堂小结

  1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9-6/9=1/9 通分),再按( 同分母分数加减法 )计算。 (每组 6 个同学,一个接一个地计算,看哪组又对又快)

《比的应用》教学设计3

  教学内容:

  小学数学人教版第十一册第49页~51页的内容,练习十三的第1~6题。

  教学目标:

  1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:

  掌握按比例分配应用题的解题方法。

  教学难点:

  按比例分配应用题的实际应用。

  教学准备:

  小黑板

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  2、口答

  (1)把6 个苹果平均分给两个小朋友,每人分几个?

  (2)六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务. 六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  (3)六一班参加午餐的有60人,六二班有50人。现在午餐部把110 个平均分给这两个班,你认为合理吗?你认为怎样分合理?

  在日常生活中,很多分配问题都不能平均分配,刚才你们说的按人数的比去分,就是我们今天要学习的比的应用,也可以说是按比例分配。板书课题:(比的应用)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  出示例2:某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少? 读题后,问1:4什么意思?浓缩液的体积占这瓶清洁剂的几分之几?水的体积占这瓶清洁剂的几分之几?

  你会怎样做这道题?

  提问:多找学生说说,要求说出每步算出来的是什么

  学生回答后,老师板书:

  这道题做得对不对呢?我们怎么检验? 提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

  强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

  老师总结并强调计算方法 :首先看清题里的条件 给的是哪几个量的比 再看题中给的量是否是这几个量的和 ,而后在选择合适的计算方法。并养成验算的好习惯。

  三、出示练习题(49页 做一做)

  (1)某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50。上月新生男女婴儿各有多少人?

  (2)学校把栽70棵树的任务,按六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵? 读题后,学生独立做,二人板演

  老师集体订正,要求说出每步算出的是什么。

  拓展练习

  怎样分配最合理?(有的说平均分,有的说按出资多少去分)

  2.本期彩票小张出资200元,小王出资300元。小李出资400元,他们三人各应分得奖金多少元?

  四、布置作业:练习十二1—4题

  五、板书设计:

  比的应用

  解法

  1、每份是 500÷5=100(毫升)

  浓缩液有 100×1=100(毫升)

  水有 100×4=400(毫升)

  解法

  2、总份数?1+4=5? 浓缩液有:500×1/5=100(毫升)

  水有: 500×4/5=400 (毫升)

  答:浓缩液有100毫升,水有400毫升

  六、教学反思

  《比的应用》是十一册教材的内容,与前面学的比的知识,尤其是分数应用题密切相关。如果没有一个良好的基础,这节课想顺利的进行真的很难。因此在教学前面的知识的时候,我踏踏实实走好每一步,不让每一个学生掉队,因此在进行本节课的时候就会水道渠成。

  一、情境引入,切入课题:

  好的课题导入能引起学生的知识冲突,打破学生的心理平衡,激发学生的学习兴趣、好奇和求知欲,能引人入胜,辉映全堂。新课导入的艺术之一在于能把生活中的问题作为例题,使学生切实体会到学习数

  学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出了最好根据人数比来分。根据题目当中所提供的比,让学生估计一下,哪个班级会分的多,说出你估算的根据。这位后面的计算奠定了基础。

  二.学生是课堂的主人。

  新课程改革的一个核心任务就是要改变学生原有的`单纯接受式的学习方式,向自主探究的学习方式转变.充分调动、发挥学生的主体性。从这节课的教学过程来看,学生在教师引导下讨论、交流、真正实现了学习方式的转变。每一个问题的提出,教师都给予学生充分的时间和空间,让学生亲自交流合作,然后再观察比较,最后得出结论。整个过程,对培养学生自主学习的能力是至关重要的。

  三、体现了教师是教材创造者的理念。

  在如何使用教材这个问题上,我们应该摒弃过去那种“教教科书”的传统思想,充分挖掘新课知识点,整合课堂内容,优化课堂结构,真正实现“用教科书教”。本节课我充分利用例题,将此例题先后做了三次改变,将按比例分配应用题的各种类型全部展示出来。同时在比较中使学生认识到解决按比例分配应用题的关键。打破了学生解题的模式,因此做每一道题目的时候,都必须认认真真地思考,分析。真真正正地培养了学生的能力。

  四、多角度分析问题,提高能力

  在解答应用题的时候,教师通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中。培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系、让学生死记硬背的做法,让学生充分实践体验,在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备

《比的应用》教学设计4

  教材第43页例2,练习十一第4、5题。

  教学目标:

  1.使学生进一步掌握平均数的意义和求平均数的方法。

  2.懂得平均数在统计学上的意义和作用。

  3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。

  教学重点:

  掌握平均数的意义。

  教学难点:

  掌握求平均数的方法。

  教学过程:

  一、复习引入

  三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?

  提问:题目的已知条件和问题分别是什么?

  要求平均每一组投中多少个?应该怎样列?

  提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?

  二、快乐体验,学习新知

  1、出示教科书第43页的例题2。

  提问:从这两张统计表中,大家发现了什么?

  在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

  场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的.平均身高占优势。

  2、学生动手列式计算。

  3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。

  三、巩固练习

  1、科书第45页练习十一的第4题:

  (1)完成第1小题。提问:什么叫月平均销售量?

  要求哪种饼干月平均销售量多?多多少?应该怎样列式?

  (2)完成第2小题让学生自由发表看法。

  (3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

  2、练习十一的第5题。

  学生独立完成,集体订正。

  四、课堂小结:

  本节课学习了什么?你有什么收获?

《比的应用》教学设计5

  一、教材分析

  本节《浮力的应用》是在学习了上节《浮力》,知道浮力的产生及其大小的基础上,进一步学习物体浮沉的条件,知道物体浮沉条件在实际生活中的应用,理解轮船、潜水艇、气球和飞艇是如何改变浮力或重力,来实现浮沉的,通过本节课的学习使学生体会物理就在我身边,初步学会用浮力知识解决生活中的实际问题。

  二、学情分析

  本节课学生已经掌握基础知识较扎实,已经学习了系统的力学基础知识,刚学过浮力产生的原因及阿基米德原理,有强烈的好奇心和求知欲望,知识面广,学习习惯较好,自学能力较强。本节课主要指导学生应用实验归纳总结本课的教学重点、难点,随着实验的总结、拓展,真正发挥了学生的正常思维潜能,激发了学生对自然科学的探究,搜集整理浮力在生产、生活中的应用,培养了学生实验操作能力和团结协作的精神。

  三、设计思路

  根据浮力知识的教学分解,本节教学的知识要点:一是物体的浮沉条件;二是浮沉条件的应用。知识本身的难度并不算大,但贯穿在从如何调节浮力与重力的大小关系去理解浮力的应用事例这个分析过程要求较高,是进行本节教学的关键,为此,本节教学的策略设计是:从观察、分析、比较物体的浮沉情况→认识物体的浮沉条件(受力条件和密度条件)→调节浮力与重力的大小关系→理解浮力的应用(轮船、潜水艇、气球和飞艇、选种诸方面的应用)。

  四、教学目标

  1.知识与技能

  知道物体的浮沉条件;

  知道浮力的应用

  2.过程与方法:

  通过观察、分析、了解轮船是怎样浮在水面的;

  通过收集、交流关于浮力应用的资料,了解浮力应用的社会价值。

  3.情感态度与价值观

  初步认识科学技术对社会发展的影响。

  初步建立应用科学知识的意识。

  五、教学重点:知道轮船、潜水艇、气球、飞艇的工作原理。

  六、教学难点:理解改变物体所受的重力与浮力的关系,能增大可利用的浮力。

  七、教学仪器:烧杯、水、体积相同的蜡块和铁块、两个铁罐子、沙子、潜水艇模型、热气球模型、多媒体课件。

  八、教学流程:

  (一)新课引入

  [演示]:1.出示铁块和蜡块让学生观察发现它们体积相等。

  2.将体积相同的铁块和蜡块同时浸没在水中后松手。

  [现象]:铁块沉入杯底而蜡块上浮最终浮在水面。

  [提问]:1.浸没在水中的铁块、蜡块(松手后)各受到什么力?

  (浮力、重力)

  2.铁块和蜡块受到的浮力相等吗?

  (相等。因为V排相等,根据阿基米德原理可知浮力相等。)

  3.既然铁块和蜡块受到的F浮相同,为什么松手后铁块沉底而蜡块上浮?

  液体中,物体的浮沉取决于什么呢?

  [讲解]:物体的浮沉条件:

  分析蜡块:松手后,浸没在水中的蜡块所受到的F浮>G蜡,所以蜡块上浮。当蜡块逐渐露出水面,V排减小,浮力减小,当F浮= G物时,蜡块最终漂浮在水面。即:F浮>G物上浮,最终漂浮。

  分析铁块:松手后,浸没在水中的铁块所受到的F浮<G铁,铁块下沉。到达容器底部后,铁块受到F浮、G铁和F支,三力平衡,静止在容器底,我们说铁块沉底。即:F浮<G物下沉,最终沉底。

  若一个物体浸没在水中,松手后F浮=G物,受力平衡,物体的运动状态不变,我们说物体悬浮在液体中。即:F浮=G物,最终悬浮。

  总结:通过上述分析,我们知道浸在液体中物体的浮沉取决于物体所受F浮与G物的关系。

  二)进行新课

  1.讨论:

  (1)木材能漂浮在水面,其原因是什么?

  (2)把一根木头挖成空心,做成独木舟后,其重力怎么变化?它可载货物的多少怎么变化?重力变小,可以装载的`货物变多。

  [指出]:从浮力的角度看,把物体做成空心的办法,增大了可利用的浮力,而且这种古老的“空心”办法,可以增大漂浮物体可利用的浮力。

  [质疑]:密度比水大的下沉的物体有没有办法让它上浮或漂浮呢?

  2.实验:

  两个外形相同的铁罐子,一个空心,一个装满沙;同时按入水中,松手后实心的下沉,空心的上浮最终漂浮。

  [质疑]:(1)铁的密度大于水的密度,空心的铁罐子为什么能漂浮呢?可能是因为什么呢?

  (因为它是空心的,F浮>G物,所以能上浮,最终能漂浮。)

  (2)要想让实心的铁罐子也漂浮,可以怎么办呢?

  (把沙取出来,变成空心的。)

  (3)大家的想法是如何调节的铁罐子的浮沉的呢?

  (F浮不变,挖空使G物变小,当F浮>G物,铁罐子自然就浮起来了。)

  [指出]:上述实验告诉我们采用“空心”的办法,不仅可以增大漂浮物体可利用的浮力,还可以使下沉的物体变得上浮或漂浮。

  3.应用

  轮船

  (1)原理:采用把物体做成“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。

  (2)排水量:满载时,船排开的水的质量。

  即:排水量=m船+m货

  [质疑]:1.轮船从河水驶入海里,它的重力变不变?它受到的浮力变大、变小还是不变?(不变,始终漂浮)

  2.它排开的液体的质量变不变?(不变)

  3.它排开的液体的体积变不变?

  (变,ρ海水>ρ水,所以V排海水<V排水)

  4.它是沉下一些,还是浮起一些?(V排变小了,所以上浮一些)

  [强调]:同一条船在河里和海里时,所受浮力相同,但它排开的河水和海水的体积不同。因此,它的吃水深度不同。

  潜水艇

  [学生实验]:

  潜水艇能潜入水下航行,进行侦查和袭击,是一种很重要的军事舰艇。它是怎么工作的呢?我们用打吊瓶用的小塑料管来模拟潜水艇。请同学们利用和塑料管连接的细管给塑料管吹气或吸气。

  现象:吸气时,水逐渐进入管中,管子下沉;吹气时,管中的水被排出,管子上浮;

  [质疑]:(1)小塑料管浸没在水中所受F浮是否变化?

  (塑料管形变很小,V排基本不变,所以可以认为F浮不变)。

  (2)那它是怎样上浮或下沉的呢?

  (吹气时,水从管子中排出,重力变小,F浮>G物,所以上浮;吸气时,水进入管子,重力变大,F浮<G物,所以下沉)

  [讲解]:潜水艇两侧有水舱,当水舱中充水时,潜水艇加重,就逐渐潜入水中;当水舱充水使艇重等于同体积水重时,潜水艇就可悬浮在水中;当压缩空气使水舱中的水排出一部分时,潜水艇变轻,就可上浮了。

  潜水艇:

  原理:靠改变自身重力来实现在水中的浮沉。

  [强调]:潜水艇在浸没在水下不同深度所受浮力相同。

  气球和飞艇

  [演示]:“热气球”的实验。

  [质疑]:酒精燃烧后袋内空气密度怎样变化?

  原理:ρ气<ρ空气,使它受到的F浮>G物而升空。

  [讨论]:要使充了氦气、升到空中的气球落回地面,你们能想出什么办法?要使热气球落回地面,有什么办法?(放气或停止加热)

  其他应用

  密度计、盐水选种等。

《比的应用》教学设计6

  (一)知识与技能

  1、使学生认识摩尔是物质的量的基本单位,了解物质的量与微观粒子之间的关系;了解摩尔质量的概念。

  2、了解提出摩尔这一概念的重要性和必要性,懂得阿伏加德罗常数的涵义。

  3、使学生了解物质的量、摩尔质量、物质的质量之间的关系。能用于进行简单的化学计算。

  (二)过程和方法

  初步培养学生演绎推理、归纳推理、逻辑推理和运用化学知识进行计算的能力。

  (三)情感态度与价值观

  通过对概念的透彻理解,培养学生严谨、认真的学习态度,体会定量研究的方法对研究和学习化学的'重要作用。

  重、难点:物质的量及其单位。

  过程:

  [引言]古时有一个勇敢的小伙子想娶国王美丽的公主,国王出题刁难,其中一个问题是:10kg小米是多少粒?同学们你们能不能帮帮他?

  [思考、讨论、回答]

  [追问]这些方法中,那种方法最科学?

  [追问]谁能介绍几种生活中相似的例子?

  [讨论回答]箱、打、令、包、条。

  设计意图:引发学习兴趣,引出把微小物质扩大倍数形成一定数目的集体以便于方便生活、方便科学研究、方便相互交流。

  [引入] 复习C + O2 =CO2指出化学方程式的意义。

  在实验中,我们可以取12 g C和32 g O2反应,而无法只取1个C原子和1个氧分子反应,那么12 g C中含多少个C呢?要解决这个问题,我们来学习“第2节化学计量在实验中的作用”。

《比的应用》教学设计7

  1、 让学生独立解答例3的三道题目

  2、 讨论:

  (1)这三道应用题之间有什么联系和区别?

  (2)列方程解应用题的步骤是什么?

  ①审题;(弄清题意)

  ②设未知数;

  ③找出等量关系、列方程;

  ④解方程;

  ⑤检验、写答案;

  (3)用方程解和用算术方法解,有什么不同?

  方程解:A、用字母代表未知数参加列式与运算;

  B、列出符合题中条件的等式;

  算术解:A、算式中应全是已知数;

  B、算式必须表示所求的未知数;

  3、 练习:

  ① 114页“做一做”;

  ② 练习二十四的第1、2题。

  三、巩固练习:(补充练习)

  1、①男生50人,女生比男生的2被多10人,女生多少人?

  ②男生50人,比女生2被多10人,女生多少人?

  ③全班50人,男生比女生的2倍多10人,男、女生各多少人?

  2、①果园里的桃树和杏树共360棵,杏树的棵数是桃树的`4/5。桃树和杏树各有多少棵?

  ②果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。桃树和杏树各有多少棵?

  四、作业:

  联系二十四3、4、5、6题

《比的应用》教学设计8

  教学内容:

  教科书第8页的例4、练一练、练习三的第1~4题。

  教学目标:

  1.使学生联系百分数的意义认识“折扣”的含义,体会以及折扣和分数、百分数的关系,加深对查分数的数量关系的理解;

  2.了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”的题型,能应用这些知识解决一些简单的实际问题。;

  3.进一步感受数学和人民生产、生活的密切关系,体会到数学的价值。

  教学重点:理解现价、原价、折扣三量关系;培养学生综合运用所学知识解决问题。

  教学难点:通过实践活动培养学生与日常生活的密切联系,体会到数学的应用价值。

  设计理念:数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

  一、开门见山,

  1.教学例4,认识折扣

  谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

  出示教材例4的场景图,让学生说说从图中获得了哪些信息。

  提问:你知道“所有图书一律打八折销售”是什么意思吗?

  在学生回答的基础上指出:把商品减价出售,通常称作“打折”。打“八折”就是按原价的80%出售,打“八三折”就是按原价的83%出售。

  强调:原价是单位“1”,原价×折扣=现价,区别降价多少元。

  学生观察场景图。

  二、探索解法

  1.提出例4中的问题:《趣味数学》原价多少元?

  启发:图中的小朋友花几元买了一本《趣味数学》?这里的12元是《趣味数学》的现价还是原价?在这道题中,一本书的现价与原价有什么关系?

  追问:“现价是原价的80%”,这个条件中的80%是哪两个量比较的结果?比较时要以哪个量作为单位“1”?这本书的原价知道吗?你打算怎样解答这个问题?

  进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

  教师根据学生的回答板书:

  原价×80%=实际售价

  提出要求:你会根据这个相等关系列出方程吗?

  请学生到黑板上板演。

  2.引导检验,沟通联系:算出的结果是不是正确?

  启以学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用15元乘以80%,看结果是不是12元。

  学生讨论。

  学生先说出自己的`想法。

  学生在小组里相互说一说,再在全班交流。

  学生尝试列出方程。

  学生独立验算,再交流检验的方法。

  三、巩固练习”先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。

  学生解答后再解读方程:你是怎样列方程的?列方程时依据了怎样的数量关系?你又是怎样检验的?学生小组内交流。

  学生列方程解答。

  四、拓展提高1.做练习三的第1题

  学生读题后,先要求学生说出每种商品打折的含义,再让学生各自解答。

  学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

  2.做练习三的第2题。

  先学生独立解答,再对学生解答的情况加以点评。

  3.做练习三的第3题。

  先在小组里相互说一说,再指名学生回答。

  4.做练习三的第4题。

  先让学生独立解答,再指名说说思考过程。

  学生先相互说一说,再列式解答。

  学生独立解答,集体订正。

  学生小组交流。

  学生独立解答。

  五、全课小结本节课你有什么收获?商品的原价、现价、折扣之间有什么关系?

  六、布置作业课后抽时间到附近的商场或超市去看一看,收集一些有关商品打折的信息,并自己计算商品的现价或原价。

《比的应用》教学设计9

  教学目标

  1.使学生在整理与复习中进一步体会数学知识和方法的内在练习,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题,提高解决实际问题的能力。

  2.使学生在整理与复习中进一步评价和反思自己在本学期的整体学习情况,体会与同学交流和学习成功的乐趣,感受数学的意义和价值,发展对数学的积极情感。

  3.在练习过程中培养学生认真审题,发现错误及时纠正的学习习惯,在交流过程中培养学生认真倾听,踊跃发言的习惯。

  重点难点重点:能综合运用知识解决实际问题。

  难点:能综合运用知识解决实际问题。

  教学准备

  实物投影仪;学生收集一些用统计图或分数表示的信息。30根小棒或火柴,形如的框,今年的月历卡一张。

  教学过程

  一、谈话引入通过谈话,使学生意识到数学在生活中的广泛应用及价值,并揭示课题。

  1.谈话:你在生活中遇到过哪些数学问题,曾经提出过哪些数学问题?哪些问题你已经用学过的知识和方法解决了呢?。

  2.揭示课题:今天我们就要用学过的知识来解决一些实际问题。

  3.板书课题:应用广角

  学生自由发言。在复习过程中学生能与其他同学开展有效的合作,并在合作中发挥自己的作用;能合理灵活地解决问题。但有一部分学生在审题方面还不够仔细,要有意识的进行培养。

  二、综合应用

  通过练习帮助学生进一步体会统计和分数在生活中的广泛应用,增强用统计方法和分数描述交流信息的意识。

  通过具体的操作活动解决一些实际问题,使学生在运用规律的过程中加深对有关数学规律的理解。

  通过“个案探索===举例验证---归纳规律”的过程探索并发现以某个整数为分母的所有最简真分数的和的规律,使学生进一步感受存在于分数及其计算中的奥秘,产生进一步学习的愿望。

  通过练习体会数对表示位置在实际生活中的应用。

  通过观察研究物体作成圆形的好处,使学生在实践中加深对圆的特征的理解。

  通过一个有趣的游戏让学生在实际的操作中运用“倒过来推想的策略探索取胜的方法。

  通过解决问题提高学生综合运用知识解决实际问题的能力。

  1.完成第25题。

  让学生在小组中进行交流。

  指名汇报并说说从数据中看出了什么?了解了哪些情况?

  2.完成第26题。

  帮助学生理解题意:只能横着框。

  组织汇报交流,操作情况。

  3.指导完成第27题。

  让学生集体说出分母是8的最简真分数有哪些?它们的和是多少?

  让学生每人选两个整数,写出用这个整数作分母的所有最简真分数,并求出和。

  组织汇报交流,适当板书。

  教师追问:你有什么发现?

  得出结论:任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。

  4.完成第28题。

  让学生独立完成后展示离校近的学生的作业,进行集体评价。

  5.完成第29题。

  教师指导学生正确表述。

  6.完成第31题。

  学生游戏结束后追问:谁有必剩的策略?说说你的想法。

  要想取胜,可以倒过来推想:自己最后一次取之前应该留几根给对手?

  让学生再做两次游戏,两人各先取一次完成后让学生说说取胜的`策略。

  7.课后分组完成第30题。

  学生将收集到的用统计图或分数表示的信息,在小组里交流。

  学生在小组进行操作,尝试完成。

  学生齐答。

  学生任选两个整数进行尝试。

  学生说出自己的想法。

  学生独立完成后展示自己的作业,说说自己家的位置。

  学生先在小组中交流然后汇报。

  学生理解题意后尝试做几次游戏。

  学生思考后明白每次取完后留下的火柴根数必须是4的倍数。

  学生同桌再次进行游戏,体会取胜的策略,说说自己的想法。

  三、自我评价

  通过逐项对照作出自我评价,肯定学生取得的成绩,指出需要改进的地方,使学生得到帮助,从而激励学生的自信,提高进一步学习的兴趣。

  1.让学生在小组中说说每项指标的意义。

  2.让学生进行自我评价。

  3.组织交流,让学生自由发言说说自己学习中的优点及不足。学生在小组中互相说说自己对每项指标的理解。

  学生在小组中进行自我评价。

  学生自由发言。

  板书

  设计应用广角

  1/8+3/8+5/8+7/8=2

  1/3+2/3=1

  1/5+2/5+3/5+4/5=2

  任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。

《比的应用》教学设计10

  教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。

  教学目标:

  1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

  2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

  3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

  教学重点:掌握计算组合图形面积的方法,并能准确计算。

  教学难点:对组合图形进行分析。

  教学准备:课件、学具、作业纸。

  教学过程:

  一、创设情景,谈话引入

  1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

  2.课件展示:鸟巢和水立方等建筑,精美的雕窗。

  【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。

  二、探究新知,解决问题

  1.实践操作(课件出示教材例3中的雕窗插图)

  师:谁能说说这两种设计有什么联系和区别?

  预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

  师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

  预设2:都是由圆和正方形这两个图形组成的。

  师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?

  学生操作,作品展示。

  【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。

  2.解决问题

  (1)阅读与理解

  师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。

  预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。

  预设2:需要知道正方形的边长和圆的半径。

  师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?

  学生思考,尝试练习。

  (2)分析与解答

  师:谁来说说你是怎么计算左图中正方形和圆之间部分的.面积的?

  预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。

  师:你是怎么知道正方形的边长的?

  根据学生回答课件展示:正方形的边长=圆的直径。

  师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?

  预设1:可以把右图中的正方形看成两个三角形。

  追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)

  结合学生回答课件展示。

  预设2:也可以看成四个三角形。

  师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)

  师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)

  【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。

  三、回顾反思,理解算法

  师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。

  左图:。

  师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?

  学生练习,反馈讲评。

  右图:。

  师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么发现?

  预设:和之前计算的结果完全一致。

  【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。

  四、课堂练习,强化认识

  1.基础练习

  (1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?

  师:求不能喷灌到的草坪面积,就是求什么?

  (2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?

  师:可以用怎样的方法验证结果是否正确?

  2.拓展练习

  在每个正方形中分别作一个最大的圆,并完成下表。

  采用四人小组合作的方式完成,小组汇报展示。

  师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?

  正方形面积为,圆的面积为,面积之比为。

  师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。

  【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。

  五、全课总结,畅谈收获

  通过本节课的学习,你有什么收获?谁来说一说。

《比的应用》教学设计11

  教学目标

  (一)使学生学会分析解答有关倍数的三步应用题、

  (二)使学生进一步学会用线段图表示已知条件和问题、

  (三)提高学生分析能力、

  教学重点和难点

  用线段图帮助理解题意,分析数量关系,掌握解题思路既是重点,又是难点、

  教学过程 设计

  (一)复习准备

  1、板演:

  华山小学三年级栽树56棵,四年级栽的树是三年级的2倍、三、四年级一共栽树多少棵?

  2、全班同学根据线段图提问题、

  先编题,再列式、

  (1)一步计算的应用题、

  有篮球20个,排球是篮球的3倍、有排球多少个?

  20x3=60(个)

  (2)两步计算的应用题、

  有篮球20个,排球是篮球的3倍、篮球比排球多多少个?

  20x3—20=40(个)

  有篮球20个,排球是篮球的3倍,篮球、排球共有多少个?

  20x3+20=80(个)

  编题后把问题在线段图上表示出来、

  订正板演题时要说出解题思路、

  (二)学习新课

  1、新课引入

  把复习题增加一个条件,即“五年级栽的比三、四年级栽的总数少10棵”,把问题改成“五年级栽树多少棵”,像这样的问题这就是我们今天要研究的(板书:应用题)

  2、出示例5

  华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?

  (1)读题,理解题意、读出已知条件和问题,并和复习题比较有什么地方不同

  (2)引导学生用线段图表示题中的条件和问题、

  三年级栽56棵四年级栽的是三年级的2倍

  五年级栽棵10棵

  (3)学生独立思考,试算、

  (4)集体讨论、互相交流,说思路、

  教师提出要求五年级栽树多少棵,根据题里给的`条件能直接算出来吗?要先算什么?再算什么?引导学生分析、叙述自己的思路、

  (求五年级栽树多少棵,必须知道三、四年级栽多少棵、三年级栽树的棵数已经知道,四年级栽树棵数没直接告诉,所以先求四年级栽多少棵,算式为56x2=112(棵),再求三、四年级的总数,算式为56+112=168(棵)、因为五年级栽的棵数比三、四年级栽的总数少10棵,所以最后用总数减去10棵:168—10=158(棵)

  随着学生的回答,板书:

  (1)四年级栽多少棵?

  56x2=112(棵)

  (2)三、四年级共栽多少棵?

  56+112=168(棵)

  (3)五年级栽多少棵?

  168—10=158(棵)

  答:五年级栽158棵、

  还有不同的想法吗?

  如果题中五年级栽树的条件改为“五年级栽树的棵数比三、四年级栽的总数多10棵”,怎样求五年级栽的棵数?

  (用三、四年级栽的总数加10棵,168+10=178(棵)、)

  (5)求三、四年级栽树的总数还有别的比较简便的方法吗?

  提示:从倍数关系上考虑,谁是1倍数?三、四年级的总数是几倍数?怎样求三、四年级的总数?

  (四年级栽的是三年级栽的2倍,三年级栽的是1倍数,四年级栽的是2倍数,三、四年级栽的总数是 2+1=3倍数:56x(2+1)=168(棵),然后再加上10棵,就是五年级栽的棵数:168+10=178(棵)、)

  小结

  解答应用题要认真审题,理解题意是基础,分析数量关系是解题的关键、采用什么方法分析要因题而异,由于解题思路的不同,解题方法也不一样,解题步骤也不一样,因此要灵活运用、

  (三)巩固反馈

  1先画图,再解答、

  学校举行运动会、三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?

  2、看图解答、

  3、条件有变化、先讨论、独立解答,再集体交流、

  学校里有柳树36棵,松树比柳树少12棵,杨树的棵数等于松树和柳树总数的4倍、有杨树多少棵?

  订正时可以明确,题目要求“杨树有多少棵?”这句问话本身数量关系不明显,因此可以根据已知条件的关系找出新的数量,直到所求的问题、

  (四)全课总结

  引导学生说出怎样分析应用题的数量关系、

  (五)作业

  练习五第1~3题、

  课堂教学设计说明

  本节课三步应用题是在学生学过的有关倍数的两步应用题的基础上发展的,两步应用题增加一个条件,改变其问题,就是三步应用题、本节课仍以思路教学为重点,通过画线段图,学会分析数量关系,以掌握解题思路,提高分析问题的能力、本节课着重体现以下几个方面:

  1、培养学生画线段图分析数量关系的能力、画线段图虽不作教学要求,但它比文字叙述的题要具体的多,在分析数量关系中,恰当地运用线段图是帮助学生由形象思维过渡到抽象思维的桥梁,因此无论是复习、新课、练习都十分重视画图、看图分析的训练、

  2、重视学生叙述思维过程的练习、应用题不但要注重结果的正确性,还要重视思维过程的逻辑性,因此解答应用题要让学生说出自己是怎么想的,口述出思维过程,这也是培养学生逻辑思维能力的手段、

  3、注重知识间的联系、发展和变化、把复习题改变条件可使两步题变成三步题,条件变化了,解题方法也变了,让学生在分析不同的数量关系中,掌握解题思路,达到举一返三的目的

  4、设计不同层次的练习、先基本、后变化、先易后难,把说思路、画线段图贯穿于全课中、让学生通过不同的练习,达到熟悉数量关系,掌握不同的思路,提高分析、解答应用题的能力、

  板书设计

  例5 华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?

  (1)四年级栽多少棵?

  56x2=112(棵)

  (2)三、四年级共栽多少棵?

  56+112=168(棵)

  (3)五年级栽多少棵?

  168—10=158(棵)

  答:五年级栽158棵、

  简便算法:

  56x(2+1)=168(棵)

  168—10=158(棵)

  练习、看图解答

  (1)小强集邮多少张?

  45x5—20

  =225—20

  =205(张)

  (2)两人共集邮多少张?

  45+205=250(张)

  答:两人共集邮250张、

《比的应用》教学设计12

  教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

  情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。

  教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

  教学过程:

  一、导入(略)

  二、探索新知

  1、教学比例尺的`意义

  (1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)

  (2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

  (3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

  2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

  (1)、说一说方法。

  (2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000

  3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程

  解:设地铁1号线的实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

  三、布置作业

  完成《练习册》第19页的练习。

《比的应用》教学设计13

  教学目标:

  使学生进一步理解和掌握用比例知识解答应用题的方法。

  抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

  通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

  教学过程:

  师:谁能够说说用比例知识解应用题的.关键是什么?

  判断下题中各量成什么比例?并说明理由?

  指导学习题例。

  让学生独立解答例7。

  在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

  相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

  不同点:第一种解法是直接设所求问题为X。

  第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

  师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

  学习例6

  师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

  对比小结

  比较例5例6有什么不同?分别是根据什么关系来解答的?

  (强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

  算术解法和比例解法的比较和联系。

  观察算式(例5)

  练习巩固

  笔答题:教材117页1~3题。

  全课总结(略)

《比的应用》教学设计14

  将信息技术应用于语文教学,教师不仅要熟练掌握技术手段,更重要的是要深刻了解语文教育的本质,了解语文学科教学的根本目的,了解教学中的重难点所在,了解传统教学的优点和局限性,找准整合点,才能充分运用信息资源上出具有语文味的语文课,实现教学最优化。

  信息技术教学手段在语文课中的运用,我们现在还处于初级阶段,实施过程中的缺陷是显而易见的。例如应该如何减少教师对于多媒体课件的过度依赖;如何才能使我们的语文课回归“语文味”,而不是“技术味”;如何才能在网络环境教学当中真正发挥大部分学生的学习主动性,不让他们成为形式上的“参与者”,实质上的“旁观者”等等。其实,归根结底就是如何把握好一个“度”的问题,这需要我们首先从思想上切实树立以人为本的观念,一切以学生的需要为根本出发点,让技术为人服务,而不是让人被技术牵着鼻子走。其次,需要在语文教学的具体过程中,从情境设置、突破重难点、学练结合、拓展延伸等环节上寻找两者的最佳整合点,提高语文教学的实效性。

  综上所述,任何时候都应为了语文课的教学而进行教学手段的改革,而不应该是为了采用现代化教学手段而进行语文课堂教学。是否使用信息技术应是有目的的,它取决于教师的教学组织需要。

  1、信息技术与语文学科整合是要将信息技术看作是进行语文学习的一个有机组成部分,它主要在语文学科的学习活动中有机结合使用信息技术,以便更好地完成学习目标。要达到“整合”的目标,老师不仅要熟练掌握技术手段,更重要的是要深刻了解教育的'本质,了解语文学科教学的根本目的,了解教学中的难点所在,了解传统教学的优点和局限性,结合技术所提供的能力更好地进行教学活动。值得注意的是:整合不等于混合,它强调在利用信息技术之前,教师首先要清楚课程教学的目的、需求,以及信息技术的自身特点,设法找出信息技术在哪些地方能提高这堂课的学习效果,能使学生完成哪些用其他方法做不到或能做到却效果不佳的学习任务,然后才能决定用整合模式进行教学。并不是所有的课都适合与信息技术进行整合。如:20xx人教版试用修订本第二册的一篇课文——《敬畏生命》,写的是作者在印第安那州的一个湖边见到树不断飘送白色纤维——种子的情景,及由此洞察到的生命的来之不易和为了延续生命所做出的无私的奉献。课文的主题是歌颂生命的,而题目“敬畏生命”这个概念对于初一学生来说,是比较难以理解的,为了帮助学生更好的理解作者这样表达的用意,体会“敬畏生命”的含义,我就采用了生物学科,思想品德学科中有关生命知识的内容进行了多学科的整合教学,并用信息技术制作成了一个以《敬畏生命》为主题的个人网站,让学生在我的引导下进入网站学习,这样就很轻松地完成了教学任务,达到了教学目的。

  2.信息技术应作为学生学习知识的基本认知工具。在信息技术与语文学科的整合中,强调信息技术服务于课上的具体任务。学生以一种自然的方式对待信息技术,把信息技术作为在学习中获取信息、探索问题、协作解决问题的认知工具,并且对这种工具的使用要像铅笔、橡皮那样顺手、自然。这就要求学生有一定的信息素养。如,在网络课《敬畏生命》一课中,为了让学生更深刻地感受“生命的投资是豪华的、奢侈的,不计成本的”这个学习难点,设计需要学生上网查看人的生命形成的过程。这不仅能解决本文的学习难点,也从生物学角度让学生自己体会到生命的来之不易。在本课教学设计的“拓展”部分,为了让学生知道自己应“敬畏生命”,需要让学生上网查看一些有关学生**的新闻材料,看后,让学生在留言板上用最简洁的话输入自己的感想——自己应该如何对待生命,方便大家讨论。这两部分内容,如果学生没有一定的信息素养,就无法更快、更好地完成本课的学习内容。

  3.能力培养和知识学习相结合的教学目标。信息技术与语文学科的整合要求,和其他课程整合一样:学生学习的重心不再仅仅放在学会知识上,而是转到学会学习、掌握方法和培养能力上,包括培养学生的“信息素养”。如,在《敬畏生命》一课中,我设计的学习目标如下:首先是语文知识和能力方面。让学生了解作者的情况,思考并讨论写作思路,再对文中的重点语句进行点拨,讨论对这些语句的理解;同时培养学生阅读能力及自主学习的能力。其次,在多学科整合方面。借助互联网上生物学科中有关生命形成的内容,让学生了解一些有关生命的知识,帮助学生更好的理解文中的重点语句。联系互联网上一些学生**的新闻资料,对学生进行生命意识和思想品德教育,帮助学生树立正确的人生观、价值观,进而珍视生命、热爱生命。再次,通过这堂课的学习培养学生网上获取知识信息的意识。这样的设计,不但让学生学到了语文课知识,也有了上网查寻语文方面的知识信息的意识。更有了网上也可获取其它知识信息的意识。把这种解决问题的技能逐渐迁移到其他领域。

  4.“教师为主导、学生为主体”的教学结构。新型的教学模式,均强调“学生学习的主体性,要求充分发挥学生在学习过程中的主动性、积极性和创造性。学生被看作知识建构过程的积极参与者,学习的许多目标和任务都要学生主动、有目的地获取材料来实现。所以,我设计的信息技术与语文学科的整合课,都是教师进行引导、点拨,以学生自主学习为主的。这样,教学过程不再是学生被动接受知识的过程,而是学生主动探究、发展、创造的过程。如:《秋魂》(初中语文新教材第一册十四课)的教学设计中,利用多媒体,将秋天的肃杀、凄凉及文中所描写、歌颂的“秋实”、“秋色”、“秋味”、“秋风”、“秋叶”、“秋土”、“秋景”均用图片展示在学生面前,让学生自己从视觉角度去体会作者笔下秋之美,再适当配以舒缓的音乐——钢琴曲《秋日私语》,让学生朗读这篇散文诗,加深对课文的理解。教师只需在欣赏和朗读的基础上引导学生讨论,启发学生理解文中的“秋魂”,再引导学生学会诠释自己心目中的“秋魂”,甚至是“春魂”、“夏魂”,乃至“冬魂”。

  5.个别化学习和协作学习的和谐统一。信息技术给我们提供了一个开放性的实践平台,利用它实现相同的目标,我们可以采用多种不同的方法。同时,信息技术与语文学科的整合强调“具体问题具体分析”,教学目标固定后,可以整合不同的任务来实现,每一位学生也可以采用不同的方法、工具来完成同一个任务。这种个别化教学策略对于发挥学生的主动性和进行因人而异的学习是很有帮助的。但社会化大生产的发展,要求人们具有协同工作的精神。同样,在现代学习中,尤其是一些高级认知场合(例如复杂问题的解决、作品评价等)要求多个学生能对同一问题发表不同的观点,并在综合评价的基础上,协作完成任务。而网络环境正为这种协作学习提供了很好的平台。如,在《敬畏生命》一课中,关于作者的情况,我先展示网上作者的有关资料,让学生快速阅读,并抓住主要信息点,再让学生在留言板上输入自己所掌握的作者的关键信息,用大屏幕把留言全部展示后,学生讨论谁输入的信息最重要;然后,教师点评。学习完课文内容后,我又让学生上网查看一些学生**的新闻材料;一段时间后,教师让学生在留言板上用最简洁的话输入自己看后的感想,自己应该如何对待生命。教师进行联网让学生开展讨论。通过讨论引导学生去思考,并得出该如何对待生命的结论。这种讨论正是协作式的学习。这样的协作学习不但能让学生在短时间内得出应掌握的关键内容。又能了解、掌握更多的思想和知识。

《比的应用》教学设计15

  教学目标:

  1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。

  2、过程与方法:根据实际情况,独立完成学习任务。

  3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。

  教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。

  教具准备:多媒体课件、计算器。

  教学过程:

  一、复习铺垫。

  1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?

  (1)学生独立解答。

  (2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?

  2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)

  二、探索新知。

  1、学习例12(1)

  (1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?

  (2)学生读题理解题意,独立列式计算。

  (3)汇报:2.5÷0.4=6.25(个)

  (4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?

  (5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?

  (6)学生汇报讨论情况。

  (7)演示多媒体课件,验证结果。

  边演示课件,边提问:如果是用我们以前的“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?

  (8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。

  (9)在我们的日常生活中,有像这样的情况吗?请你说一说。

  2、填一填

  (1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?

  列式为:210÷40=5.25≈( )辆应用( )法取近似值。

  (2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?

  列式为:150÷40=3.75≈( )个应用( )法取近似值。

  3、学习例12(2)

  (1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

  (2)要求这个问题,要用什么方法列式?怎样列?

  (3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?

  ②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?

  (4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。

  (5)在我们的生活中,有像这样的情况吗?请你说一说。

  4、选一选

  (1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()

  A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)

  (2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()

  A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)

  5、学生看书本P33的内容,质疑。

  6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的近似值。

  三、练习提高。

  1、P33“做一做”的题目。

  2、P35第7题。

  3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的'桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (4)对学生进行环保教育。

  四、全课总结。

  同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?

  五、布置作业。

  课本P35第6、8、9题。

【《比的应用》教学设计】相关文章:

比应用教学设计04-04

比应用教学设计05-08

《比的应用》教学设计06-29

比的应用教学设计06-12

比的应用的教学设计07-05

《比的应用》教学设计05-01

比的应用教学设计12-11

《比的应用》教学设计与教学反思07-21

《比的应用》的教学设计范文04-11

《比例的应用》教学设计04-21